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Abstract: In this paper, we are interested in the control of Concurrent Discrete Event Systems defined by
a collection of components that interact with each other. We investigate the computation of the supremal
controllable language contained in the one of the specification. It is shown that by ensuring on the specification
a new language property, called partial controllability condition with respect to some approximations of the
plant derived from the behavior of each component, a supervisor can be derived such that the behavior of the
controlled plant corresponds to the supremal controllable language contained in the one of the specification.
This computation is performed without having to build the whole plant, hence avoiding the state space explosion
induced by the concurrent nature of the plant.
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Contrôle de systèmes à événements discrets concurrents

Résumé : Dans ce rapport, nous nous intéressons au contrôle de systèmes à événements discrets concur-
rents définis par une collection de sous-systèmes interagissant les uns avec les autres. Étant donné un objectif
de contrôle, le but consiste à calculer un superviseur maximal (i.e le plus permissif) assurant cet objectif,
sans construire explicitement le système à contrôler. Des approximations du système G sont dérivés à partir
des sous-systèmes qui le composent, et une propriété appelée contrôlabilité partielle, devant être vérifiée par
l’objectif de contrôle sur ces approximations, est introduite. Assurer la contrôlabilité partielle de l’objectif
de contrôle sur chacune des approximations permet, sous certaines hypothèses, d’en déduire un superviseur
maximal assurant l’objectif de contrôle sur G. De plus, les calculs effectués ont une faible complexité et ne
nécessitent pas de construire explicitement le système G, évitant ainsi l’explosion combinatoire inhérent aux
systèmes concurrents.

Mots clés : Systèmes à événements discrets, contrôle, systèmes concurrents , contrôlabilité partielle
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1 Introduction

In this paper, we are interested in the control of Concurrent Discrete Event Systems defined by a collection of
components that interact with each other. Supervisory control [8] consists in modifying a system (plant) such
that the modified (or controlled) system satisfies a given property. Typically, the behaviors of the controlled
system are constrained to remain among those allowed by a formal specification. We adopt the formalism of
Supervisory Control theory [8] and model the system as the regular language generated by a Finite State Ma-
chine (FSM). Given a plant and a specification modeled by languages, in the Ramadge & Wonham [8] theory,
one important phase is the computation of the supremal controllable sub-language contained in a language that
represents the expected behavior. However, although this computation is polynomial in the number of states of
the plant and of the specification, it is well known that the plant size grows exponentially with the number of
components that compose the plant. This renders the computation of the supervisors not practical because of
the size of the generated state space which is often too important when dealing with large scale systems.

Several approaches have been recently investigated to deal with the complexity issue of the control of
Concurrent Discrete Event Systems. Given a Concurrent Discrete Event Systems G � G� k � � � k Gn and a
specification expressed by a language K , the problem is to compute the supremal controllable sublanguage of
K � L�G� w.r.t. L�G� without having to build L�G�. In [3, 6], the authors considers the control of a product
plant (i.e. systems composed of asynchronous subsystems, not sharing common events). Given a specification,
a local system is built from the components that are coordinated by the specification (i.e. all the components
that share some events used to express it). It is then sufficient to compute the local supervisor ensuring the
specification with respect to this local system in order to obtain the result on the whole system. Closely related
to the decentralized theory, under the hypothesis that the specification is separable and that the shared events
are controllable, the authors of [11] provide a solution allowing to compute local modular supervisors Si acting
upon Gi and to operate the individually controlled system Si�Gi concurrently in such a way that the behavior
of controlled plant (i.e. L�ki Si�Gi�) corresponds to the supremal controllable sublanguage of K w.r.t. the
plant L�G�. The same methodology has been used in [9] for the control of concurrent plant for which the
various components have an identical structure. Knowing that the local supervisors Si are only operating on a
subset of the local events, they give necessary and sufficient conditions on the specification K to obtain a non-
blocking controlled plant that exactly matches the specification K . See also [1, 5, 7] for other works relating to
the modular control of concurrent plant.

In this paper, compare to [11], we adopt a dual approach. Instead of having one local supervisor per
component that enforces local control actions with respect to the events of this component, we have chosen
to perform the control on some approximations of the plant derived from the behavior of each component.
The behavior of these abstractions is resctricted so that they respect a new language property for discrete
event systems called partial controllability condition that depends on K . Under some assumptions on the
specification, it is shown that a supervisor can be derived from these “controlled approximations” such that the
behavior of the controlled plant corresponds to the supremal controllable language contained inK with respect
to the plant G.

The rest of the paper is as follows: in Section 2, the model and the main concept of Supervisory Control are
introduced. In Section 3, the notion of partial controllability is defined. Finally, the fourth Section is dedicated
to the modular synthesis of the supremal controllable language of a specification w.r.t. a concurrent DES.

2 Preliminaries

2.1 Model and Supervisory Control overview

The basic structures from which the plant is built are Finite State Machines (FSM)

Definition 1 An FSM is defined by a 4-tuple G � h��X � xo� �i, where � is the finite alphabet of G. X is
the finite set of states, xo � X is the initial state, whereas � is the partial transition function defined over
��X �� X .
PI n1593



4 B. Gaudin, H. Marchand

The notation ���� x�� means that ���� x� is defined, i.e., there is a transition labeled by an event � out of state
x in machine G. Likewise, for x � X and s � ��, ��s� x� denotes the state reached by taking the sequence of
events defined by trace s from state x in machine G. The behavior of the system is described by the language
L�G� � �� generated by G. (i.e. L�G� � fs � �� j ��s� xo��g. Intuitively, this language corresponds to the
uncontrolled behavior of the DES including the unexpected behaviors.

Given s� s� � ��, we say that s� 	 s whenever s� is a prefix of s (i.e. it exists t � �� s.t. s � s�t). We
denote by L the prefix-closure of a language L � �� (L � fs � �� j 
s� � L� s 	 s�g). Note that L�G�, as
defined above, is prefix-closed (i.e. L�G� � L�G�).

For L � �� and �� � �, we use L�s���� to denote the set of suffixes of L after s that belongs to ���, i.e.
L�s���� � ft � ��� j st � Lg and we note L�s� for L�s���.

Given a plant to be controlled, some of its events in � are said to be uncontrollable (�uc), i.e., their occur-
rence cannot be prevented by a supervisor, while the others are controllable (�c). First, we recall the definition
of a controllable language [8].

Definition 2 Let G be an FSM modeling the plant and K � L�G� the prefix-closed specification. Then K is
controllable with respect to �uc and G (or L�G�) if

K�uc � L�G� � K (1)

The behavior restriction of G is achieved by means of a a feedback control (named Supervisor). Formally,
a supervisor is given by a function S � L�G� � f� � ��� �uc � �g, delivering the set of actions that are
allowed in G by the control after a trajectory s � L�G�. Write S�G for the closed loop system, consisting of
the initial plant G controlled by the supervisor S . The closed-loop system S�G is a Discrete Event System that
can be characterized by the language L�S�G� which is recursively defined as follows:

1. � � L�S�G�

2. 	�s � L�S�G�� and �s� � L�G� � � � S�s��
 � s� � L�S�G�

In general, given an plant G and a (prefix-closed) specification K � L�G�, K is not controllable w.r.t.
L�G� and �uc, which means that it is necessary to restrict the behavior of K in order to obtain a sublanguage
of K that is controllable with respect to both L�G� and �uc.

Supervisory Control Problem ([8]) Given a plant modeled by an FSM G and an expected language K �
L�G�, the problem is to build a supervisor S such that L�S�G� � K is controllable, and for any other super-
visor S � s.t. L�S ��G� � K � L�S ��G� � L�S�G�.

In the sequel, we will be more interested in the computation of S�G rather than in the computation of the
supervisor S itself, since one can easily extract S from S�G. The solution of this problem is classically
called the supremal controllable sub-language of K w.r.t. �uc and L�G� � L (see [8]) and is denoted
SK�G or K�L�c or SupCont�K�L��uc� in the remainder of this paper. From a computational point of view,
when K is prefix-closed, it can be shown that

K�L�c � K n 	�L nK����
uc
�

� (2)

with L��L� � fs � ��j 
t � L�� st � L�g for L� and L� languages over ��.

In some situations, it is also of interest to compute K�L�c the infimal prefix-closed and controllable super-
language of K w.r.t. L�G� and �uc, which basically corresponds to the smallest prefix-closed language that
contains K and that is controllable w.r.t. �uc and L�G� � L. It can be shown (see e.g. [2]) that

K�L�c � K��
uc � L (3)

Irisa



Supervisory Control of Concurrent Discrete Event Systems 5

2.2 Concurrent DES.

In this paper, our aim is to control a plant composed of several components, sharing common events. To do so,
let us consider a plant G modeled as a collection of FSM Gi � h�i�Xi�Xoi� �ii. The global behavior of the
plant is given by G � G� k � � � k Gn, where the operation k is the classical parallel composition (i.e. G� k G�

represents the concurrent behavior of G� and G� with synchronization on the shared events). It is defined by:

Definition 3 Let Gi � ��i�Xi� xoi � �i�, i � �� � be two FSM. The parallel composition G� k G� of G� and G�

is the FSM G � ���X � xo� �� where � � �� 
��, X � X� �X�, xo � hxo� � xo�i, and � is defined by: for all
x � hx�� x�i � X and � � �

���� hx�� x�i� �

����
���

h����� x��� x�i if � � ���x�� n��

hx�� ����� x��i if � � ���x�� n��

h����� x��� ����� x��i if � � ���x�� � ���x��
Undefined otherwise

Now, given the set of FSM �Gi�i�n modeling G, we denote by �s the set of shared events of G, i.e

�s � f� � �j 
i �� j� � � �i � �jg� (4)

Let �� � �, then P�� � �� � ��� is the natural projection from �� to ��� that erases in a sequence of �� all
the events that do not belong to ��. Formally,

����
���

P����� � �

P����� �

�
� if � �� �i

� if � � �i

P���s�� � P���s�P����� for s � �� and � � �

(5)

This definition is easily extended to the projection of regular languages as follows:

P���L� � fs� � ��� j 
s � L� s� � P���s�g

Given L � ��� � ��, the inverse projection is defined by P��
�� �L� � fs � �� j P���s� � Lg. From an

implementation point of view, ifH denotes the FSM such that L�H� � L, then the FSM modeling the inverse
projection of L, noted H��, can be obtained from H by simply adding self-loops labeled by events in � n ��

to each state of H .
Given a concurrent discrete event system G � G� k � � � k Gn, with L�Gi� � ��

i , we simply denote by Pi
the projection from �� to ��

i and by P
��
i the inverse projection from ��

i to ��. Based on these operations, the
language resulting from the parallel composition of FSM is characterized by:

L�G� � L�G� k � � � k Gn� � L�G�� k � � � k L�Gn� � P��
� 	L�G��
 � � � � � P��

n 	L�Gn�
 (6)

Note that we use the same k notation for the parallel composition of languages. The following technical
lemmas will be useful in the sequel

Lemma 1 Let L � ��� and �� � �, let s � L and s� � ��, then ss� � P��
�� �L� �� sP���s�� � P��

�� �L�

Proof: ss� � P��
�� �L� � P���ss�� � L� P���s�P���s�� � L

� P���s�P���P���s��� � L
� P���sP���s��� � L

� sP���s�� � P��
�� �L�

Lemma 2 ((3.1) of [11]) Let G � G� k � � � k Gn, s � L�G�, i � f�� � � � � ng and � � �i n �s. Then

s� � L�G� �� s� � P��
i �L�Gi��

PI n1593



6 B. Gaudin, H. Marchand

2.3 Control Problem formulation & Related Works

Let G � G� k � � � k Gn be the plant to be controlled and Li � L�Gi� be the language generated by the
component Gi for i 	 n. The set of controllable events in Gi is denoted by �i�c, and the set of uncontrollable
events by �i�uc, whereas

�c �
�
i

�i�c and �uc �
�
i

�i�uc

respectively correspond to the set of controllable/uncontrollable events of the whole system G.

LetK � �� be the expected behavior. The problem, we are interested in, is the Basic Supervisory Control
Problem, i.e . the problem is to compute the supremal controllable sublanguage �K � L�G���c of K � L�G�
w.r.t. L�G�. However, knowing that the synthesis algorithms are polynomial in the number of states of G
and that the size of the state space of G is exponential in the number of components of G, it is important to
design algorithms that perform the controller synthesis phase by taking advantage of the structure ofG without
building it. Hence, the actual problem is to compute �K � L�G���c without computing neither L�G� nor
K � L�G�.

2.3.1 A Decentralized approach

The works of [11] is closely related to the decentralized theory. The authors consider the control of Concurrent
Discrete Event Systems G� k � � � k Gn. Given a language-based specification K , they provide some solutions
allowing to compute local modular supervisors Si on Gi (based on a notion of separable specification (See
Definition 4)) and to operate the individually controlled system Si�Gi concurrently in such a way that the
controlled behavior corresponds to the supremal controllable sublanguage of K � L�G� w.r.t. L�G�.

Definition 4 L � �� is said to be separable w.r.t. f�igi�n with 
i�n�i � �, whenever there exists a set of
languages fLigi�n (called generating set), s.t. Li � ��

i and L � L� k � � � k Ln
1.

Based on this definition, Wilnner and Heymann shown that

Theorem 1 Let G � G� k � � � k Gn, with L�Gi� � �i. and K the expected specification. If �s � �c and K
is separable w.r.t. f�igi�n, then

ki�n SupC�Pi�K� � L�Gi��L�Gi���i�uc� � SupC�K � L�G��L�G���uc�

Hence, given a Concurrent DES G and a separable specification K , Theorem 1 shows that there exists a set
of supervisors Si acting upon Gi, such that ki�n L�Si�Gi� � �K � L�G���c. The supervisors architecture is
given in Figure 1.

G� G�

G

S� S�

Figure 1: A Decentralized architecture for Concurrent DES

If K is separable w.r.t. f�igi�n (which can be checked in O�mn���, where m is the size of the FSM
that generates K), then to synthesize the local supervisors it is needed to compute the projection of K over

1with L� k L� � P
��

�
�L�� � P

��

�
�L��.

Irisa



Supervisory Control of Concurrent Discrete Event Systems 7

�i. In the worst case, the size of the FSM that generate Pi�K� is in O��m�. Hence, solving the supervisory
control problem will require O�n��m�N� space where N is the size of each component. Solving the SCP by
first computing would have required O�Nn�m� space.
In [1], the authors adopt a similar approach. They do not require the specification K to be separable w.r.t.
f�igi�n. K is in fact decomposed as K � 	ki�n Pi�K�
 � Kcp� where Kcp � �� is called a compensator.
Further it is shown that if �s � �c and if Kcp�u � Kcp, then

SupCont�K � L�G��L�G���uc� � fki�n SupC�Pi�K��L�Gi���uc�g �Kcp

Hence, all the problem, it to find a compensator Kcp that respect the condition Kcp�u � Kcp.

2.3.2 Our approach

Our approach is different and is more related to the modular approach of [12]. Indeed, the plant G can be
described by the following parallel composition of FSM G �ki�n G��

i , where G��
i is the FSM such that

L�G��
i � � P��

i �L�Gi��. In fact, each G
��
i can be seen as an approximation of the plant G to be controlled.

Compare to [11], we adopt a dual approach. Instead of controlling w.r.t. each component Gi (i.e. L�Gi�) to
enforce Pi�K�, we have chosen to control the approximations L�G��

i � of the plant in order to enforceK . How-
ever, it is not sufficient to compute a supervisor Si acting upon G

��
i that restricts the behavior L�G��

i � to the
supremal controllable sublanguage ofK �L�G��

i � and to operate the controlled systems S�G��
i concurrently

to obtain the supremal controllable sublanguage of K � L�G� (the result may be not supremal). So the idea
of our method is to refine the notion of controllability in order to take into account the fact that uncontrollable
events are only local to each components.

The property that we ensure on each G��
i according to K is called the partial controllability condition

and is defined in Section 3. As in the case of the controllability concept, it will be shown that there exists a
supremal partially controllable sublanguage ofK�L�G��

i �w.r.t. K andG��
i , calledK�pc

i . It is then shown that
�i�nK

�pc
i � �K � L�G���c (Theorem 2) and that under some conditions on K the equality holds (Theorem 3

and 4). A comparison with the results of [11] is then done. The control architecture is summarized in Figure 5
of Section 4.3.

3 Partial Controllability Property

In this section, we introduce a new concept of controllability, named Partial Controllability, that will serve as
the bases of the modular computation of supervisors for Concurrent discrete event systems.

3.1 Definition and useful properties

Definition 5 LetM � L � �� be prefix-closed languages. Let ��
uc � �uc � � be two sub-alphabets of �.

LetM � �M be a prefix-closed language. M � is partially controllable with respect to ��
uc, �uc,M and L if

(i) M � is controllable w.r.t ��
uc and L.

(ii) M � is controllable w.r.t �uc andM .

We now intuitively explain this definition via the example 1

PI n1593



8 B. Gaudin, H. Marchand

Example 1 To illustrate this definition, let us consider the languages L, M � �M��, M� and M� described
in Figure 2. Assume that �uc � fuc�� uc�g and ��

uc � fuc�g.

��

��

��

��

uc�

uc� uc�

uc�

��

��

��

��

uc�
uc�

��

��

��
uc�

��

��

��

��

uc�

(a) L (b)M �� M�� (c)M� (d)M�

Figure 2: The behaviors of L,M ,M�,M�.

� M� � M is not partially controllable w.r.t. ��
uc, �uc, M and L, since M is not controllable w.r.t ��

uc

and L. Indeed, ����uc� �M� and ����uc�uc� � L with uc� � ��
uc, but ����uc�uc� �� M�. However,

M� � M is trivially controllable w.r.t �uc andM .

� A contrario, M� is partially controllable w.r.t. ��
uc, �uc,M and L. Indeed, on one hand,M� is control-

lable w.r.t. ��
uc, and L (note that, since uc� �� ��

uc, hence ������uc� is not required to belong toM�).
On the other handM� is controllable w.r.t. �uc, andM . However, note thatM� is not controllable w.r.t.
�uc, and L.

� Finally,M� is controllable w.r.t. ��
uc, and L. ButM� is not partially controllable w.r.t. ��

uc, �uc,M and
L. Indeed, M� is not controllable w.r.t. �uc, andM since ���� � M�, ����uc� � M with uc� � �uc,
but ����uc� ��M�. �

In general, M is not partially controllable with respect to ��
uc, �uc, M and L (e.g. if M is not controllable

w.r.t. ��
uc and L (see Example 1)). However, it can be shown that there exists a supremal sub-language ofM

that has this property.

Proposition 1 Let M � L � �� be prefix-closed languages, ��
uc � �uc. There exists a unique supremal

language, denoted byM�pc, which is partially controllable w.r.t ��
uc, �uc,M and L. Moreover

M�pc � M�pc � SupCont�SupCont�M���
uc� L���uc�M� (7)

Proof : First of all, the set of partially controllable languages w.r.t ��
uc, �uc,M and L is not empty, since � is

partially controllable w.r.t ��
uc, �uc,M and L. Now letM � �M be a partially controllable language w.r.t ��

uc,
�uc,M and L. SinceM � � M is controllable w.r.t ��

uc and L,M
� � SupCont�M���

uc� L�, and by monotony
of the SupCont���uc�M� operator, we have that

SupCont�M ���uc�M� � SupCont�SupCont�M���
uc� L���uc�M�

Now,M � �M is controllable w.r.t �uc andM . This entails thatM � � SupCont�M ���uc�M�, and finally

M � � SupCont�SupCont�M���
uc� L���uc�M�

Let us now show that SupCont�SupCont�M���
uc� L���uc�M� is partially controllable w.r.t ��

uc, �uc, M and
L.

Irisa



Supervisory Control of Concurrent Discrete Event Systems 9

(i) let s � SupCont�SupCont�M���
uc� L���uc�M� and � � ��

uc such that s� � L. As

SupCont�SupCont�M���
uc� L���uc�M� � SupCont�M���

uc� L�

we obtain s� � SupCont�M���
uc� L��

�
uc�L. Hence, by definition of controlability, s� � SupCont�M���

uc� L�
and as SupCont�M���

uc� L� �M , we also have that s� �M .

Moreover, since ��
uc � �uc, we obtain that s� � SupCont�SupCont�M���

uc� L���uc�M��uc � M .
Hence, by definition of controllability again,

s� � SupCont�SupCont�M���
uc� L���uc�M�

Thus SupCont�SupCont�M���
uc� L���uc�M� is controllable w.r.t. ��

uc and L.

(ii) By definition, SupCont�SupCont�M���
uc� L���uc�M� is controllable w.r.t �uc etM .

Finally SupCont�SupCont�M���
uc� L���uc�M� is partially controllable w.r.t ��

uc, �uc, M et L. Moreover,
it contains any partially controllable language w.r.t ��

uc, �uc, M et L. Therefore, it is the supremal (and we
denote it byM�pc. The fact thatM�pc is prefix-closed is trivial since the SupC() operator preserves the prefix
closure. �

Coming back to Example 1, it is easy to check that the supremal partially controllable sub-language ofM
w.r.t. to ��

uc, �uc, and L is reduced to theM� language.
Theorem 1 offers a practical way to compute the supremal partially controllable sub-language of M w.r.t. to
��
uc,�uc, and L. It can then be shown that the computation of the supremal partially controllable sub-languages

ofM w.r.t. to ��
uc, �uc, and L is inO�j�jNMNL�, whereNM is the size of the automata encodingM and NL

the one of L.

4 Control of Concurrent Discrete Event Systems

Given a Concurrent DES, G � G� k � � � k Gn, and a control objective K , we want to compute a controllable
sub-language ofK � L�G� w.r.t. L�G� and �uc, without having to build G itself.

4.1 Modular Computation of a controllable sub-language ofK w.r.t. L�G�

Based on the concept of partial controllability applied onK and on the approximations of the plant P��
i �L�Gi��

derived from each of its components, the next theorem provides a modular way to compute a sub-language of
K that is controllable with respect to the plant.

Theorem 2 Let G � G� k � � � k Gn, with Gi acting upon �i � �i�uc 
 �i�c and Li � L�Gi�. LetK � �� be
a prefix-closed language modeling the expected behavior. For i 	 n, we note

� Ki � K � P��
i �L�Gi��, and

� K�pc
i the supremal sublanguage ofKi partially controllable with respect to�i�uc,�uc,Ki and P

��
i �L�Gi��.

Then, K�pc
� � � � � �K�pc

n is controllable with respect to �uc and L�G�.

Proof : First, asK� L�Gi� are prefix-closed, languages P
��
i �L�Gi�� for i 	 n are prefix-closed, and therefore

Ki and K
�pc
i are also prefix-closed. Now, according to Definition 2, we have to show that

�
�
i�n

K�pc
i ��uc � L�G� �

�
i�n

K�pc
i
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Let s �
T
i�nK

�pc
i and � � �uc be such that s�� � L�G�. We thus have to show that s� �

T
i�nK

�pc
i .

Without lost of generality we can assume that � � ���uc.
Since s� � L�G�, s� � P��

� �L�G���. Hence we have that s� � K�pc
� ���uc � P��

� �L�G���. Moreover,
according to definition 5, K�pc

� is controllable w.r.t. ���uc and P
��
� �L�G���, from which we can conclude that

s� � K�pc
� .

As s� � K�pc
� , we have that s� � K . And as s� � L�G�, then �i 	 n� s� � P��

i �L�Gi��, which
entails that �i 	 n, s� � Ki � K � P��

i �L�Gi��. Hence, �i 	 n, s� � Ki
�pc�uc �Ki. Now, according to

definition 5, �i 	 n� K�pc
i is controllable w.r.t. �uc and Ki. Hence �i 	 n� s� � K�pc

i , which entails that
s� �

T
i�nK

�pc
i . �

Example 2 Let L�G� � L�G�� k L�G��, with L�G�� � f�a� u��bg and L�G�� � fa� au�g. We have �� �
fa� u�� bg, �� � fa� u�g. Figure 3(a) and 3(b) represent the FSM generating P��

� �L�G��� and P
��
� �L�G���,

whereas Figure 3(c) is the FSM G (note that the FSM G� and G� can be easily obtained from Figure 3(a)
and 3(b) by removing the self-loops). Finally, in this example, �s is reduced to the singleton fag. Assume the
control objective is given by the language K as described in Figure 3(d).

b

u� a

u�

u�

u�

a

u�

fu�� bg

fu�� bg

fu�� bg

u�

b

a

u�
b

u�
b

a

u� u�

u�

(a) P��
� �L�G��� (b) P��

� �L�G��� (c) L�G� (d) K

Figure 3: The behaviors of the system.

Following Theorem 2, we first compute the languages Ki � K � P��
i �L�Gi��, i � �� �. The FSM generating

K� and K� are represented in Figures 4(a) and 4(b).

a

u�

u� u� a

u�u�

a

u�

u� u� u�

(a) K� (b) K� (c) K�pc
� (d)K�pc

� (e) K�pc
� �K�pc

�

Figure 4: The control objective & the derived local ones

Now based on (7), we compute K�pc
� (resp K�pc

� ), the supremal language of K� (resp. K�) that is partially
controllable w.r.t. P��

� �L�G��, �uc � fu�� u�g and ���uc � fu�g (resp ���uc � fu�g and P
��
� �L�G��).

The intersection of these two languages leads to the language K�pc
� � K�pc

� (Figure 4(e)), that is obviously
controllable w.r.t. L�G� and �uc. �
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4.2 Computation of �K � L�G���c

According to Theorem 2, we have that
T
i�nK

�pc
i � �K � L�G���c, where �K � L�G���c corresponds to

the supremal sublanguage of K � L�G� that is controllable w.r.t. �uc and L�G�. But, the equality does not
hold in general (See Example 2, in which the supremal controllable sublanguage of K � L�G� is given by
�K � L�G���c � fa� u�� au�g). In this section, we present some conditions under which Theorem 2 gives
access to the supremal solution.
Let us first introduce lemma 3. This lemma shows that whenever the shared events are controllable, then
�K � L�G���c verifies a part of the partial controllability condition.

Lemma 3 Let G � G� k � � � k Gn be the plant and K � �� a prefix-closed language modeling the expected
behavior, then if �s � �c, then �i 	 n, �K � L�G���c is controllable w.r.t �i�uc, P

��
i �L�Gi��.

Proof : Let i 	 n. Le us consider s � �K � L�G���c and � � �i�uc such that s� � P��
i �L�Gi��. We

have to show that s� � �K � L�G���c. Since � � �i�uc and �s � �c, we have � � �i n �s. Moreover,
s � P��

i �L�Gi��, s � L�G� and s� � P��
i �L�Gi��, which entails that s� � L�G� (Lemma 2). Now, as

�i�uc � �uc, we have that s� � �K � L�G���c��uc � L�G�. Since �K � L�G���c is controllable w.r.t �uc and
L�G�, this entails that s� � �K � L�G���c. �

Theorem 3 If �s � �c and K � L�G�, then with the notations of Theorem 2,
T
i�nK

�pc
i � K�c.

Proof : From Theorem 2,
T
i�nK

�pc
i � K�c. It is then sufficient to show that K�c �

T
i�nK

�pc
i or, equiv-

alently that �i 	 n, K�c � K�pc
i . To do so, let us pick up a i 	 n, and let us show that K�c is partially

controllable w.r.t. �i�uc, �uc,Ki and P
��
i �Li�.

(i) First, according to lemma 3, K�c is controllable w.r.t �i�uc and P
��
i �L�Gi��.

(ii) Let us now show that K�c is controllable w.r.t. �uc and Ki. Let us consider s � K�c, � � �uc such that
s� � Ki, we have to prove that s� � K�c. Since s� � Ki � L�G�, s� � L�G�. We then have s � K�c,
� � �uc and s� � L�G�. Hence, because K�c is controllable w.r.t. �uc and L�G�, s� � K�c.

This proves thatK�c is partially controllable w.r.t. �i�uc, �uc,Ki, P
��
i �L�Gi��. Now, asK

�pc
i is supremal and

partially controllable w.r.t. �i�uc, �uc, Ki, P
��
i �L�Gi�, we can deduce that �i 	 n� K�c � K�pc

i . Finally,
K�c �

T
i�nK

�pc
i . �

This theorem states that whenever the language of the control objective is included in the one of the plant then
our methodology gives access to the supremal controllable sub-language of K w.r.t. L and �uc. As previously
mentioned, the interest of this method is that it avoids the building of the entire plant; hence reducing the
complexity of the supervisory synthesis phase. Indeed, if G � G� k � � � kGn is such that jXGi

j � N and
H , with jXH j � m, is the FSM modeling the language specification K , then the FSM modeling the partial
specification Ki are in O�N�m�. According to Section 3, the complexity to compute the supremal partially
controllable sublanguage of each Ki is in O�N��m�. Finally, the overall complexity is in O�n�N��m�. This
has to be opposed to the space complexity O�Nn�m� of computing �K �L�G���c onG, seen as a unique FSM.

Remark 1 To check that K � L�G� it is sufficient to check that �� 	 i 	 n� K � P��
i �L�Gi��. Hence, it is

not necessary to compute L�G�.

In some situations, modeling the expected behavior by a language included in the one of the plant may
lead to a language that is too large to be efficiently represented. Moreover, requiring the inclusion of languages
makes that the specification of K may be itself relatively difficult to identify insofar as the language L is not
known. Theorem 4 gives another sufficient condition under which Theorem 2 gives access to the supremal
solution. First, we need to introduce the notion of observable language.
PI n1593
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Definition 6 LetK and L be two prefix-closed languages over � and �� � �. K is said to be observable w.r.t.
P�� , �� and L if �s� s� � K� �� � ��, if P���s�� � P���s� and s�� � K , and s� � L, then s� � K.

It is shown in [10] that the observability condition can be checked in polynomial time.

Definition 7 LetK � �� be a prefix-closed language and G � G� k � � � k Gn a concurrent system, then K is
said to be G-observable if

�i � f�� � � � � ng� �s � ��� Ki�s��uc� is observable w.r.t. Pi��i�uc and P
��
i �L�Gi���s��uc��

where Ki � K � L�Gi�, �i 	 n.

Based on this definition, we have that

Theorem 4 Assume that �s � �c and that K is G-observable, then
T
� � i � nK

�pc
i � �K � L�G���c �

Proof : According to Theorem 2,
T
i�nK

�pc
i � �K � L�G���c Thus, we have to show that

�i 	 n� �K � L�G���c � K�pc
i

To do so, let us consider i 	 n and ��K � L�G���c��Ki�c (the infimal prefix-closed and controllable su-
perlanguage of �K � L�G���c w.r.t. �uc and Ki). We now prove that ��K � L�G���c��Ki�c is partially
controllable w.r.t �i�uc, �uc, Ki and P

��
i �L�Gi��. Indeed, if ��K � L�G���c��Ki�c is partially controllable

w.r.t �i�uc, �uc, Ki and P
��
i �L�Gi��, then we will have that ��K � L�G���c��Ki�c � Ki

�pc. Moreover, as
�K � L�G���c � ��K � L�G���c��Ki�c, we will also have that �K � L�G���c � Ki

�pc and the proof will be
done.

Let us now show that ��K � L�G���c��Ki�c is partially controllable w.r.t �i�uc, �uc, Ki and P��
i �L�Gi��.

According to Definition 5, we have to show that ��K � L�G���c��Ki�c is (i) controllable w.r.t. �i�uc and
P��
i �L�Gi�� and (ii) controllable w.r.t. �uc and Ki. Item (ii) is obvious since by the definition of the infi-
mal controllable language w.r.t. �uc and Ki, ��K � L�G���c��Ki�c is controllable w.r.t. �uc and Ki. Let us
now prove the point (i).

Let us consider s � ��K � L�G���c��Ki�c and � � �i�uc such that s� � P��
i �L�Gi��. We have

s� � ��K � L�G���c��Ki�c��i�uc � P��
i �L�Gi��

Moreover, according to (3),

��K � L�G���c��Ki�c � �K � L�G���c���
uc �Ki

So s is of the form s � s�t with s� � �K � L�G���c and t � ��
uc. Now as s� � s�t� � P��

i �L�Gi��, we also
have that s�Pi�t�� � P��

i �L�Gi�� (Lemma 1).
We now have that s� � �K � L�G���c, Pi�t�� � ��

i�uc and s
�Pi�t�� � P��

i �L�Gi��. We then have that

s�Pi�t�� � �K � L�G���c as �K � L�G���c is controllable w.r.t. �i�uc and P
��
i �L�Gi�� (Lemma 3). Finally,

as s�Pi�t�� � �K � L�G���c � Ki, we obtain Pi�t�� � Pi�t�� � Ki�s
���uc�.

Moreover, as by hypothesis s� � s�t� � P��
i �L�Gi��, we also have that t� � P��

i �L�Gi���s
���uc�. By

definition of the projection, Pi�t�� � Pi�Pi�t���. Overall, we have that Pi�t� � Ki�s
���uc�, t � Ki�s

���uc�,
with Pi�t� � Pi�Pi�t��, � � �uc, Pi�t�� � Pi�t�� � Ki�s

���uc� and t� � P��
i �L�Gi��. As Ki�s

���uc� is
observable w.r.t. Pi,�i�uc and P

��
i �L�Gi���s

���uc�, we obtain that t� � Ki�s
���uc�. Hence s� �� s�t�� � Ki

and it entails that
s� � ��K � L�G���c��Ki�c��uc �Ki
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As ��K � L�G���c��Ki�c is (by definition) controllable w.r.t. �uc and Ki, s� � ��K � L�G���c��Ki�c. Thus
��K � L�G���c��Ki�c is controllable w.r.t. �i�uc and P

��
i �L�Gi��.

Finally, ��K � L�G���c��Ki�c is partially controllable w.r.t �i�uc, �uc, Ki and P
��
i �L�Gi��, which con-

cludes the proof. �

The condition of observability of Theorem 4 states that after each trace s admissible in Ki, if there exists
two admissible suffixes of s of uncontrollable events, say s� and s�, that have the same projection over the
local one (i.e. Pi�s�� � Pi�s��), then if one can be extended by an uncontrollable event in a trace of Ki and
the other one in a trace of the abstracted specification G��

i , then the two extended traces have to belong to the
specification. Based on the results in [10], it can be shown that the “observability condition” of Theorem 4 can
be checked in polynomial time.
The next proposition shows whenever K is separable then it respect the conditions of Theorem 4.

Proposition 2 Let G � G� k � � � k Gn be the plant to be controlled s.t. L�Gi� � ��
i . Let K � ��

be the expected specification. If K is separable w.r.t. f�ig��i�n then K is G-observable, i.e. �i 	 n,
�s � Ki � K � P��

i �L�Gi��, Ki�s��uc� is observable w.r.t. Pi, �i�uc et P
��
i �L�Gi���s��uc�.

Proof : As K is separable w.r.t. f�ig��i�n, K �ki�n Ei, with Ei � Pi�K� [11] and Ei � ��
i . We also have

that K � �i�nP
��
i �Ei�.

Let s � Ki. Consider now s�� s�� � Ki�s��uc� and � � �i�uc be such that Pi�s�� � Pi�s
���, s�� �

P��
i �L�Gi���s��uc� and s��� � Ki�s��uc�. We have to show that s�� � Ki�s��uc� or equivalently that

ss�� � Ki.
As ss� � Ki and Ki � K , we have ss� � K � �j�nP

��
j �Ej�, which entails that �j 	 n, ss� � P��

j �Ej�.
Thus Pj�ss�� � Ej . Moreover, � � �i n �s, from which we can deduce that �j �� i� Pj�ss

��� � Pj�ss
�� and

that Pj�ss��� � Ej . Thus, �j �� i, ss�� � P��
j �Ej�.

Let us now show that ss�� � P��
i �Ei�. By hypothesis, we have ss��� � Ki. Hence ss��� � K . This entails

that ss��� � P��
i �Ei�. By applying Lemma 1, we obtain that sPi�s���� � P��

i �Ei�. However, � � �i, hence
sPi�s

���� � P��
i �Ei�. Moreover, Pi�s��� � Pi�s

��; thus sPi�s��� � P��
i �Ei�. Hence Pi�sPi�s���� � Ei and as

Pi�sPi�s
���� � Pi�ss

���, we obtain that Pi�ss��� � Ei, which entails that ss�� � P��
i �Ei�.

Finally �� 	 j 	 n� ss�� � P��
j �Ej�. Hence ss�� � K . However, ss�� � P��

i �L�Gi�� by hypothesis,
thus ss�� � Ki. And finally s�� � Ki�s��uc�. Hence the result. �

The previous proposition states that whenever the specification is separable then our methodology offers an
alternative way to the one of [11] to compute �K � L�G���c. Indeed, the solution of [11] that gives access to a
set of decentralized supervisors acting upon each local component of the plant whereas, in our case, the result
is a centralized supervisor (See Section 4.3 above).

A contrario, the next example shows that a language that respects the condition of Theorem 4, may be not
separable.

Example 3 Let G � G� k G� with L�G�� � fa��uc�g and L�G�� � fa��uc�g. We have ���uc � fuc�g and
���uc � fuc�g. Let K � fa��uc�� a��uc�g be a prefix-closed language over � � �� 
 ��. It is easy to check
thatK verifies the G-observability condition of Theorem 4. However,K is not separable w.r.t. f�����g, since
a� � P��K� and a� � P��K�, thus a�a� � P��K� k P��K� but a�a� �� K . �

4.3 The Supervisor acting upon G.

Let us now describe the way a supervisor can be extracted from the previously computed languages and how
it can act upon G in order to achieve the control objective K . With the notations of Theorem 2,

T
i�nK

�pc
i is

controllable with respect to �uc and L�G�. However, it is not of interest to perform the intersection between
these languages and to derive a supervisor from the result (all the computational advantages of our method
would be lost). Following concept of modularity described in [12], the supervisor S will be seen as an oracle

PI n1593



14 B. Gaudin, H. Marchand

S�s� � ��

S�s�

S�s� � ��

G�G�

S

s

G

�

S
pc
�
�s�S

pc
�
�s�

Spc
�

Spc
�

Figure 5: Supervision Scheme

taking its decision according to the history of the system and the so-called pc-supervisors Spci derived from
K�pc
i . The supervisor architecture is summarized in Figure 5.
From eachK�pc

i , we derive a “supervisor” Spci , which after a trace ofG (which is also a trace of P
��
i �L�Gi��),

delivers the set of events that extend s in a trace of K�pc
i (each of these pc-supervisor ensures on P��

i �L�Gi��
the partial controllability property w.r.t. K and P��

i �L�Gi��). Further following the modularity concept, the
set of allowed events is given by S�s� � Spc� �s� � � � � � Spcn �s�. Finally, the sub-set of events that is allowed in
Gi is given by S�s� � �i.

5 Conclusion

In this paper, we have investigated the Supervisory Control of Concurrent Discrete Event Systems. In particular,
we proposed a modular method allowing to compute the supremal language of a specification K controllable
w.r.t. to the plantG. From the plantG and each of its componentsGi, we derive a set of approximations L�G

��
i �

and we ensure by control that each of these approximations respects a new language property, called partial
controllability condition that depends on K . It is then shown that whenever the original specification respects
some conditions (either K � L�G�, or K is G-observable) then a centralized supervisor can be extracted
from the controlled approximations in such a way that the behavior of the controlled plant corresponds to the
supremal controllable language contained in the one of the specification. Let us now emphasize some points
that we did not mention so far but that are easy to deduce from the theorem (2,3,4).

� If the specification is given in a modular way e.g. K �K �, then in the case of prefix-closed languages,
the modularity results in [12] together with the results of Theorem 3, ensures that

�
i�n

K�pc
i �

�
i�n

K �
i
�pc

� �K �K ���c

as far as the conditions of Theorems 3 or 4 are satisfied by the two specifications.

� If one want to change a component of G, e.g. replacing Gi by G�
i, then as far as G

�
i is expressed using

the same alphabet as the one of Gi with the same partitioning between the controllable/uncontrollable
event, then it is sufficient to recompute K �

i
�pc in order to obtain the new supervisor (note that only the

conditions referring to G�
i has to be (re)-checked).

Hence this methodology is suitable for reconfigurable plants.

So far we have been interested in the control of plant for prefix-closed specification. We are currently looking
for results ensuring that the controlled plant is non-blocking while still avoiding the computation of the whole
state space. Another point of interest would be to extend theses techniques to the hierarchical model described
in [4].
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