
I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1569

SUPERVISORY CONTROL OF STRUCTURED DISCRETE EVENT
SYSTEMS

BENOIT GAUDIN, HERVÉ MARCHAND

p
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

Supervisory Control of Structured Discrete Event Systems

Benoit Gaudin, Hervé Marchand

Thème 1 — Réseaux et systèmes
Projet VerTeCs

Publication interne n1569 — November 2003 — 27 pages

Abstract: In this paper, the control of a class of Discrete Event Systems is investigated. Discrete event systems
are modeled by a collection of loosely synchronous Finite State Machines. The basic problem of interest is to
ensure the invariance of a set of particular configurations in the system. We provide algorithms that, based on
a particular decomposition of the set of forbidden configurations, locally solve the control problem (i.e. on
each component without computing the whole system) and produce a global supervisor ensuring the desired
property.

Key-words: Discrete Event Systems, Supervisory Control Problem, structured Finite State Machines, Optimal
control

(Résumé : tsvp)

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UPRESSA 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Contrôle de systèmes à événements discrets structurés

Résumé : Dans ce papier, nous nous intéressons au contrôle de systèmes à événements discrets modélisés
par des machines à états finis structurées, partageant des événements communs. Le problème du contrôle
que nous nous posons est d’assurer l’interdiction d’un ensemble particulier de configurations dans le système.
Nous présentons des algorithmes qui, basés sur une décomposition particulière de cet ensemble, résolvent
localement les problèmes de contrôle (i.e. sur chaque composant du système sans avoir à calculer explicitement
le système) et produisent un contrôleur global assurant la propriété attendue. Ce type objectifs peut être utilisé
pour décrire/assurer des interactions entre différents sous-systèmes.

Mots clés : Systèmes à événements discrets, contrôle, systèmes structurés, commande optimale

Supervisory Control of Structured Discrete Event Systems 3

1 Introduction

In this paper, we are interested in the Supervisory Control of structured Discrete Event Systems (DES). Our
control methodology follows the theory of Ramadge & Wonham [18]. The system to be controlled can be
described by means of Finite State Machines, that generates sequences of events (or actions) through its
execution. Given a plant (P) and a specification of the expected behavior (S), the control of the plant is then
performed by inhibiting some events in �c, the set of controllable events in such a way that the behavior of the
controlled plant is included (in the sense of language) in (S).

In many applications (as e.g. manufacturing system, control-command system, protocol network, etc) and
control problems, FSMs are the starting point to model fragments of a large scale system, which usually
consists of the composition of many different interacting sub-systems. The global behavior of the system is
then given by the parallel composition of the different system components (they evolve concurrently while
synchronizing on the shared events). The standard way of applying the supervisor synthesis methodology
to such systems is by expanding them to ordinary state machines and by using classical synthesis tools on
the resulting FSM. However, knowing that the synthesis algorithms are polynomial in the number of states
of the systems and that the number of states of the global systems grows exponentially with the number of
parallel and nested sub-systems, it is important to design algorithms that perform the controller synthesis phase
by taking advantage of the structure of the system without expanding it. In other words, given the modular
structure of the system, it becomes of interest, for computational reasons, to be able to synthesize a supervisor
on each sub-part of the system and then to infer a global supervisor from the local ones.

Several approaches have been considered in the literature to deal with reducing the complexity of supervisor
synthesis.

� In [25], the methods consists in decomposing the global control objectives into sub-objectives and to
perform the controller synthesis phase separately w.r.t. these sub-objectives.

� In [6, 7], the authors considers product systems (i.e. systems composed of asynchronous subsystems, not
sharing common events). Given a control objective, a local system is built from the sub-systems that are
coordinated by the control objective (i.e. all the sub-systems that share some events used to express it). It
is then sufficient to compute the local supervisor ensuring the control objective with respect to this local
system in order to obtain the result on the whole system. Finally, the modularity property [25] ensures
that a maximal solution of the control problem can be obtained by computing the local supervisors w.r.t.
to the local control objectives1. A similar work based on an incremental synthesis methodology can be
found in [3]. The fact that only a sub-part of the whole system has to be built in order to compute a
supervisor obviously decreases the complexity of its computation. However, it may happen that given
a control objective, the whole plant need to be computed (e.g. if all the events of the alphabet of the
plant are necessary to express the objective). In [10], the authors provide an elegant way to solve the SCP
when both the plant and the specification (or control objective) are given in a modular way. The controller
synthesis is then performed by computing supervisors that are further added to the specification, itself
seen as the initial supervisor). Note that in the above approach, no particular connection between the
components of the plant and of the specification are required. In contrast, we adopt a state-based approach
in which the control objective exactly fits with the structure of the plant.

� Closely related to the decentralized theory (see e.g. [13, 26]), in [23], the authors consider Concurrent
Discrete Event Systems G� k � � � k Gn and provide some solutions allowing to compute local modular
supervisors Si on Gi (based on a notion of separable control objective) and to operate the individu-
ally controlled system Si�Gi concurrently. However, when the control objective is not separable (e.g.

1Note that the authors also give necessary and sufficient conditions under which the obtained controlled system is non-blocking

PI n1569

4 B. Gaudin, H. Marchand

it expresses (forbidden) interactions between all sub-systems, the method proposed in [23] cannot be
efficiently used since the whole system may have to be built.

� In [1, 2], the authors also investigate the control of Concurrent DESs and propose a methodology based on
the decomposition of the control objective according to the structure of the system, leading to a reduction
of the complexity, when the events that are shared by the different components are controllable (this is
performed by adding an interaction component that restricts the concurrent behavior of the components).
A possibly blocking solution is then obtained.

In this paper, we consider the control of Concurrent DESs (i.e. the whole plant is modeled as a collection of
plants �Gi�i�n, sharing common events (some of them may be uncontrollable)). Compared to the previous
approaches [1, 23, 7], that are considering control objective expressed by means of languages, we present
a methodology that solves the Supervisory Control Problem for a particular class of control objectives that
particularly fit with the structure of the plant. More precisely, the problem of interest is to ensure the invariance
of a set of particular configurations in the global system (or dually to solve the State Avoidance Control
Problem). This problem is obviously simpler than the one considered in [1, 23, 7]. However, this allows to
overcome some of the problems that arise in the previously mentioned papers. In particular, the objectives are,
in general, not separable as assumed in [23]. It will not be necessary to built sub-parts of the system (i.e. to
perform the product between some original components of the plant) as in [7], and we do not suppose that the
shared events are controllable as in [1, 23].

Our methodology is the following: based on a particular decomposition of the forbidden set of states in terms
of set products, we provide algorithms that locally solve the control problem (i.e. on each component without
computing the whole system) and produce a global supervisor ensuring the desired property. This supervisor
can be seen as an oracle that will activate/deactivate local supervisors according to the current configuration of
the global system and some conditions that can be easily computed on line. Moreover, we make the necessary
efforts to keep the structure of the plant in the global supervisor, hence improving the readability and the
understanding of the supervisor effect as well as its memory storage. Note that the way we combine them
makes that the global supervisor is the most permissive one. To illustrate this aspect, let us consider a plant
composed of a press and an articulated arm, that has to place (to remove) a plate inside (from) the press. Each
sub-system can be modeled in an independent way. One can see that global configurations such as "the press
is closed" while "the arm is located inside in the press" have to be avoided during the execution of the system.
In practice, most of the control objectives will be to prevent the system from reaching particular configurations
of the global system, that can be locally decomposed according to each sub-system (in the press-arm example:
“the position inside the press” for the articulated arm and “closed position” for the press). Separately, they
do not correspond to a dangerous configuration. It is only when all sub-systems are simultaneously in these
particular configurations that the global system is itself in a dangerous situation that has to be avoided. Coming
back to our example, the intuitive idea of our method is then the following: we first compute a supervisor
avoiding the press to be closed and a supervisor avoiding the arm to be inside the press. Finally, we combine
the two supervisors in a way that avoids the illegal global configurations to be reachable. In other words, a
supervisor will be used to coordinate the evolution between the components. Hence, the interactions between
the various components Gi of a plant G will be reinforced by a supervisor that will allow or not events to be
triggered in the different components of G.

The remainder of the paper is organized as follows: In section 2, we introduce the model and give a brief
overview of the State Avoidance Control Problem (SACP). In section 3, we provide algorithms that, based on
a particular decomposition of the set of forbidden configurations, locally solve the control problem (i.e. on
each component without computing the whole system) and produce a global supervisor ensuring the desired
property. In Section 3.2, we solve the SACP to the control of modular systems (i.e. when the sub-systems are
mutually asynchronous). This technique can be used in parallel with the one of [7] to overhead the complexity
issue). In Section 3.3, we extend these results to systems modeled by concurrent sub-systems sharing common

Irisa

Supervisory Control of Structured Discrete Event Systems 5

events. Finally, in Appendix A, we define algorithms that solve the Optimal Control Problem on a product
system without expanding it.

2 Preliminaries

In this section, the main concepts and notations are defined. More definitions will be given in the following
sections. The reader is referred to [5, 24] for any undefined concept.

2.1 The basic model.

The basic structures from which the plant will be built are Finite State Machines (FSMs) [5], that are defined
as follows:

Definition 1 A Finite State Machine (FSM) is defined by a 5-tuple G � h��X �Xo� Xf � �i, where � is the finite
alphabet of G. X is the finite set of states, Xo � X is the set of initial states, whereas Xf is the set of final
(marked) states of G, � is the partial transition function defined over ��X �� X . �

We can think of G as an uncontrolled plant that starts at xo � Xo and executes/generates a sequence of events
that are accepted by �. The notation ���� x�� means that ���� x� is defined, i.e., there is a transition labeled by
an event � out of state x in machine G. Likewise, ��s� x� denotes the state reached by taking the sequence of
events defined by trace s from state x in machine G. ��x� denotes the active event set of x. Similarly, ����x�
denotes the set of events that lead to x. The behavior of the system is described by the language generated by
G (i.e. L�G� � fs � �� j �xo � Xo� ��s� xo��g).

Given an FSM G and a subset of event A � �, we denote by

PreGA�E� � fx� � X j �� � A� ���� x�� � Eg 	E (1)

the set of states x� of G from which E can be reached after at least one transition labelled by � � A � �.
Based on (1), it is easy to show that:

Proposition 1 Let G be an FSM and E � X a set of states, then

1. PreGA�E� 	 PreGA�E
�� � PreGA�E 	E��.

2. PreGA�E� 	 PreGA��E� � PreGA�A��E� and if A� � A then PreGA��E� � PreGA�E�

3. if E � E�, then PreGA�E� � PreGA�E
��

4. Finally, the set of states from which E is reachable firing only events � � A, noted PreGA
�
�E�, is given

by:

PreGA
�
�E� �

S
i � N

PreG
�i�

A �E� (2)

where PreG
�i�

A �E� � PreGA�Pre
G�i���

A �E��.

Submachines. We now introduce the notion of submachines of an FSM [5]. This notion will be useful for
control purposes.

Definition 2 An FSM H � h�H �XH �XHo �XHf
� �Hi is a submachine of G, denoted H � G, if �H �

�� XH � X � XHo � Xo� XHf
� Xf � �� � �H ��x � XH �H��� x�� � ��H��� x� � ���� x��� �

PI n1569

6 B. Gaudin, H. Marchand

2.2 Review of the Supervisory Control Problem

Supervisory control theory deals with control of Discrete Event Systems. The idea of this theory is that
the plant models the uncontrolled behavior, which is not fully satisfactory. Hence, its behavior has to
be modified by means of a feedback control (named Supervisor) in order to achieve a given set of re-
quirements that the initial DES did not satisfy [18]. In practice, one of the main control problem is the
invariance control problem (or dually the state avoidance control problem), i.e. the supervisor has to control the
plant so that the controlled plant remains in a safe set of states (or dually do not reach a set of forbidden states)2.

Assume a plant G is given and modeled as an FSM and a set of states E, we recall how to synthesize a
supervisor that will ensure the avoidance of E. As usual in the R & W framework, one have to take into
account the possibility that certain events cannot be disabled by the supervisor. Therefore, some of the events
in � are said to be uncontrollable (�uc), i.e., their occurrence cannot be prevented by a controller, while the
others are controllable (�c). An uncontrollable event can for example model a change of sensor readings, the
tick of a clock, etc (see [5] for more details). According to the duality between the event status, we first recall
the definition of a controllable submachine [18].

Definition 3 Let G be a FSM and H be a submachine of G, thenH is controllable w.r.t. G and �uc, whenever

�x � XH � X ��� � �uc� � � ��x� � � � �H���� �

Intuitively, H is controllable w.r.t. G whenever it can obtained by only removing transitions labelled by a
controllable event. Such a submachine can be obtained by means of a supervisor S � �S�X �

o�, which is given
by a function S � X � ��c � delivering the set of actions that are disabled in state x of G by the control, and
the new set of valid initial states X �

o � Xo (it could be the case, that in order to ensure an objective, we need to
reduce Xo).

Remark 1 In a more general framework, S is a function from L�G� into �� [18]. However, for the control
objectives we have in mind (ensuring the invariance/avoidance of a set of states), memory-less supervisors are
sufficient since the resulting controlled system happens to be a sub-machine of the original plant.

Write S�G for the system consisting of the initial plant G controlled by the supervisor S (see Figure 1).

System

Supervisor

forbidden events
Set of

observation: x
S�x�

Figure 1: The closed-loop system

Given a memory-less supervisor, the closed-loop system S�G is actually a submachine of the initial plant
such that the transition relation �s of S�G is obtained by restricting � according to the control policy of the
supervisor, i.e.

�x� x� � X � �� � �� �s��� x� � x� ���� x� � x� � � �� S�x�

and by keeping only the accessible part of this submachine.
In this paper, we focus on the State Avoidance Control Problem, namely how to avoid the plant to reach some
particular states that are identified as illegal.

2In the literature, this invariance problem is often expressed using predicates over the states of the plant [17, 22, 27]. The control
problem is then to force the system to remain in the states that satisfy the predicates.

Irisa

Supervisory Control of Structured Discrete Event Systems 7

The State Avoidance Control Problem (SACP): given G and E a set of states, the problem is to build a
supervisor S such that (1) the traversed states of S�G do not belong to E and (2) S�G is the most permissive
solution, i.e. for all other supervisor S � satisfying (1), S ��G is a submachine of S�G (i.e. S ��G � S�G). Such
a supervisor is said to be maximal.

In order to compute such a supervisor, we classically introduce two sets of states: the weak forbidden set of
states and the border set that will be intensively used in the remainder of this paper.

Definition 4 Given an FSM G � h��X �Xo� Xf � �i, and a set of states E � X , we denote by I�E� and F�E�
the weak forbidden states and the border set of E, that are formally defined by:

I�E� � PreG
�

�uc�E� � fx � X j �s � ��
uc� ��s� x� � Eg (3)

F�E� � PreG��I�E�� n I�E� � fx � X n I�E� j �� � �� s�t� ���� x� � I�E�g (4)

�

I�E� corresponds to the set of states from which it is possible to evolve into E by a trace of uncontrollable
events, whereas F�E� corresponds to the set of states from which it is still possible to perform a control on G
before evolving into I�E�. The next proposition is adapted from [17].

Proposition 2 Given an FSM G and E � X , a set of states to be forbidden by control, the supervisor S of G
given by the pair �S�X �

o�, such that

�x � X � S�x� �

�
f� � �c j ���� x� � I�E�g if x � F�E�
� Otherwise

X �
o � Xo n I�E�

(5)

ensures the invariance of X n E in G and is maximal.

If X �
o � �, then it means that the BSACP has no solution (except the empty behavior). The corresponding

supervisor S � �S� �� will be called the trivial supervisor. This notion will be useful in the next section.

Example 1 Let us consider, the following FSM, where the state x� is a
forbidden state, �c � fa� bg and �uc � fucg. The weak forbidden set
of states I�fx�g� � fx�� x�g, whereas the border of fx�g is given by
F�fx�g� � fx�� x�g. The resulting Supervisor is given by S � �S� fxog�,
where S si defined by: S�xo� � S�x�� � fag and for all the other states
x, S�x� � �.

I�x��

F�x��

a

a

a

b

b

uc

x�

x�

x�

xf

x�

Proposition 3 [Modularity] let G be a plant and E�� E� be two set of forbidden states. Let S� � �S��Xo��
(resp. S� � �S��Xo��) be the maximal supervisor ensuring the avoidance of E� (resp. E�), then S � �S�X �

o�,
s.t. �

�x � X � S�x� � S��x� 	 S��x�
X �
o � Xo� � Xo�

(6)

ensures the avoidance of E� 	E� and is maximal.

The result is due to [17] and basically comes from the fact that I�E� 	 E�� � I�E�� 	 I�E�� and
F�E� 	E�� � �F�E�� 	 F�E��� n �I�E� 	E���.

PI n1569

8 B. Gaudin, H. Marchand

3 Control of Structured Finite States Machines

3.1 The model and the SACP presentation

Let us consider a plant G modeled as a set of FSMs Gi � h�i�Xi�Xoi� �ii. The global behavior of the system
is given by G � h��X �Xo� �i � G� k � � � k Gn, where the operation k is defined by:

Definition 5 Let Gi � ��i�Xi�Xoi �Xfi � �i�, i � 	� � be FSMs. The synchronous product G� k G� of G� and
G� is the FSM G � ���X �Xo� �� where � � �� 	��, X � X��X�, Xo � Xo� �Xo� , Xf � Xf� �Xf� , and
� is defined by: for all x � hx�� x�i � X and � � �

���� hx�� x�i� �

����
���

h����� x��� x�i if � � �� n ��

hx�� ����� x��i if � � �� n ��

h����� x��� ����� x��i if � � �� � ��

Undefined otherwise

(7)

�

In the sequel, the states ofG will be denoted by x � hx�� � � � � xni, where each xi � Xi ofGi. For convenience,
we will call a state, any element xi � Xi of a particular FSM Gi, and a global state a tuple of the form
hx�� � � � � xni, i.e. a “state” of the resulting FSM G. We call X the set of reachable global states of G.
Given the set of FSMs �Gi�i�n modeling G, we introduce the function

IN � �� �n

� � fi �
	��n� j� � �ig
(8)

IN��� is a function, which for each � � � gives the set of components of G that share this event. Given � � �,
IN���c denotes the complementary of IN��� w.r.t.
	��n�. IN���c corresponds to the set of indices i such that
� �� �i (i.e. the components of G that do not have � in their alphabet).
Moreover, we denote by �s the set of shared events of G, i.e

�s �
�
i��j

��i � �j� � f� � �j �i �� j� � � �i � �jg� (9)

Note that � � �s if and only if jIN���j � �. The set � n�s represents the set of local events of G (� is local if
and only if �i� In��� � fig).

Finally, � i� 	 � i � n, the set of controllable events in Gi is denoted by �i�c, and the set of uncontrollable
events by �i�uc. Moreover,

�c �
�
i

�i�c and �uc �
�
i

�i�uc

respectively correspond to the set of controllable/uncontrollable events of the whole system G.

The State Avoidance Control Problem (SACP) presentation. In the remainder of this paper, our aim is to
solve the SACP for a set of forbidden global states E. In this framework, the purpose of a supervisor will be
to coordinate the evolution between each sub-system in a way that they do no evolve into a set of illegal global
states of G. In practice, this set that can be locally decomposed according to each sub-system. Separately, they
do not correspond to a dangerous state. It is only when all sub-systems are simultaneously in these particular
states that the system is itself in a dangerous situation that has to be avoided.
In more formal terms, given a product systems G � G� k � � � k Gn, our aim is to solve the SACP for a set
of forbidden global states E. This has to be done locally on each component of G. Hence, we first need to

Irisa

Supervisory Control of Structured Discrete Event Systems 9

decompose this set according to the structure of G. In fact, any set of global states E can be represented as a
union of Cartesian products of local sets, i.e.

E �
�

��j�m

Ej � (10)

where

�	 � j � m� Ej � Ej
� � � � � �Ej

n and �	 � i � n� Ej
i � Xi (11)

In the sequel, Ej � Ej
� � � � � � Ej

n (also noted Ej � ���i�nE
i
j for short) will be called a product set. This

decomposition in terms of product sets will be the basis for the expression of global sets that will have to be
forbidden by control.

Example 2 To illustrate this aspect, we consider the classical example of the flexible manufacturing cell con-
trol [11].This manufacturing cell is composed of five workstations (three processing workstations, a part-
receiving station (Work Station 1) and one completed parts station (Work Station 4)).

Five Automated Guided Vehicles (AGV’s) transport
materials between pairs of stations, passing through
conflict zones shared with other AGV’s. We assume
that the controller receives signals from the AGV’s in-
dicating their current positions in the manufacturing
cell. We also assume that we can stop the AGV’s be-
fore they enter in some conflict zones (Ci events). The
control synthesis problem is to coordinate the move-
ment of the various AGV’s in order to avoid colli-
sions in the conflict zones (i.e., it is required that
all AGV’s be controlled so that each zone be occu-
pied by no more than one AGV). Each components
of the system can be modeled by an FSM (AGVi,
i � 	� � � � � for the Automated Guided Vehicles, and
WSTi, i � 	� � � � � for the workstations). The global
system is given by the concurrent systemG � AGV� k
� � � k AGV	 k WST� k � � � k WST	 (the man-
ufacturing cell is represented by an FSM with more
than ��	�
 global states). Note that, in this example,
�c � fCi� i � 	�g and �s � �uc

Now from a control point of view, the goal of a supervisor will be to avoid the plant to be in particular global
states that belongs to E � 	��i��Zonei, such that

Zone� � E�
� �E�

� �XAGV� �XAGV� �XAGV� ����i�jXWSTi

Zone� � XAGV� �E�
� �E�

� �XAGV� �XAGV� ����i�jXWSTi

Zone� � XAGV� �E�
� �XAGV� �E�

� �XAGV� ����i�jXWSTi

Zone� � XAGV� �XAGV� �XAGV� �E�
� �E	

� ����i�jXWSTi

where Ei
j is the set of states of AGVi modeling the fact the i

th Automated Guided Vehicles is located inside the

jth conflict zone (i.e. Zonej is a product set encoding all the global states of the plant in which two AGVs are
located inside the conflict zone j whatever the position of the other components of the plant.

PI n1569

10 B. Gaudin, H. Marchand

Remark 2 In [15], a more restrictive state-based approach was considered for product systems. The control
objective was assumed to be separable, i.e. the set of forbidden global states was given by E �

S
��j�nE

j �

where �	 � j � n� Ej � X� � � � � � Xj�� �Ej �Xj�� � � � � � Xn. Roughly, the control was to avoid each
sub-system Gj to enter local state of Ej whatever the position of the other subsystems.

Based on decomposition (10) and (11), we now define the PreGA��� operator according to the local operators
PreGi

A ���.

Proposition 4 Let G � G� k � � � k Gn be a structured system and E be a set of states as defined in (10) and
(11), then

PreGf�g�E� �
�

��j�n

��
�
Y

i�IN���
PreGi

f�g�E
j
i ��

Y
k�IN���c

Ej
k

�	

 and PreGA�E� �

�
��A

PreGf�g�E� (12)

Proof : We first make the proof for a product set Ej � Ej
� � � � � � Ej

n. Let us consider a global state
x � hx�� � � � � xni � PreGf�g�E

j�. According to (1), we have either ���� x� � Ej or x � Ej . Assume that

���� x� � Ej (the other case is trivial). Now, let x� � hx��� � � � � x
�
ni be such that x

� � ���� x�. According to
Definition 5, it means that �i � IN���� �i��� xi� � x�i (i.e. xi � PreGi

f�g�x
�
i�) and �k �� IN���� xk � x�k.

Hence, we can deduce that

x �
�
�i�IN���Pre

Gi

f�g�x
�
i�
�
�
�
�k��IN���fx

�
kg
�
�
�
�i�IN���Pre

Gi

f�g�E
j
i �
�
�
�
�k��IN���E

j
k

�
The last inclusion is due to Proposition 1, item (3).

Conversely, let x � hx�� � � � � xni �
�
�i�IN���Pre

Gi

f�g�E
j
i �
�
�
�
�k��IN���E

j
k

�
. For i � IN���, let x�i � Ej

i be

such that xi � PreGi

f�g�E
j
i �. We then have �i � IN���� �i��� xi� � x�i (we omit the case xi � x�i). Now, for

k �� IN���, we note x�k � xk, and let us call x� the global state x� � hx��� � � � � x
�
ni. We then have ���� x� � x�.

Hence, from (1), we can deduce that x � PreGf�g�x
�� and therefore x � PreGf�g�E

j�.
The generalization to an arbitrary number of product is immediate (Proposition 1, item (1)). Finally, the fact
that PreGA�E� �

S
��A Pre

G
f�g�E� is due to Proposition 1, item (2).

In the next sections, we provide a methodology that locally solves the control problem (i.e. on each component
of G without computing the whole system) but produces a global supervisor ensuring the global avoidance of
E. In Section 3.2, we first focus on the control of product DES, i.e. systems composed of components not
sharing common events.

3.2 SACP for product systems: the case �s � �

In this section, we assume that the plant that has to be controlled is modeled as a collection of asynchronous
FSMs �Gi�i�n (with �i �� j, �i � �j � �). Our aim is to solve the state avoidance control problem for a set
of forbidden global states of the form E � 	��j�mE

j , as described in Section 3.1. We first focus on the case
where the set of forbidden global states E is reduced to a product set of the form E�� � � � �En (with Ei � Xi

of Gi).
Based on Definition 4, one can compute I�Ei� and F�Ei�, i � n as well as Si � �Si�X

�
oi� the maximal

supervisors avoiding states in Ei to be reachable in Gi (resp. G�). These supervisors are computed according
to (5). At this point, one can see that G� � �S��G�� k � � � k �Sn�Gn� would solve the problem (i.e. the global
states that belong to E� � � � � � En are not reachable in G�) but would not be maximal (i.e. the control policy
is too restrictive). This basically comes from the fact that this control objective is not separable (according
to the definition of [23]). However, the next propositions (5 and 6) show that by combining the informations
previously computed, it is possible to obtain a supervisor that is maximal.

Irisa

Supervisory Control of Structured Discrete Event Systems 11

Proposition 5 LetG � G� k � � � k Gn and the set of forbidden states E � E��� � ��En, then the set of weak
forbidden global states is given by

I�E� � I��E��� � � � � In�En� (13)

and, the border set is given by:

F�E� �
�

��i�n

I��E��� � � � � Ii���Ei����Fi�Ei�� Ii���Ei���� � � � � In�En� (14)

where Ii�Ei� (resp. Fi�Ei�) correspond the weak forbidden set of states (resp. border set) of Ei in Gi.

In order to prove Proposition 5, we need the following lemma, which is a direct consequence of Proposition 4,
when G is a product system.

Lemma 1 Let G � G� k � � � k Gn be a product system, E � E� � � � � � En be a set of states of G, and
A � �i, then PreGA�E� � E� � � � � �Ei�� � PreGi

A �Ei��Ei�� � � � � �En.

Proof of Proposition 5: Let x � hx�� � � � � xni � I��E�� � � � � � In�En�. As xi � Ii�Ei�, �si � ��
i�uc�

s.t. �i�si� xi� � x�i � Ei. Hence, according to Definition 5, we have that ��s� � � � sn� x� � hx��� � � � � x
�
ni �

E� � � � � �En, which implies that x � I�E� � � � � �En� � I�E�.
Conversely, let x � hx�� � � � � xni � I�E�. Then it exists s � ��

uc, s.t. ��s� x� � x� � hx��� � � � � x
�
ni � E.

Now let us consider the traces si � Pi
s� � �i�uc, where Pi is the natural projection over �i�uc (see
e.g. [5]). Now, as �i�uc � �j�uc � � and based on Definition 5, we also have that ��s� � � � sn� x� � x�, which
entails that �i� �i�si� xi� � x�i � Ei. According to the definition of the weak forbidden set, we then have
�i� xi � Ii�Ei� (as x� � E� � � � � � En). Finally we obtain x � I��E�� � � � � � In�En�, and overall
I�E� � I��E��� � � � � In�En�.

Let us now prove that F�E� �
S
��i�n I��E��� � � � � Ii���Ei����Fi�Ei�� Ii���Ei���� � � � � In�En�.

According to (4), F�E� is defined by

F�E� � PreG��I�E�� n I�E�

According to Proposition 1, item (2), this can be rewritten:

�
S

��i�nPre
G
�i
�I�E�� n I�E� �

S

��i�nPre
G
�i
�I�E��� � � � � I�En�� n I�E�

Now, based on Lemma 1, this entails that

F�E� �
S

��i�n
I��E��� � � � � Ii���Ei���� PreGi

�i
�Ii�Ei��� Ii���Ei���� � � � � In�En�� n I�E�

�
S

��i�nI��E��� � � � � Ii���Ei���� �PreGi

�i
�Ii�Ei�� n Ii�Ei��� Ii���Ei���� � � � � In�En�

Finally, as PreGi

�i
�Ii�Ei� n Ii�Ei� � Fi�Ei� (according to (4) applied on Gi and Ei), we obtain

F�E� �
S

��i�nI��E��� � � � � Ii���Ei����Fi�Ei�� Ii���Ei���� � � � � In�En�

The interest of this methods is that I�E� and F�E� are computed without building G, i.e. they may be com-
puted according to the local border/weak forbidden sets. Further, based on I�E� and F�E�, a maximal super-
visor SE ensuring the avoidance of E in G can be computed as in Proposition 2. Note that in this case, even if
all the computations have been done locally, we obtain a global supervisor that does not reflect the structure of
the plant to be controlled. Moreover, it is not interesting to effectively compute these two sets, since they may
be of the size of the global system and then unfeasible to compute. In order to avoid to store in memory large
set of states (i.e. I�E� and F�E�), we prefer to store in memory local set of states (i.e. the Ii�Ei� and Fi�Ei�)
and to perform some on-line computations. This is the aim of the next next proposition.
PI n1569

12 B. Gaudin, H. Marchand

Proposition 6 Let G � G� k � � � k Gn with Gi � h�i�Xi�Xoi �Xfi � �ii� i � 	� � � � � n with �i � �j � �� i �� j
and E � E��� � ��En. Consider the sets F�Ei�� I�Ei� as defined in Definition 4 as well as the corresponding
maximal supervisors Si � �Si�X

�
oi� (possibly trivial).

Let SE � �S�XoE � be such that

�x � hx�� � � � � xni� SE�x� �

����������
���������

S��x�� if �j �� 	� xj � Ij�Ej�
���
Si�xi� if �j �� i� xj � Ij�Ej�
���
Sn�xn� if �j �� n � Ij�Ej�

� Otherwise
XoE � fhxo� � � � � � xoni � �i�nXoi � �i� xoi � X

�
oig

(15)

The supervisor SE ensures the avoidance of E� � � � ��En in G � G� k � � � k Gn and is maximal.

Proof : Let S be the maximal supervisor ensuring the avoidance of E w.r.t. G computed according to Proposi-
tion 2. Let x � hx�� � � � � xni � X , then

S�x� �

�
f� � �c j ���� x� � I�E�g if x � F�E�g
�

�

 S

��i�nf� � �i�c j ���� x� � I�E�g if x � F�E�g

�
(16)

According to (13), this is equivalent to

S�x� �

S
	 � i � n

�
f� � �i�c j ���� x� � I��E��� � � � � In�En�g if x � F�E�g
�

(17)

Now if ���� x� � I��E�� � � � � � In�En� and if � � �i�c, it means that �i��� xi� � Ii�Ei� and �j �� i,
xj � Ij�Ej� (as the only component that may evolve via � is Gi). Hence, (17) is equivalent to

S�x� �

S
	 � i � n

�
f� � �i�c j �i��� xi� � Ii�Ei�g if x � F�E� and �j �� i� xj � Ij�Ej�g
�

(18)

Now if x � F�E� and �i��� xi� � Ii�Ei� and �j �� i� xj � Ij�Ej�, because of (14), we have that xi � Fi�Ei�
and �j �� i� xj � Ij�Ej�, which entails that (18) is equivalent to

S�x� �
S

��i�n

�
f� � �i�c j �i��� xi� � Ii�Ei�g� if xi � F�Ei� and �j �� i� xj � Ij�Ej�g
�

�
S

��i�nfSi�xi� if �j �� i� xj � Ij�Ej�g

(19)

Finally, one can see that for i �� i� fSi�xi� if �j �� i� xj � Ij�Ej�g � fSi��xi�� if �j �� i�� xj � Ij�Ej�g � �,
hence we have S�x� � SE�x�. Dealing with the initial states of the controlled system, it is easy to show that
XoE � Xo n I�E�.

let SE be a supervisor as in Proposition 6, one can see that at most one local supervisor is active at a time. It is
the one for which the sub-plant has evolved in its border set of states when the other sub-plants are in a weak
forbidden state.

The interest of such a method is that the supervisor SE is locally computed according to the local supervisors
Si. Therefore, this method avoids to build the whole system and the computation of S on the resulting system.
Hence, it reduces the complexity of the algorithm (see the next paragraph) as well as the memory storage of
the supervisor. Moreover, the supervisor itself somehow keeps the structure of the plant as it is represented as a

Irisa

Supervisory Control of Structured Discrete Event Systems 13

collection of local supervisors. Hence, the way SE is built may improve the readability and the understanding
of the control effect. However, on-line computations are still needed to know whether an event has to be
disabled or not, i.e. to be activated, a local supervisor need to have some information coming from the different
components of the system. In particular it has to know whether the other components are in a weak forbidden
(or border) state or not.

Example 3 Consider the two following FSMsG� andG�, the objective is to avoid the global state x � hx�� x
�
�i

to be reachable in G� k G�. We first compute the maximal supervisors S� (resp. S�) ensuring the avoidance of
x� inG� (resp. x�� inG�). The action of the supervisors is represented by dash arrows in the Figure 2�b�. Now,

Local Computations

x�
xo

uc

uc
x
�

�

x
�

�x
�

o�

x
�

o�

G�

G�

a

b

c

b

c

�a�: G � G� k G� �b�: The resulting controlled system

a

x�
xo

uc

uc
x
�

�

x
�

�x
�
o�

F��x��

F��x
�
��

I��x��

I��x
�
��

G�

G�
x
�

o�

xf

x
�

f

xf

x
�

f

Figure 2: A simple Example

following Proposition 6, the supervisor S � �Sx�Xofxg� is given by

� Xofxg � fhxo� x
�
o�i� hxo� x

�
o�ig

� Sx�hxo� x
�
o�i� � Sx�hxo� x

�
�i� � Sx�hxo� x

�
�i� � fag because G� is in I��x���. Hence, S� becomes

active. S�hx�� x�o�i� � fb� cg (G� is in I��x��. Therefore S� is active). For all the other states, S�x� � �.

Let us now present the main theorem of this section. It shows hows to avoid a set of global states E (as defined
by (10)) to be reachable in a product system.

Theorem 1 Let G � G� k � � � k Gn be the plant to be controlled and a set E �
S
��j�mEj where �	 � j �

m� Ej � Ej
� � � � � � Ej

n and E
j
i � Xi for 	 � i � n. Let SEj � �SEj �Xo

Ej
� be the maximal supervisors

computed w.r.t. G and Ej , then SE � �S�XoE � s.t.�
�x � hx�� � � � � xni � X � S�x� � SE��x� 	 � � � 	 SEm�x�
XoE � XoE� � � � � � XoEm

(20)

ensures the avoidance E in G and is maximal.

Proof : Based on Prop. 6, �	 � j � m�SEj is a controllable and maximal supervisor with respect to G� �uc

and the control objective Ej . The modularity result of Prop. 3 gives the results.

Finally, note that this kind of control objectives cannot be efficiently solved using the method presented
in [6, 10] since G has to be built (i.e. the FSM G� k � � � k Gn has to be computed), as the objectives concern
the whole system. However, our method can be used in complement to the one of [6, 10] whenever the control
objective does not concern the whole objective (i.e our method can be used to compute the controller on the
sub-machines for which forbidden interactions are required). The global supervisor can then be inferred using
the methods of [6, 10].

PI n1569

14 B. Gaudin, H. Marchand

The complexity aspect. Let us now discuss about complexity of the control synthesis phase. Given an FSM
with N states and a set of states to be avoided by control, the complexity of the controller synthesis phase
for the SACP is in O�N j�j�. Let us now consider a system G of the form G� k � � � k Gn where each Gj

contains N states (we assume that maxi�j�ij� � k). The number of states of G is in O�Nn�. Hence, using
classical techniques, the state avoidance control problem is in O�n�k�Nn��. In our case, given a product set
E � E� � � � � � En, to be avoided by control, we locally compute the supervisor on each local component
of G. Hence the global complexity is in O�n�k�N�. More generally, given a set of forbidden global states E,
then this set can be decomposed into a union of product sets. Assume that E is composed of m product sets,
then the supervisor computation complexity is in O�m�n�k�N�. However one has also to take into account the
computations that have to be done on-line when controlling the plant. Indeed, deciding which supervisor have
to be activated given one global state, is done at execution time. This can be done in O�m�n�N�, which is an
acceptable complexity. However, if the objectives are not well structured, the number m of product sets to be
forbidden can be important. In this case, the on-line computation may be important as well and one has to find
a good set of states representation as Binary Decision Diagrams [4] for example3.

Example 4 Let us consider the well known Cat & Mouse example [18]. The cat and the mouse movements
are respectively modeled by the FSMs CAT and MOUSE for which the states are respectively Ci and Mi, for
i � � � � � � corresponding to the room in which the animals are (the events ci and mi model the movements of
the animal from one room to another). The goal of supervisor is to avoid the cat and the mouse to be at the
same time in the same room.

m�
m	 m m�

m�
M� m�

C�
c

C�

c	

c�
c�

c�

C�c�
C�c

C�

M� M�

M� M�

Following (10), the set of forbidden global states can be decomposed in 5 product sets Ei � hCi�Mii, each one
modeling the fact that the cat and the mouse are in the same room. Now according to Theorem 1, it is sufficient
to compute the maximal supervisors SEi

ensuring the avoidance of Ei, i � �� � � � � (C.f. Proposition 6), i.e.
each supervisor SEi

ensures that the cat and the mouse are not in the room i at the same time. Finally, by
combining the action of each supervisor (C.f. Theorem 1), we obtain a global supervisor ensuring the desired
property.

3.3 SACP for Concurrent Systems: the case �s �� �

Let us now consider a plant G � G� k � � � k Gn, with �s �� � (i.e. the FSMs modeling the plant share common
events). Compared to Section 3.2, it will not be possible to express the global supervisor as a function of the
local supervisors (this is due to the shared events). However, the methodology remains the same. Given a set
of global states E to be forbidden, local forbidden and border sets will be computed and the supervisor will be
computed according to these sets of states. Hence, the FSMG will never be built.
Given a set of global states E of G, as defined in section 3.1, that has to be forbidden by control, we first need
to extend the weak forbidden set of states and the border sets definitions in order to take into account the fact
that the different components of G share common events. Indeed, the weak forbidden set of states and border
sets of each Gi computed as in Section 3.2, would lead to a supervisor that does not ensure the desired property
(sometimes too restrictive, sometimes too permissive). To illustrate this point, let us consider the following
example:

3see e.g. [27, 14] for controller synthesis tools based on a BDD implementation.

Irisa

Supervisory Control of Structured Discrete Event Systems 15

Example 5
Let us consider a system G � G� k G�, where
G� and G� are sharing the events �s � f��� ��g
and �uc � fuc�� uc�g. Assume we want to avoid
the global state hx�� x��i to be reachable inG. Let
us consider the supervisor S computed as in Sec-
tion 3.2, according to the sets Ii and Fi.
It is easy to show that S does not solve the prob-
lem since in hx�� x��i, S�hx�� x

�
�i� � �. However

by triggering the shared event ��, G will evolve
into the global state hx�� x��i, that happens to be a
weak forbidden global state.
A contrario, in the global state hx�� x��i, S dis-
ables event �	 (because x� � F��x�� and x�� �
I��x

�
��). However, this event does not have to be

��
c���

G� G�

��

��

x�x�

x�

uc�

x
�
�

uc�

I��x��

F��x��

I��x
�
��

F��x
�
��

x�

x�

x
�
�

x
�
� x

�
�

x
�
�

x
�
	

disabled since by triggering it, the reached global state is hx�� x�	i, which is not a forbidden global state.

3.3.1 Local forbidden and border sets

Given a component of G, say Gi and a set of states Ei � Xi, we first introduce the local weak forbidden set of
states with respect to Ei, denoted by Ii�loc�Ei�. It is defined by:

Ii�loc�Ei� � PreGi
�
�i�ucn�s�Ei� � fx � Xij �s � ��i�uc n �s�

�� �i�s� x� � Eig (21)

Ii�loc�Ei� represents the set of states of Gi from which it is possible to evolve into Ei by triggering a sequence
of events which are uncontrollable and only local (i.e. with no shared event).
Now, dealing with the local border set, the control policy differs according to whether an event is shared or not
(See example 5). This is formalized as follows:

Fi�loc�Ei� � PreGi

�in�s
�Ii�loc�Ei�� n Ii�loc�Ei�

� fx � �Xi n Ii�loc�Ei�� j �� � �i n �s� �i��� x� � Ii�loc�Ei�g

(22)

�� � �s� F
�
i �Ei� � PreGi

f�g�Ii�loc�Ei�� � fx � Xij �i��� x� � Ii�loc�Ei�g (23)

Fi�loc�Ei� corresponds to the states that lead to the local weak forbidden set via a local event. For the shared
events, we specialize the border set to a particular event � � �s (one for each shared event). F�

i �Ei� corre-
sponds to the set that lead to the weak local forbidden set via the event �.

Ei

��
��

�� �� �s

F��
i �Ei�

�s � f��� ��gFi�loc�Ei�

Ii�loc�Ei�
s � ��i�uc n �s�

�

Fi
���Ei�

Figure 3: Sets Ii�loc�Ei��Fi�loc�Ei� and F�
i �Ei� of Gi w.r.t. Ei

It may be the case that Ii�loc�Ei� � F
�
i �Ei� �� �. Finally, note that the distinction made between (22) and (23)

is important since by removing a shared event in a component, we may avoid some other components to evolve
through this event.
PI n1569

16 B. Gaudin, H. Marchand

Example 6 To illustrate these new sets of states, we consider the following example. The system G we want to
control is given by the three following FSMsG�,G�,G�, where�s � f�uc� �g and�uc � fuc�� uc�� uc�� �ucg.

x��� x���

x��

x��

x��

x��

x�	 x�

a a

b
a

b

uc�

�uc
a

a
b

a

b

x���

x��

x��

x��
x�	

x�

d

uc�,�uc
�

e

d

e

dd

x���

x��

x��

x��

x��

f g

f

uc�

f

�

f
g

The set of forbidden configurations is given by the union of two product sets: E � E� 	E� with

E� � fx��� x
�
�g � fx��g � fx��g � fhx��� x

�
�� x

�
�i� hx

�
�� x

�
�� x

�
�ig

E� � fx��� x
�
�g � fx��� x

�
�g � fx��� x

�
�g

� fhx��� x
�
�� x

�
�i� hx

�
�� x

�
�� x

�
�i� hx

�
�� x

�
�� x

�
�i� hx

�
�� x

�
�� x

�
�i�

hx��� x
�
�� x

�
�i� hx

�
�� x

�
�� x

�
�i� hx

�
�� x

�
�� x

�
�i� hx

�
�� x

�
�� x

�
�ig

The (local) weak forbidden states and the (local) border sets are summarized in Table 1.

E�
� � fx��� x

�
�g E�

� � fx��g E�
� � fx��g E�

� � fx��� x
�
�g E�

� � fx��� x
�
�g E�

� � fx��� x
�
�g

Ii�loc fx��� x
�
�� x

�
�g fx��� x

�
�g fx��� x

�
�g fx��� x

�
�g fx��� x

�
�g fx��� x

�
�� x

�
�g

Fi�loc fx���� x
�
��g fx���� x

�
g fx���� x

�
�g fx���� x

�
�� x

�
�� x

�
g fx���� x

�
	g fx���� x

�
�g

F�uc fx��g fx��g � � � �

F�
i � fx��g fx��g � fx��g fx��g

Table 1.

3.3.2 Global Forbidden and border Sets

Based on the sets Ii�loc�Ei��Fi�loc�Ei� and F�
i �Ei� that can be locally computed, we now define the global

weak forbidden set of states as well as the global border set. In a first step, we consider a product set E �
E� � � � � � En. We first introduce Iloc��� as the set of global states that may lead by a sequence of local
uncontrollable events to E. This set can be computed on G as follows:

Iloc�E� � PreG
�

�ucn�s
�E� (24)

In fact, from a computational point of view, it is not interesting to compute Iloc�E� using directly the operator
PreG

�

�ucn�s
. Instead, it can be shown that Iloc�E� can be computed using the local weak forbidden sets Ii�loc���.

Proposition 7 Iloc�E� � I��loc�E��� � � � � In�loc�En�

The proof of Proposition 7 can be mimicked from the one of Proposition 5, knowing that the sequences that
we consider only contain uncontrollable events that are local to each component of the plant. Coming back to
Example 6, Iloc�E�� � fx��� x

�
�� x

�
�g � fx��� x

�
�g � fx��� x

�
�g.

Iloc�E� actually constitutes a first approximation of the global states that have to be forbidden by control.
Indeed, one can easily note that Iloc�E� � I�E�, where I�E� corresponds to the weak forbidden set of

Irisa

Supervisory Control of Structured Discrete Event Systems 17

states that would be computed on the whole system G. Equality is not met (in general) since the states that
are traversed by an uncontrollable trajectory leading to E, having at least one shared event are not taken into
account.
Now, depending on the status of the events (shared or not shared, controllable or not controllable), there actually
exist different ways to reach Iloc�E�.

1. Either it is reached by triggering a local controllable event,

2. or it is reached by triggering a controllable shared event,

3. or it is reached by triggering an uncontrollable shared event.

For point (1), we denote by F i
G�E� the set of states that can lead to Iloc�E� by triggering a local event that

belongs to �i n �s. For point (2) and (3), we denote by F�
G�E�,with � � �s, the set of states of G from which

it is possible to reach Iloc�E� by triggering � � �s.

According to these informal definitions, one can remark that F i
G�E� � F�E� and for � � �s � �c

F�
G�E� � F�E�4, i.e. these global states will belong to the border of E. However, this is not the case for the
global states that belong to F�

G�E�, with � � �s � �uc, as they may lead into Iloc�E� � I�E� by triggering
an uncontrollable event.

We now show how this sets can be locally computed.
In a first step, we are interested in computing the states that lead to Iloc�E� by triggering only local events. As
previously said, they will be denoted by F i

G�E�, whenever the concerned local events belongs to the alphabet
of the component Gi. In fact, by definition, we have that F i

G�E� � PreG�in�s�Iloc�E�� n Iloc�E�. This set can
be efficiently reorganized, without building G, as follows:

Proposition 8 F i
G�E� � Fi�loc�Ei�� ��k ��iIk�loc�Ek��

Proof : By definition, we have F i
G�E� � PreG�in�s�Iloc�E�� n Iloc�E�. Hence

F i
G�E� � PreG�in�s�I��loc�E��� � � � � In�loc�En�� n Iloc�E� (because of Prop. 7)

�
�
PreGi

�in�s
�Ii�loc�Ei��� ��k ��iIk�loc�Ek��

�
n Iloc�E� (because of Prop. 4)

�
�
PreGi

�in�s
�Ii�loc�Ei�� n Ii�loc�Ei�� ��k ��iIk�loc�Ek��

�
� Fi�loc�Ei�� ��k ��iIk�loc�Ek�� (because of (22))

Next, for � � �s, we introduce the set F�

G�E�, which somehow represents the border set of E according to �
in G, i.e. the set of states from which it is possible to reach Iloc�E� by triggering the shared event �. This set
is formally defined by F�

G�E� � PreGf�g�Iloc�E�� n Iloc�E�, which in turn can be rewritten as follows:

Proposition 9 F�
G�E� �

h�
�i�IN���F

�
i �Ei�

�
�
�
�k��IN���Ik�loc�Ek�

�i
n Iloc�E�

Proof: F�
G�E� � PreGf�g�Iloc�E�� n Iloc�E�

� PreGf�g�I��loc�E��� � � � � In�loc�En�� n Iloc�E�

�
h�

�i�IN���Pre
Gi

f�g�Ii�loc�Ei��
�
�
�
�k��IN���Ik�loc�Ek�

�i
n Iloc�E�

�
h�

�i�IN���F
�
i �Ei�

�
�
�
�k��IN���Ik�loc�Ek�

�i
n Iloc�E�

4where F�E� is the border set of G w.r.t E.

PI n1569

18 B. Gaudin, H. Marchand

In Example 6, F�uc
G �E�� � fx��g � fx��g � fx��� x

�
�g, and F

�
G�E

�� � fx��� x
�
�� x

�
�g � fx��g � fx��g.

Intuitively, to evolve into Iloc�E�, via the event � � �s, it is sufficient for the components not sharing this
event to be in a local weak forbidden state whereas the other components are in a state of the border according
to � (i.e. in F�

i �Ei�). If � is triggered, then all the components sharing this event will simultaneously evolve
into a local weak forbidden state and overall G will also evolve into a weak forbidden global state, belonging
to Iloc�E� (see e.g. Example 5 for the state hx�� x��i). Note that we make no distinction between the status of
the event (controllable or not). This will be made further in the section.

Finally, we define FG�E�, which represents the set of states of G from which it is possible to reach Iloc�E�,
triggering an event � � �c, i.e. FG�E� � PreG�c�Iloc�E�� n Iloc�E�. Using the set of states F i

G�E� and
F�
G�E� previously defined, we obtain:

Proposition 10 FG�E� �

S

��i�nF
i
G�E��

S

S

���s	�c
F�
G�E���

Lemma 2 PreG�i�cn�s�Iloc�E�� n Iloc�E� � PreG�in�s�Iloc�E�� n Iloc�E�

Proof : First we have that PreG�i�cn�s�Iloc�E�� n Iloc�E� � PreG�in�s�Iloc�E�� n Iloc�E� (Proposition 1, item

(2)). Now, let x � PreG�in�s�Iloc�E�� nIloc�E�, then �� � �i n�s s.t. ���� x� � Iloc�E�. Now � is obviously

controllable (otherwise x would have belong to Iloc�E��, hence x � PreG�i�cn�s�Iloc�E�� n Iloc�E�.

Proof of Proposition 10 :

FG�E� � Pre
G

�c
�I�E�� n I�E� � Pre

G

�c
�Iloc�E�� n Iloc�E� � �PreG�cn�s�Iloc�E�� � Pre

G

�c��s
�Iloc�E��

� �
S
��i�nPre

G

�i�cn�s
�Iloc�E�� n Iloc�E�� � �

S
���c��s

PreG� �Iloc�E�� n Iloc�E��

� �
S
��i�nPre

G

�in�s
�Iloc�E�� n Iloc�E�� � �

S
���c��s

PreG� �Iloc�E�� n Iloc�E�� (according to Lemma 2)

� �
S
��i�nF

i

G
�E��

S
�
S
���s��c

F�

G
�E��� �

S
���s��uc

F�

G
�E��

� �
S
��i�nF

i

G
�E��

S
�
S
���s��c

F�

G
�E���

So far, we gave the definitions for a set of forbidden global states modeled as a product set. Next we extend
these definition to the general case (i.e. a union of product sets).

Proposition 11 Let G � G� k � � � k Gn be the plant to be controlled according to the set of forbidden global
states E �

S
��j�mEj where for all 	 � j � m, Ej represents a product set. We then have,

Iloc�E� �
�

��j�m

Iloc�E
j� (25)

�� � �s� F
�
G�E� �

S
	 � j � m

F�
G�E

j� n Iloc�E�� and (26)

FG�E� �

S
	 � j � m

FG�E
j� n Iloc�E�� (27)

3.3.3 Supervisor Computation

Before describing the general method, we here give an intermediate result that makes the link with the classical
notion of weak forbidden/border sets defined by (3), (4).

Irisa

Supervisory Control of Structured Discrete Event Systems 19

Proposition 12 Let G � G� k � � � k Gn be a concurrent system and E � E� � � � � � En be a product set.
Then, if �� � �s � �uc� F

�
G�E� � � then I�E� � Iloc�E� and FG�E� � F�E�, where I�E� and F�E� are

the set of weak forbidden states and the border set of E in G (i.e. computed as in Definition 4).

Proof : One can easily show that Iloc�E� � I�E�. Now, let x � I�E� n Iloc�E� and s � ��
uc be one of the

uncontrollable sequences starting from x and leading toE (this sequence exists since x � I�E�). Then s can be
decomposed into s��s� where s� � ��

uc, � � �s � �uc and s� � ��uc n �s�
� (i.e. � is the last shared event of

s). Let x� � ��x� s���. Then, x� � Iloc�E� since E can be reached from x� triggering only local uncontrollable
events. Moreover, we have that ��x� s�� � F�

G�E� as ��x� s��� � x� � Iloc�E�, which contradicts the fact that
F�
G�E� � �. We can then conclude that x �� I�E� n Iloc�E� and that I�E� � Iloc�E�.
Finally, by definition,

F�E� � PreG��I�E�� n I�E� � PreG��Iloc�E�� n Iloc�E�

� �PreG�cn�s�Iloc�E�� � PreG�c��s
�Iloc�E�� � PreG�uc��s

�Iloc�E��� n Iloc�E�

� �
S
��i�nPre

G

�i�cn�s
�Iloc�E�� n Iloc�E�� � �

S
���c��s

PreG
�
�Iloc�E�� n Iloc�E��

��
S
���uc��s

PreG
�
�Iloc�E�� n Iloc�E��

� �
S
��i�n F

i

G
�E��

S
�
S
���s��c

F�

G
�E��� �

S
���s��uc

F�

G
�E��

� �
S
��i�n F

i

G
�E��

S
�
S
���s��c

F�

G
�E��� � FG�E�

Based on the previous proposition, we can easily derived a supervisor ensuring the avoidance of the product set
E in G.

Proposition 13 If �� � �s � �uc� F
�
G�E� � � then the supervisor SE � �SE�XoE�, such that

�x � X � SE�x� �

�
f� � �cj ���� x� � Iloc�E�g if x � FG�E�
� Otherwise

XoE � Xo n Iloc�E�

ensures the avoidance of E in G and is maximal.

Proposition 2 and 12 immediately give the proof. As all the computations are performed locally, the complexity
of this synthesis phase is in O�n�k�N� (using notations of Section 3.2). The fact that we need to compute
specialized borders w.r.t. some shared events does not increase the complexity, as all these computations can
be done on the fly when the graph is being explored. Moreover, from a computational point of view, Iloc and
FG does not need to be computed. It is sufficient and more convenient to store the different local sets Ii�loc,
F�
i � and Ii�loc in memory and to perform some tests on-line in order to know whether a configuration belongs
to one of these sets (as done in Section 3.2). This increases the on-line complexity, but avoids to store sets of
states that may be too large to be (efficiently) represented.
Next we show how to extent this result to any set of global states E.

Theorem 2 Let G � G� k � � � k Gn be the plant to be controlled and a set E �
S
��j�mEj where �	 � j �

m� Ej � Ej
� � � � � �Ej

n and E
j
i � Xi for 	 � i � n.

Assume �� � �s � �uc� F
�
G�E� � �, then let SEj � �SEj �Xo

Ej
� be the maximal supervisors computed

w.r.t. G and Ej (Proposition 13), then SE � �S�XoE �, where �x � hx�� � � � � xni � X ��
S�x� � SE��x� 	 � � � 	 SEm�x�
XoE � Xo

E� � � � � � XoEm
(28)

ensures the avoidance E in G and is maximal.

The proof is immediate and is due to Proposition 13 and Proposition 3. Moreover, the controller synthesis
phase is in O�m�n�k�N�.
PI n1569

20 B. Gaudin, H. Marchand

General Case.
Now, if �� � �s � �uc such that F�

G�E� �� �, then I�E� �� Iloc�E�. However, based on the previous results,
we can remark that the weak forbidden global states that are not taken into account are the ones that lead
into E via an uncontrollable sequence having shared events. In order to capture these states, we introduce the
following function �

Definition 6 Let E � X , then the function � � �X � �X is defined by

��E� � E

� �

���s��uc

F�

G
�E� (29)

The set ��E� contains E and the set of states that may lead to E triggering a sequence of uncontrollable events
such that its first event is a shared uncontrollable event. We now consider the sequence ��n�E��n
o (with
�o�E� � E). For all n � 	, elements of �n�E� can lead to E triggering a sequence of uncontrollable events
which contains less than n elements of �s. We denote by ���E� the limit of the sequence ��n�E��n
o (see
Figure 4). This limit always exists and is reached in a finite number of iterations, since the number of states of
the system is finite.

�� computation

E

Iloc�E�

FG�E���E� � E � F�

���E� � E � F� � F� FG�F�� F� 	
S
���uc��s

F�
G�F��

F� 	
S
���uc��s

F�
G�E�

Iloc�F��

Figure 4: �� Intuition from the point of view of G

Based on � and ��, we can show the two following lemmas

Lemma 3 �� � �s � �uc� F
�
G��

��E�� � �

Proof : According to Definition 6, �����E�� � ���E� 	
S
���s	�uc

F�
G��

��E��. Moreover, from definition
of ��, �����E�� � ���E�. Hence,

S
���s	�uc

F�
G��

��E�� � �.

Lemma 4 I����E�� � I�E�

Proof : First we show that ���E� � I�E� The proof proceed by induction over n. We want to prove that
�n � �, �n�E� � I�E�. The result is clear for n � � (in this case, ���E� � E). Now let us consider
n � � and let us suppose that �n�E� � I�E�. This easily entails that �n���E� � ��I�E��. Moreover,
according to (3) and Definition 6, we have ��I�E�� � I�E�. Therefore, we have �n���E� � I�E�, which,
once the fix point reached, gives ���E� � I�E�. This easily entails that I����E�� � I�E�. Conversely, since
X � � X �� �� I�X �� � I�X ���, and E � ���E�, we have I�E� � I����E��. Hence I�E� � I����E��.

From Property 12, generalized to a union of product set we can deduce from the previous lemma that I�E� �
Iloc��

��E��, from which we conclude that:

Theorem 3 Given G � G� k � � � k Gn and E a set of forbidden configurations. Let ���E� � 	��j�mE
j be

the decomposition in terms of product sets of ���E�, then the supervisor SE � �SE �XoE�, such that �x � X

SE�x� � SE��x� � � � � � SEm

XoE � Xo n Iloc��
��E��

ensures the avoidance of E in G and is maximal.
Irisa

Supervisory Control of Structured Discrete Event Systems 21

Proof : According to lemma 3, �� � �s � �uc� F
�
G��

��E�� � �. We then obtain the result by applying
Theorem 2.

The result of Theorem 3 gives us a method to solve SCP without explicitly building G. We made the necessary
effort to perform the computation locally on each component ofG, hence reducing the global complexity of the
algorithm. However, it is worthwhile noting that the complexity of the supervisor computation heavily depends
on the number of product sets that is used to express ���E�. Indeed, at each iteration, new product sets need to
be forbidden (i.e. the one that belongs to F�

G��
i�E�� for � � �uc � �s. In particular, this number obviously

depends on the cardinal of the shared uncontrollable events. Hence, this method is more suitable and effective
for loosely synchronous systems, for which most of the behavior of the components is local and is synchronized
occasionally with other components).

Example 7 Coming back top the previous example, one can show that ��E� � E� 	 E� 	 E� where E� �
fx��g � fx��g � fx��� x

�
�g. The computation of the weak forbidden and border sets for E	 and E� had already

been done. So we only need to perform the computations for E�. The results are summarized in the next table.

E�
� E�

� E�
�

Ii�loc fx��g fx��g fx��� x
�
�g

Fi�loc fx��� x
�
g fx���g fx���� x

�
�g

F�uc
i � � �
F�
i � fx��g fx��g

At this stage, it is easy to see that ��E� � ���E�. Hence, S can be deduced from the Table 1 and 2 following
Theorem 3.

4 Conclusion

In this paper, we investigated the State Avoidance Control Problem for loosely synchronous systems. The
methodology is based upon a decomposition of the set of forbidden configurations E according to the structure
of the system. Based on this decomposition, it is then possible to locally compute the set of weak locally
forbidden states and some local border sets on each component leading to a global supervisor ensuring the
avoidance of E. We provide different methods depending whether the components share common events or
not. Note that at this point, Theorem 2 and 3 do not require that �s � �c. Hence compared to [2], we have
less restrictive assumptions. However, we focused so far on the State avoidance Control Problem, whereas
in [2], their methodology based on a language formalism allows to handle more intricate control objectives
(this aspect is currently under investigation). We are also looking for an algorithm that will force the plant to
be non-blocking while still avoiding the computation of the whole state space. Another point of interest would
be to extend theses techniques to the hierarchical model described in [15, 9].

A Optimal control of Product Systems

The aim of the optimal control (see e.g. [20]) is to generate a controller which constrains the system to a desired
behavior according to quantitative and qualitative aspects. This is performed by the addition of quantitative
measures in the form of cost functions to capture the fact that some legal behaviors are better than others. In
the basic setup of supervisory control theory (see [18, 5]), optimality is with respect to set inclusion and thus
all legal behaviors are equally good (zero cost) and illegal behaviors are equally bad (infinite cost). The work
in [20] enriches this setup by the addition of quantitative measures in the form of occurrence and control cost
functions, to capture the fact that some legal behaviors are better than others. The problem is then to synthesize
a controller that is not only legal, but also “good” in the sense of given quantitative measures5.

5Some other studies appear in [12, 16, 21].

PI n1569

22 B. Gaudin, H. Marchand

In this section, after a brief presentation of the theory developed in [20], we extend these results to the control
of plant modeled as a product system.

A.1 The Optimal Control Problem.

We here recall some results for the optimal control of FSM (with a unique initial and final state) that can be
found in [20]. Our aim here is not to describe in detail all the theory, but to present the principal notations
and results that we will use in the sequel. In order to take into account the numerical aspect of the optimal
control problem, two cost values are associated to each event of �. To this effect, we introduce an occurrence
cost function ce � � � IR� and a control cost function cc � � � f���g. The control cost function is used
to encode the status of the events. The control cost function is infinity for events in �uc. The cost functions
are then used to introduce a cost on the trajectories of a submachine H of G (note that in [20], the control cost
function is not trivial). We introduce �G

d �H�x� as the set of disabled events at state x for the system to remain
in submachine H of G as well as X �s� x� the set of states crossed on the way when traversing s.

Definition 7 LetH be a submachine of G and Lm�H� be the marked language generated by H , then

� For any state x � XH and string s � �s��
s
� � � � �

s
ksk� such that �H�s� x� exists, the cost of s is given by:

cg�x�H� s� �

kskX
j��

ce��
s
j � �

X
x��X �s�x�

X
���Gd �H�x��

cc��� (30)

� The objective function denoted by c��� is given by: c�H� � sup
s�Lm�H�

cg�x�A�H� s��

Basically, the cost of a trajectory is the sum of the occurrence costs of the events composing it. If an uncon-
trollable event is disabled, the cost of a trajectory becomes infinite because the second term of (30) becomes
infinity. Finally, c�H� represents the worst case behavior possible in submachine H .
We now define the optimization problem.

Definition 8 For all x � X �H � G�x� is an optimal submachine if c�H� � min
H��G�x�

c�H �� ���

In particular, an optimal solutionH � G�x�� is an optimal submachine of the plantG and represents a solution
of the optimal control problem, which in general has more than one solution. For such a submachine H , c�H�
represents the optimal cost (in fact, the worst inevitable cost) necessary to reach xf from x�. It means that a
submachine with a lower cost could not ensure the accessibility of xf from x�. The following lemma (lemma
(2.15) in [19]) is stated to note that optimal solutions lie within the class of controllable submachines.

Lemma 5 LetH � G. If c�H� �� then H is controllable.

The next theorem ([20]) gives necessary and sufficient conditions for the existence of optimal submachines.

Theorem 4 An optimal submachine of G exists if and only if there exists a submachine H of G such that H is
trim, controllable with no cycles.

Intuitively, in this theorem, the trim assumption ensures that the final state can be still reached. the controlla-
bility assumption ensures that the positive cost cycles can be broken using controllable events alone. Finally
the acyclic assumption together with the acyclic assumption ensure that the cost is finite. We now introduce the
notion of DP-Optimal submachines. This kind of submachine will be used intensively for algorithm purposes.

Definition 9 A submachineH � G�x� is DP-Optimal if it is optimal and for all x� � XH � H�x�� is an optimal
submachine of G�x��.

Irisa

Supervisory Control of Structured Discrete Event Systems 23

If a particular DP-Optimal FSM includes all other DP-Optimal FSMs as submachines, then we call it the
maximal DP-Optimal submachine. Its existence is given by the following theorem ([20]).

Theorem 5 If an optimal submachine ofG exists, then the unique maximal DP-Optimal submachine ofG w.r.t.
the final state xf also exists.

In [20], the authors provide an algorithm (DP-OPT), that, given an FSMG with a unique final state, constructs
the maximal DP-Optimal submachine, with a worst-case complexity O�jXj�j�jlog�j�j� � jXj�j�j� (Theorem
6.10 of [20]).

Example 8 We here give a simple example that allows to grasp the notion of DP-Optimality versus Optimality.
We have already seen that optimality actually exists when the worst-case cost from the initial state x� is to xf
is finite once minimized. DP-Optimality is obtained when the terminal path from any state of a submachine to
the final state xf is optimal in the previous sense. This is illustrated by the following example. We can observe

u

b

c

x

a

xfo

x

u

b

x

a

xfo

x

Event ce Remarks
a,b 1 Controllable
c 3 Controllable
u 5 Uncontrollable

Figure 5: A simple example giving the difference between Optimality and DP-Optimality

that, in both submachines, the cost for going from x� to xf is optimal since there exist no other controllable
path with a lower cost. However, in the first submachine, the worst-case cost to go from state x to state xf
is � (through event c); whereas the worst-case cost in the second submachine is optimized to be reduced to 1.
Consequently, we can say that the second submachine is DP-Optimal (thereby optimal), but the first submachine
is not DP-Optimal, but is optimal.

A.2 The optimal control of product systems

We here extend the theory of [20] to a plant Gmodeled as a product system G�� k � � � k Gn, with �i��j � �,
for i �� j. We restrict ourselves to FSMsGi with a single final state.
Given two FSMs G� and G�, the purpose of this section is to show that whenever there exist two (DP-)optimal
submachines H� and H� of G� and G�, then H� k H� is also (DP-)optimal w.r.t. G� k G�.
In the first part of this section, we will consider FSMs with only one initial state as carried out in [20]. First,
we need to introduce the following technical lemmas:

Lemma 6 [8] Let G�
� and G

�
� be submachines of G� and G�, then c�G�

� k G
�
�� � c�G�

�� � c�G�
��.

Note that this lemma is true only because we consider the special case, where the control cost function is trivial
(i.e. either equal to 0 or �) and because G� and G� are asynchronous FSMs. this lemma also entails that it
is sufficient to consider elements of L�G� k G�� of the form s�s� with s� � ��

� and s� � ��
� when we are

interested in the cost of G� k G�.

Lemma 7 [8] Let A � G� k G�. Then, there exist G�
� � G� and G�

� � G�, s.t. c�G�
� k G

�
�� � c�A�.

Using the previous results, we are now able to prove the following property:

Proposition 14 IfH� andH� are optimal submachines ofG� andG�, thenH� k H� is an optimal submachine
of G� k G�. The result is still valid when dealing with DP-Optimality.

PI n1569

24 B. Gaudin, H. Marchand

Proof : Let A be an optimal submachine of G� k G�. According to Lemma 7, there exist G�
� � G� and

G�
� � G�, s.t. c�A� � c�G�

� k G
�
��. Next, it is easy to show that the worst case cost of H� k H� is minimal

among the submachines of G of the form G�
� k G

�
� (otherwise, either G

�
� or G

�
� would have a worst case cost

lower than the one of H� or H�). Hence we have c�A� � c�G�
� k G�

�� � c�H� k H��, which proves that
H� k H� is optimal w.r.t. G� k G�. The DP-Optimality can be easily deduced from the previous point.

So far, we were interested in composing FSMs having only one initial state. Knowing that the FSMs we
consider have several initial states, we need to extend these results to FSMs having this property.

Definition 10 Let G be a FSM, and H a submachine of G such that XHo � XGo and XHo �� �. H is (DP-
)optimal if �x� � XHo , H�x�� is (DP-)optimal w.r.t. G�x��, and �x� � XGo n XHo , G�x�� has no optimal
submachine. �

With the preceding notations, consider the maximal DP-Optimal submachine H�xo� of G�xo�. We denote by
X �
o the set of initial states for which such a submachine exists. It is then easy to show thatH � �xo�X �

o
�H�xo��

6

is DP-optimal w.r.t. G. Based on this result, we can state the following proposition:

Proposition 15 Let H� and H� be DP-optimal submachines of G� and G�, then H� k H� is a DP-optimal
submachine of G� k G�.

Proof : We just give here the sketch of the proof. For all xoi � X �
o� and xoj � X �

o� , using Proposition 14, we
know that Hij � H��xoi� k H��xoj � is DP-optimal w.r.t. G��xoi� k G��xoj �. Now, based on the fact that the
merge of two DP-Optimal submachines is still a DP-Optimal submachine, we can deduce that �ijH��xoi� k
H��xoj � � H� k H� is a DP-Optimal ofG� k G�. Consider now a state xo � hxo� � xo�i �� X

�
o��X

�
o� . Assume

xo� �� X �
o� . It entails that there exists no DP-Optimal submachine of G��xo��, and that �H�xo�� � G��xo��,

c�H�xo��� � �. Finally, using Lemma 6 and 7, we can show that �H ��xoj � � G��xoj �, where xoj � Xo� ,
c�H�xo�� k H

��xoj �� � �, which means that there is no (DP-)optimal submachine of G��xo�� k G��xoj � �
G� k G��hxo� � xoj i�.

References

[1] A. Abdelwahed. Interacting Discrete event systems: modeling, verification an supervisory control. PhD
thesis, University of Toronto, 2002.

[2] S. Abdelwahed and W. Wonham. Supervisory control of interacting discrete event systems. In 41th IEEE
Conference on Decision and Control, pages 1175–1180, Las Vegas, USA, December 2002.

[3] B. Brandin, R. Malik, and P. Dietrich. Incremental system verification and synthesis of minimally restric-
tive behaviours. In Proceedings of the American Control Conference, pages 4056–4061, Chicago, Illinois,
June 2000.

[4] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM computing
Surveys, pages 293–318, September 1992.

[5] C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer Academic Publishers,
1999.

[6] M.H. deQueiroz and J.E.R. Cury. Modular supervisory control of large scale discrete-event systems. In
Discrete Event Systems: Analysis and Control. Proc. WODES’00, pages 103–110. Kluwer Academic,
2000.

6
� denotes the merge of two FSMs (see [20]).

Irisa

Supervisory Control of Structured Discrete Event Systems 25

[7] M.H. deQueiroz and J.E.R. Cury. Synthesis and implementation of local modular supervisory control for
a manufacturing cell. In Proceedings of the 6th International Workshop on Discrete Event Systems, pages
377–382, October 2002.

[8] B. Gaudin. Optimal control of hierarchical finite state machines. Master’s thesis, University of rennes I,
2001. (In French).

[9] B. Gaudin and H. Marchand. Modular supervisory control of asynchronous and hierarchical finite state
machines. In European Control Conference, ECC 2003, Cambridge, UK, September 2003.

[10] K. Åkesson, Flordal, and M. Fabian. Exploiting modularity for synthesis and verification of supervisors.
In Proc. of the IFAC, barcelona, Spain, July 2002.

[11] B. H. Krogh. Supervisory control of Petri nets. In Belgian-French-Netherlands’ Summer School on
Discrete Event Systems, June 1993.

[12] R. Kumar and V. Garg. Optimal supervisory control of discrete event dynamical systems. SIAM Journal
of Control and Optimization, 33(2):419–439, March 1995.

[13] F. Lin and W.M. Wonham. Decentralized control and coordination of discrete-event systems with partial
observation. IEEE Transactions of Automatic Control, 35(12):1330–1337, December 1990.

[14] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of discrete-event controllers based
on the signal environment. Discrete Event Dynamic System : Theory and Applications, 10(4):347–368,
October 2000.

[15] H. Marchand and B. Gaudin. Supervisory control problems of hierarchical finite state machines. In 41th
IEEE Conference on Decision and Control, Las Vegas, USA, December 2002.

[16] K. M. Passino and P. J. Antsaklis. On the optimal control of discrete event systems. In Proc. of 28th Conf.
Decision and Control, pages 2713–2718, Tampa, Floride, December 1989.

[17] P. J. Ramadge and W. M. Wonham. Modular feedback logic for discrete event systems. SIAM J. Control
Optim., 25(5):1202–1218, September 1987.

[18] P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings of the IEEE;
Special issue on Dynamics of Discrete Event Systems, 77(1):81–98, 1989.

[19] R. Sengupta and S. Lafortune. A deterministic optimal control theory for discrete event systems: Compu-
tational results. Technical Report n� CGR-93-16, Control Group, College of Engineering, University of
Michigan, USA, December 1993.

[20] R. Sengupta and S. Lafortune. An optimal control theory for discrete event systems. SIAM Journal on
Control and Optimization, 36(2), March 1998.

[21] E. Tronci. Optimal state supervisory control. In Proc. of �th IEEE conf. on Decision and Control, Kobe,
Japon, December 1996.

[22] T. Ushio. On controllable predicates and languages in discrete-event systems. In Proc. of the ��th Con-
ference on Decision and Control, pages 123–124, Tampa, Floride, December 1989.

[23] Y. Willner and M. Heymann. Supervisory control of concurrent discrete-event systems. International
Journal of Control, 54(5):1143–1169, 1991.

[24] W. M. Wonham. Notes on control of discrete-event systems. Technical Report ECE 1636F/1637S, De-
partment of Electrical and Computer EngineeringUnivertsity of Toronto, 2002.

PI n1569

26 B. Gaudin, H. Marchand

[25] W. M. Wonham and P. J. Ramadge. Modular supervisory control of discrete event systems. Mathematics
of Control Signals and Systems, 1:13–30, 1988.

[26] T. Yoo and S. Lafortune. A general architecture for decentralized supervisory control of discrete-event
systems. In Proc of 5th Workshop on Discrete Event Systems, WODES 2000, Ghent, Belgium, August
2000.

[27] Z.H. Zhang andW.M.Wonham. Stct: An efficient algorithm for supervisory control design. In Symposium
on Supervisory Control of Discrete Event Systems (SCODES2001), Paris (France), July 2001.

Irisa

Supervisory Control of Structured Discrete Event Systems 27

Contents

1 Introduction 3

2 Preliminaries 5
2.1 The basic model. 5
2.2 Review of the Supervisory Control Problem . 6

3 Control of Structured Finite States Machines 8
3.1 The model and the SACP presentation . 8

The State Avoidance Control Problem (SACP) presentation. 8
3.2 SACP for product systems: the case �s � � . 10
3.3 SACP for Concurrent Systems: the case �s �� � . 14

3.3.1 Local forbidden and border sets . 15
3.3.2 Global Forbidden and border Sets . 16
3.3.3 Supervisor Computation . 18

General Case. 20

4 Conclusion 21

A Optimal control of Product Systems 21
A.1 The Optimal Control Problem. 22
A.2 The optimal control of product systems . 23

PI n1569

