
I  
 R

   I
   S

   A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U  B  L  I  C  A  T  I  O  N
I  N  T  E  R  N  E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1279

SYMBOLIC ABSTRACTIONS OF AUTOMATA AND THEIR
APPLICATION TO THE SUPERVISORY CONTROL PROBLEM

S. PINCHINAT, H. MARCHAND, M. LE BORGNE





p
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

Symbolic Abstractions of Automata and their application to the
Supervisory Control Problem

S� Pinchinat� H� Marchand� M� Le Borgne

Th�eme � � R�eseaux et syst�emes
Projet EP�ATR

Publication interne n���	
 � Novembre �


 � �
 pages

Abstract� In this report� we describe the design of abstraction methods based on symbolic
techniques� classical abstraction by state fusion has been considered we present a general method
to abstract automata on the basis of a state fusion criterion� derived from eg equivalence relations
�such as bisimulation�� partitions�  We also introduced other kinds of abstraction� falling into the
category of abstraction by restriction� in particular� we studied the use of the controller synthesis
methodology to achieve the restriction synthesis The methods rely on symbolic representation of the
labeled transition system� namely the Intensional Labeled Transition System �ILTS� It is a behavioral
model for Discrete event systems based on polynomial approach� that has e�ective applications for
the analysis of Signal programs We �nally apply this methodology to solve the Supervisory Control
Problem
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Abstractions symboliques d�automates et son application au
probl�eme de la synth�ese de contr�oleurs�

R�esum�e � Nous pr�esentons diverses m�ethodes d�abstraction bas�ees sur des techniques symboliques
Nous avons d�e�ni une m�ethode g�en�erale permettant d�abstraire un automate sur la base d�un crit�ere de
fusion d��etats� d�eriv�e par exemple de relations d��equivalence �eg bisimulation�� de partitions� etc Nous
avons �egalement introduit d�autres types d�abstraction comme par exemple l�abstraction par restric�
tion En particulier� nous avons regard�e comment les techniques de synth�ese de contr�oleurs pouvaient
�etre utilis�ees dans cette optique L�approche est bas�ee sur des mod�eles comportementaux intention�
nels �encore appel�es symboliques ou implicites�� obtenus par abstraction bool�eenne de sp�eci�cations
en langage Signal Finalement� nous avons montr�e comment appliquer les techniques d�abstraction
par fusion au probl�eme de la synth�ese de contr�oleur

Mots cl�es � Syst�emes de transitions intentionnels� m�ethodes polynomiales� bisimulation symbolique�
r�eduction de mod�eles� BDD� synth�ese de contr�oleurs



Symbolic Abstractions of Automata �

� Introduction

In ���� ���� we presented Implicit Labeled Transition Systems �ILTS� as intermediate models for dis�
crete event systems We have studied operations of parallel composition and event hiding� as well
as an equivalence criterion based on strong bisimulation semantics� namely the equivalence called
symbolic bisimulation The aim of the work is to rely on intensional descriptions of the systems for
symbolic abstractions purposes� based on behavioral equivalences The intensional approach we pro�
pose has the main advantage to remain at an interesting level of abstraction to handle sets �of states�
of events� in which algorithms and properties can entirely be expressed� thus providing us with a
high level of expressiveness This abstract level avoids us to bother with a particular choice of sets
implementation� such as Binary Decision Diagrams �BDDs�� even if all operations are actually based
on this representation for sets Moreover� the intensional formalism is completely compatible with the
symbolic techniques� since intensionally described sets can afterwards be implemented by any kind of
methods� eg decision diagrams However� other tools with various implementations for sets might
be considered using the same high level framework �eg Mathematica� Maple�

In this report� we achieved the design of abstraction methods based on symbolic techniques� classical
abstraction by state fusion has been considered �with associated equivalence relation computation�
We also introduced other kinds of abstraction� falling into the category of abstraction by restriction�
in particular� we studied the use of the controller synthesis methodology to achieve the restriction
synthesis

� Abstraction by state fusion

The principles of abstraction by state fusion is classical � super states are obtained by fusionning
concrete states and transitions are naturally lifted to super states For this kind of abstrac�
tion� compositionality is trivial In this setting� we propose a family of algorithms to build
the abstracted system� in the symbolic�intensional philosophy More precisely� we present a
general method to abstract automata on the basis of a state fusion criterion� derived from eg
equivalence relations �such as bisimulation�� partitions� 

The approach has the advantage to deliver the abstracted model still in an intensional style�
whereas in classical approaches symbolic models might become explicit when submitted to reduc�
tion However� the state fusion computation might still have some explicit aspects features when
derived from equivalence relations � we cannot yet avoid the equivalence classes enumeration�
during which the reduced model is built �on the �y� Our choice of equivalence relations mainly
focuses on the computation of greatest bisimulations �strong� but also weak�delay�branching��
to ensure behavioral properties preservation However� any kind of relations larger than the
bisimulations can be considered �in particular� partitions� general relations�� provided the user
takes care of the correction of its abstraction�

All these algorithms � strong�weak�delay�branching bisimulations� reduced model computa�
tion�� have been implemented in the Sigali tool box These new functionalities of Sigali
are of high interest since the Signal language is used in a lot of areas �controller synthe�
sis ���� ����� robotics ��
��� where models equivalence checking is crucial Indeed� using re�
duction techniques� we hope for dealing with smaller models� then improving the e�ciency of
veri�cation�synthesis stage

� Abstraction by restriction

This abstraction aims to simplify the model by disallowing some behaviors A naive approach
would consist in modifying the structure of the automata by removing either a set of states or
a set of events The corresponding set of states could possibly be induced by a property �eg
invariant property�� Also� observing automata can be composed with the original one in order
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to get more subtle restrictions of the behaviors Both techniques have been considered� and for
the latter one� we have explored particular kind of restrictions � as in the control theory world
����� the status of events is twofold Some events� called uncontrollable� cannot be prevented
from occurring �eg think of an open system in an environment�� whereas the others� though
controllable can be disabled In this new framework� the abstraction by restriction needs being
re�ned� and falls into the controller synthesis issues by adding constraints to the initial system
�by means of new boolean�polynomial equations�� called the controller

Moreover� based on symbolic bisimulation techniques� we also present methods for solving the
classical Supervisory Control Problem �SCP� ��
�� using algorithms based on bisimulation techniques
��� �rst presented the relations between bisimulation and controllability and provides algorithms for
solving the SCP We show how to solve the same problem using Intentional Labeled Transition System
�ILTS� as model for the plant The approach� based on algebraic transformations relying on BDD
techniques� leads to more e�cient algorithms

The report is organized as follows� Section � recalls the basic de�nition of the Intensionally Labeled
Transition Systems �ILTS	 framework On the basis of those models� we then propose� in Section ��
symbolic algorithms which compute the reduced system according to a state fusion criterion as well
as bisimulation relations Section � is devoted to the abstraction by restriction presentation by means
of restriction synthesis methodology The application of these techniques to the supervisory control
problem is �nally presented in Section �

� The Intentional Labeled Transition Systems �ILTS	

��� The Mathematical Framework

In the following� we write Z�pZ for the �nite �eld f�� �� � � � � p � �g� wehre p is a prime number Let
Z be a �nite set of k distinct variables Z�� ���� Zk� and similarly for X� Y � etc �note that in the sequel
X �resp Y � will generally denote the set of state variables �resp event variables�� The ring� of the
polynomials in the variables Z  �Z�� � � � Zl� with coe�cients in Z�pZ will be denoted by Z�pZ�Z�
Given an element of Z�pZ�Z�� P �Z�� Z�� � � � � Zk� �shortly P �Z��� we associate its set of solutions
Sol�P � � �Z�pZ�

m�

Sol�P �
def
 f�z�� ���� zk� � �Z�pZ�

kjP �z�� ���� zk�  �g ���

It is worthwhile noting that in Z�pZ�Z�� Z
p
� � Z�� ���� Z

p
k � Zk evaluate to zero Then for any P �Z� �

Z�pZ�Z�� one has Sol�P �  Sol�P ! �Zp
i � Zi�� A natural abstraction modulo ��equivalence over

polynomials� where P� � P� means Sol�P��  Sol�P�� We then introduce the quotient ring of
polynomial functions A�Z�  Z�pZ�Z���Zp�Z�� where all polynomials Z

p
i � Zi are identi�ed to zero�

written for short Zp�Z  � A�Z� can be regarded as the set of polynomial functions with coe�cients
in Z�pZ for which the degree in each variable is lower than �p � �� This will be very useful for
algorithmic purposes ��� showed how to de�ne a representative of Sol�P �� ie of each ��equivalence
class� called the canonical generator

Lemma � ��� Given a polynomial P � Z�pZ�Z�� there exists a canonical generator of �P �� �

Our techniques will rely on the following�

Property � For all P�� P�� P � Z�pZ�Z�
�A commutative ring R is a set of elements and two operations� � and 	� both are commutative� associative� dis


tributive and closed in R� � and 	 have identity elements� � and � respectively� For every element a � R there exists an
element b � R such that a� b  �� i�e� � has an inverse�
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Symbolic Abstractions of Automata �

� Sol�P�� � Sol�P�� whenever ��� P p��
� � � P� � ��

� Sol�P�� � Sol�P��  Sol�P� 	 P��� where P� 	 P�
def
 �P p��

� ! P p��
� �p��

� Sol�P�� 
 Sol�P��  Sol�P� � P��

� �Z�pZ�
m n Sol�P �  Sol��� P p���� �

Notations� In the following� we shall use a couple of shortcuts which �t the intuition one has about
sets operations�

� P  �� P p�� So Sol�P �  �Z�pZ�
m n Sol�P �

� P� � P� will denote the set fz � Z�pZ
kjP��z�  �� P��z�  �g It is equal to P� � P�

Finally� we introduce the existential
universal abstractions �or quanti�cations� over polynomials
wrt some variables Let P � Z�pZ�Z�� we shall write �ZiP for the polynomial

�ZiP
def
 P jZi�� � P jZi�� � � � � � P jZi�p� ���

where P jZi�v is P obtained by instantiating any occurrence of variable Zi by value v Also when
"Z  Z is some fZi� � ���� Zirg we write � "ZP for �Zi� ����ZirP  Also it is possible to de�ne a dual
variable abstraction over polynomials� based on universal quanti�cator� �ZiP is computed as

�ZiP
def
 P jZi�� 	 P jZi�� 	 � � �	 P jZi�p� ���

which solutions are elements of the form �z�� ���� zi��� zi��� ���� zk� st �zi� �z�� ���� zi��� zi� zi��� ���� zk� �
Sol�P �

Polynomial Implementation� it turns out that the best known implementation �for memory and
computation performance� of polynomials over �nite �eld �ie Z�pZ� is based on their decomposition
according to the Lagrange polynomials� leading to p�ary decision diagrams data structures A classical
instance of this approach is the well�known Shannon decomposition for the case p  �� with associated
Binary Decision Diagrams �BDD� for the boolean functions �#� We here present the case of p  ��
Polynomials are then encoded by a Ternary Decision Diagrams �TDD� ��#�� a slight extension of BDD
The TDD are the actual implementation of the polynomial in our formal calculus system Sigali �see
Annex A�
In the quotient ring A�Z�  Z��Z�Z���Z��Z�� for each variable Zi� let us de�ne the three polyno�

mial functions� e�i  �Z�
i � Zi� e

�
i  �Z�

i ! Zi� e
�
i  �� Z�

i 

Proposition � Each P �Z� � A�Z� can be decomposed in a unique way as P �Z�  e��P�!e
�
�P�!e

�
�P��

where polynomials P�� P�� P� have the following form� P�  P ��� Z�� ��� Zn�� P�  P ���� Z�� ��� Zn��
P�  P ��� Z�� ��� Zn� �� �

We can then decompose all polynomial functions using the basis of monomials e��� � � � e�nn  Hence� given
a polynomial function P in A�Z�� and an order Z� � Z� � � � � � Zn on the variables� an h�expression
of P is either P �Z�  c�e

�
i ! c�e

�
i ! c�e

�
i where ci � Z��Z� or P �Z�  e�iP� ! e�iP� ! e�iP� where

the Pi are h�expressions with variables greater than Zi An h�expression may be pictured as a ternary
tree as shown by Figure ��� through an example

PI n�����
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Figure �� TDD representation of P �Z�� Z��  Z�
�Z� ! Z�

�

��� Intensional transition system model

De	nition � An m�dimensional intensionally Labeled Transition System �or m�iLTS� is a structure
T  �Q�Y���� where Q is a set of states� Y is a set of �m variables Y�� ���� Ym� and �� Q �
Z�pZ�Y ��Q� Each transition is labeled by a polynomial over the set Y � �

We write q
P �Y �
� q� �or simply q

P
� q��� instead of �q� P �Y �� q�� �� Then� iLTS can be understood as

an �intensional� representation of classical LTSs� where the labels are tuples in �Z�pZ�
m� each arrow

of the iLTS labeled by P �Y � intensionally represents as many arrows labeled by some y � Sol�P �Y ��
In the sequel� we shall call Ext�T � the corresponding �extensional� Labeled Transition System �LTS�

De	nition 
 �Parallel composition of iLTS� Let T�  �Q�� Y���� and T�  �Q�� U���� be two
iLTSs with possible common variables between Y and U � The parallel composition of T� and T��
written T� j T�� is �Q� �Q�� Y 
 U��� with

�q�� q��
P��Y ��P��U�

� �q��� q
�
�� whenever

��
� q�

P��Y �
�� q�� in T�

q�
P��U�
�� q�� in T� �

Hiding events consists in abstracting from components of the label It helps in internalizing some
communications between the composed systems that are not relevant to observe in the behavior

De	nition  �Event hiding� Let T  �Q�Y��� be an m�iLTS� and Yi � Y � We de�ne the �m����

iLTS �T n fYig� by �Q�Y n fYig��nfYig� where q�
�YiP� q� in T n fYig i� q�

P
� q� in T � This de�nition

can be generalized to sets "Y � Y � �

Intensional approach for labels o�ers a �compact� way to talk about sets of transitions in the system
However� we would like to reinforce this method in such a way that the whole system� and not only
its sets of labels� can be itself described intensionally

De	nition � An �n�m��dimensional Intensional Labeled Transition System �or ILTS� is a structure
S  �X�X �� Y�T � where X  fX�� ����Xng and X �  fX �

�� ���� X
�
ng are two sets of �source and target�

states variables� Y  fY�� ���� Ymg is a set of labels variables and T �X�Y�X �� � Z�pZ�X�Y�X
�� is a

polynomial describing the legal transitions� �

Given some source state x � �Z�pZ�
n and some target state x� � �Z�pZ�

n� the set Sol�T �x� Y� x���
denotes all the possible labels of transitions from state x to state x� When states are viewed ex�
tensionally� we retrieve the iLTS of in Section ��� which in turn can be interpreted as a classical
LTS

Irisa
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Remark � Actually� ILTS are also known under the name of �non deterministic� Polynomial
Dynamical Systems ���� which are usually described by a set of polynomial equations �here over the
�eld Z�pZ	 of the form�

�
Init�X�  �
T �X�Y�X ��  �

���

where Init�X�  � describes the set of initial states of the system� Note that an ILST can be obtain for
�free �provided we have speci�ed the system in the high�level language� namely the Signal language
���� ��	� �

Finally� De�nition � and � can be rephrased at the full intensional level Hence� the Event hiding�
say over variable Yi � Y � is obtained by considering the system

S n fYig
def
 �X�X �� Y n fYig��YiT �X�Y�X

��� ���

and the Parallel composition� written S� j S� can be de�ned by

S� j S�
def
 �X� 
X��X �� 
X ��� Y� T� 	 T�� �#�

Note that one should take care of the variable names to represent states when parallel composition is
considered In order to match the De�nition �� we always assume that the two systems to be composed
have distinct state variable sets


 Abstraction by state fusion

This section is devoted to the computation of a reduced system according to a fusion state criterion
Fisrt� we assume that the criterion is given by some symbolic canonical surjection In this case�
reducing the system is straightforward Next� we explore other means such as equivalence relation
between states �eg bisimulation�� partitions� 

��� System reduction w�r�t� a fusion criterion

Providing we are given a canonical surjection �see De�nition �� from the set of states to a smaller
set of states �ie represented with less variables�� we recall how one can de�ne the associated quotient
ILTS over the latter set of variables This can be done symbolically� as long as the surjection is itself
symbolically expressed$ this leads us to consider a relation rather than a mapping Due to the aim of
the Section �� we shall use the terminology of �state fusion criterion� instead of the far too general
expression �canonical surjection�

De	nition � We assume given an �n�m��ILTS S  �X�X �� Y� I�T � where X  fX�� ����Xng� We
say that � is a fusion criterion in S w�r�t� the set of �l fresh variables Z  fZ�� ���� Zlg whenever�

�� l � n�

�� � � Z�pZ�X�Z�� and

�� for all x � �Z��Z�
n� ��x�Z�  � has a solution and it is unique�

By De�nition �� Sol��� � �Z�pZ
n�� �Z�pZ

l�� and because of clause �� Sol��� can be understood as a

mapping from �Z�pZ�
n to �Z�pZ�

l Now� it is possible to de�ne a transition system whose states are

obtained by gluing those x�s mapped onto the same element of �Z�pZ�
l

PI n�����
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Assuming a state fusion criterion � exists� we can de�ne the reduced ILTS of S wrt � by

S�
def
 �Z�Z �� Y�T��� where

T��Z� Y� Z
��  �X�X ����X�Z�	 T �X�Y�X ��	 ��X �� Z ��� �	�

Informally� T��z� y� z
��  � whenever there exists one x in the class encoded by its representative z

and one x� in the class encoded by its representative z� such that x
y
� x� holds in the original system

S
Note that when initial states are taken into account in the system� thus de�ned by some polynomial

I�X�� the corresponding I ��Z� in the reduced model can be computed by �

I ��Z�  �Xf��X�Z� 	 I�X�g� ���

In general� S� will have more behaviors than S� but when the state fusion criterion � is derived
from a bisimulation equivalence� then S� preserves exactly the same behavioral properties than S
The next section explains how a state fusion criterion can be computed according to a given symbolic
state equivalence

��� System reduction modulo an equivalence relation

We assume given an �n�m��ILTS S  �X�X �� Y� I� T � and an equivalence relation � over the states of
Ext�S�� which can be symbolically represented by some R � Z�pZ�X�Xd� Here Xd  fXd� � ����Xdng is
a set of n variables aiming to represent copies of the variables Xi of set X� then� two states �x� xd� � �
whenever the expression R�x� xd�  �
Now the natural state fusion criterion � associated to � we would like to compute would satisfy

the following�

� it is a fusion criterion�

� �x� xd� � � i� the unique solution of ��x�Z�  � is equal to the unique solution of ��xd� Z�  �

In other words� for a given x� the solution of ��x�Z�  � represents �x�R� ie the R�class of x

The state fusion criterion construction�
Our construction of the state fusion criterion � is not entirely made symbolically To our knowledge�

no algorithm avoiding the equivalence classes enumeration has been proposed
Assuming the number of R�classes is k� and pr�� � k � pr �for some r � ��� we show how to

compute a TDD� say %� over variables Z  fZ�� ���� Zrg and X  fX�� ����Xng which denotes the state
fusion criterion � associated to R To do so� we directly work on the data structures� namely the
p�Decision Diagrams �p�DD� However� it might be possible to adapt without di�culty this algorithm
to any kind of data structures� without avoiding the enumerative feature of the method

Intuitively� we start from the p�DD representation of relation R�X�Xd� � �Z�pZ�
n��Z�pZ�

n� with
the particular reorder of the variables Xi � Xdj � �i� j Call � this p�DD

Property 
 At the end of every path x �over variables X�s	 in �� the remaining structure is a p�DD
in variables Xd�s and characterizes the R�class of x� �

Therefore� a traversal of all paths x in � leads us to compute �on the �y� the number of R�classes�
namely k $ also� during this enumerative phase �in the worse case we explore the whole state space��
we incrementally achieve the computation of % by introducing one by one the r variables Zi when
necessary

Irisa
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Remark 
 We have experimented� as expected� the fact that the reduction algorithm requirement for
the state variables precedence Xi � Xdj has to be carefully implemented � for example� implementing
� by the trivial order X� � X� � ��� � Xd� � Xd� � ��� in the structure generally leads to a blow
up� Therefore� we have considered an algorithm delivering a total order �tot�� based on a �blocks
reordering � �tot is a good ordering over the �variable blocks fX�� ���Xng and fXd� � ���Xdng�

The idea of the algorithm is the following� from the root of � �variable X or the leaf � if R is
trivial�� we recursively go down along a path until a variable Xdj is reached Call �

� the remaining
sub�tdd below Xdj in � By Property �� �

� is an R�class Provided we know this R�class has not been
encountered yet� we attach � to the structure % as follows� either an available hanging branch in % is
available In this case �� is plugged at this available place Otherwise� we introduce a fresh variable
Zi at the top of % and wait for the complete p�DD in the variables fZ�� ���� Zi��g containg �

� to be
achieved� then plug it as a second son of Zi

Z3

Z2

Z1Z1 Z1

Z1

Z2

C1 C2 C3 C4 C5 C6 C7 C8 C9
Z1

Z1
C10 C11 C12

C13

C16

%�

%�

&� &� &�

Figure �� Construction of ��X�Z�

The reader can refer to Figure �� for the case p  � We shall say �TDD� �for Ternary Decision
Diagram� instead of ��DD In this example� already built TDDs are drawn as triangles with solid bold
lines� whereas not already built ones are drawn in dashed bold lines
Assume we already have completed a TDD containing already treated classes� say from C� upto

C� $ call %� this structure Suppose now that a new class C�	 is encountered Then a new variable
Z� needs beeing introduced at the top %� and awaits for other sub�structures to be complete before
plugging them underneath For example� after structures &� �containing C�	 but also C�� and C����
&� and &� have been completed� then %� can be completed and then plugged under Z�
The �nal stage of the algorithm is to run a completion for the remaining non allocated branches

�which exists when the number of classes k is not of the form pr� by pointing them to the leaf � In
our example� suppose there is only �# R�classes� ie the last class is C�
� then the remaining hanging
branches of structure &� will point to leaf � as show in Figure �

Remark  We can also handle relations S�X��X�� that are not equivalence relations �e�g� not re�ex�
ive� not symmetric� ���	 by closing S such that it becomes an equivalence �using a classical �x point
computation in the same spirit as the one described in ���		� Next algorithms described below can be
applied� �
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1 1

1

Z1 Z1 Z1

C16

Z2Z2

Z3

Figure �� Final stage of the construction

��� Particular cases of equivalences� some bisimulations

Bisimulation relations ��	� ��� ��� ��� are used to compare labeled transition systems �LTS� from the
behavioral point of view� a bisimulation equivalence between states of the systems enables to perform
interesting state fusion abstractions� in terms of the properties that are preserved

��� The strong bisimulation case

As we aim to develop symbolic methods� we �rst explain how the classical strong bisimulation ���� �	�
can be handled symbolically The de�nition is inspired from De Simone�s symbolic bisimulation over
reactive automata �	� We �rst de�ne the symbolic bisimulation over iLTS We then give a symbolic
algorithm in the ILTS framework

De	nition � �The symbolic bisimulation� Let T�  �Q�� Y�I����� and T�  �Q�� Y�I����� be
two iLTSs� A symbolic bisimulation of T� and T� is a binary relation R � Q��Q� s�t� q�Rq� whenever

�� for all q�
P
�� q

�
� there exists a �nite set of transitions �q�

Pi�� q
i
��i�I with

�a	 �P � 'i�IPi� � �� and

�b	 q��Rq
i
�� for all i � I� and

�� vice versa� �

De�nition # can be intuitively explained as follows� this equivalence aims to capture exactly classic
strong bisimulation ���� �	� over the underlying explicit models However� it takes advantage of the
intensional feature by imposing that� for the �rst system� each outgoing transition of a given set
�represented intensionally by P � can be mimicked in the second system� ie belongs to at least one
outgoing �set� of transitions �one of the Sol�Pi��s� Point �a� of De�nition # can be rephrased as
Sol�P � �

S
i Sol�Pi� �see Property ��� then retrieving the original de�nition of De Simone �	�

Theorem � ��
� �Compositionality� Symbolic bisimulation is a congruence w�r�t� parallel compo�
sition and events hiding� �

Since bisimulations are closed under arbitrary unions� we can talk about the greatest bisimulation�
written � in the following� and say that �q� and q� are bisimilar� whenever q��q�

From the expressiveness point of view� symbolic bisimulation is an alternative view of strong
bisimulation �see De�nition 	� when intensional models are considered �see Theorem �� Also� symbolic
bisimulation over iLTS can be expressed in terms of nested �projective� equivalences in the same spirit
of ��#� �	�
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De	nition � �
�� 
�� Given two LTSs t�  �Q��(�I����� and t�  �Q��(�I������ a strong
bisimulation of t� and t� is a binary relation � � Q� �Q� s�t� �q�� q�� � � whenever

�� for all � � (� for all transition q�
�
�� q

�
� there exists a state q�� s�t� q�

�
�� q

�
� and �q��� q

�
�� � ��

�� vice�versa �

De	nition � �Symbolic projective equivalences� Let T�  �Q�� Y���� and T�  �Q�� Y���� be
two iLTSs� We de�ne a family of relations �i � Q� �Q� by induction over j � N�

� �	
def
 Q� �Q��

� q��j�� q� i�

�� for all q�
P
� q��� there exists a �nite set of transitions �q�

Pi�� q
i
��i�I with

�a	 �P � 'i�IPi� � �� and

�b	 q���jq
i
�� for all i � I

�� and reciprocally� �

We can now state the following theorem�

Theorem 
 �Expressiveness�

�� ���� Let T� and T� be two iLTSs� Then there exists a symbolic bisimulation between T� and T�
i� there exists a strong bisimulation between Ext�T�� and Ext�T���

�� Let T� and T� be two iLTS� Then for all q� � Q� and q� � Q�� q��q� if and only if q�
T
n�N �nq�

Proof � The proof of ��	 can be found in ���� Point ��	 is due to the fact that symbolic bisimulation
over �nite iLTS �therefore �nitely branching� is the limit of nested projective equivalences� in the same
spirit of ��#� for strong bisimulation We omit the proof �

Theorem � gives an iterative algorithm to compute symbolic bisimulation Assume given two ILTSs
SU  �U�U �� Y� IU �TU � and SV  �V� V �� Y� IV � TV � Algorithm � computes the greatest symbolic
bisimulation of SU and SV 

Algorithm �

�
�������������

�� De�ne the polynomial R	�U� V �
def
 ��

�� Compute iteratively until stabilization �Rj�U� V ��j de�ned by�

Rj���U� V � is the canonical generator of the ��class of��
�

Rj�U� V �
	 �U ��Y ��TU �U� Y� U

��� �V ��TV �V� Y� V
��	Rj�U

�� V ����
	 �V ��Y �TV �V� Y� V

��� �U ��TU �U� Y� U
��	Rj�U

�� V ����

�� Call R�U� V � the result�

Proposition 
 For all j � N� Rj�u� v�  � if and only if u�jv�

Proof � �� We use an inductive reasoning over j The propsition clearly holds for the case j  �

Now� assume u and v are st Rj���u� v�  � and let u
P
� u� be a �symbolic� transition in SU  Clearly

P �Y � � TU�u� Y� u
�� The polynomial Q�Y �

def
 �v�TV �v� Y� v

�� 	 Rj�u
�� v�� which is computed in the
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�� S� Pinchinat� H� Marchand� M� Le Borgne

algorithm exactly captures the set fyj�v
Pi� v�i with Pi�y�  � and additionally u

��jv
�
i g By de�nition

of Rj��� the y�s in Sol�TU�u� Y� u
���� ie in Sol�P �Y ��� are also requested to be solutions of

S
i Sol�Pi��

which entails u�j��v
�� We can use again an induction over j and an argument similar to the proof of Theorem � �

We omit it �

Theorem  Algorithm � terminates and at the end� R�u� v�  � if and only if u�v�

Proof � Termination is guaranteed by the fact that relations Rj are �nite and nested The second
statement is a corollary of Proposition � and Theorem � �

��
 The 	�bisimulation case

In general� the behavior of a system is de�ned according to an observability criterion of its moves
Classically� the alphabet of actions is enriched with a new element� often written 	 � to represent all
invisible transitions and to consider appropriate bisimulations in this framework� such as 	 �bisimulation
�also known as the observational equivalence or weak bisimulation� ��	� ���� but also variants like
�delay� or �branching� bisimulations ���� ���
Assume given an alphabet of actions (�  ( 
 f	g� with 	 �� ( Symbol 
 will denote a typical

element of (� � whereas symbols a� b will be kept for elements of ( Let t  �Q�(� � I��� be a LTS

over (�  We introduce the observational transition relation  � � Q� (� �Q de�ned by q
�
 �q� if�

case 
 � 	 � there exists a sequence of the form q  q	
�
� q�

�
� ��

�
� qk

�
� qk��

�
� ��

�
� qn  q�

case 
  	 � there exists a sequence of the form q  q	
�
� q�

�
� ��

�
� qk with k � �

Let us now de�ne the 	 �bisimulation It only refers to observable moves of the systems In the
extensional framework� it is de�ned by�

De	nition � �	�bisimulation� �
�� 
�� A 	 �bisimulation between two LTSs t�  �Q��(�I�����
and t�  �Q��(� �I����� is a binary relation R � Q� �Q� s�t� �q�� q�� � R �or equivalently written
q�Rq�	 whenever

�� for all 
 � (� � for all q
�
� � Q�� q�

�
 �q��� there exist a state q�� � X� s�t� q�

�
 �q�� and q��Rq

�
��

�� vice�versa �

The following property makes the links between the 	 �bisimulation and the strong bisimulation�

Property  The 	 �bisimulation and the strong bisimulation de�nitions are likewise but the former
exploits relation  � instead of �� �

Let S  �X�X �� Y�T � be an �n�m��ILTS In order to characterize unobservable transitions in S we
assume given a particular polynomial� written P� �Y � � Z�pZ�Y � Therefore� Ext�S� is a LTS over

alphabet of visible actions �Z�pZ�
m nSol�P� � which transitions T �x� y� x

��  � mean x
y
� x� whenever

P� �y� � �� x
�
� x� otherwise In other words� silent moves in Ext�S�� ie states x and x� st x

�
� x�

are characterized by the polynomial�

T� �X�X
��

def
 �Y T �X�Y�X ��	 P� �Y �� �
�

The polynomial T �
� � Z�pZ�X�X

�� representing the re�exive and transitive closure of the relation T�
can be computed using a standard iterative algorithm on the basis of the following��

T 	
� �X�X

��  T� �X�X
�� � Id�X�X ��

T i��
� �X�X ��  �X ���T i

� �X�X
���	 T i

� �X
���X ���

����
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where Id�X�X �� is the canonical generator of the identity relation �
Ln

i���Xi �X �
i��� The algorithm

trivialy terminates �as the computation denotes a sequence of �nite nested sets�
We can now express the symbolic representation for  ��

R� �X�Y�X
��

def
 �P� �Y �	 T �

� �X�X
��� � �P� �Y �	 �Z�Z �fT �

� �X�Z�	 T �Z� Y� Z ��	 T �
� �Z

��X ��g� ����

Proposition  x
y
 �x� in Ext�S� if and only if R� �x� y� x

��  � �

Given two ILTSs SU  �U�U
�� Y� IU � TU � and SV  �V� V

�� Y� IV � TV �� the computation of the greatest
	 �bisimulation between SU and SV reduces to the computation of the greatest strong bisimulation
between SU  �U�U �� Y� IU �R�U � and SV  �V� V �� Y� IV �R�V � �by Property �� Proposition � and
Theorem ��

�� Other kinds of bisimulations with 	

In the littterature� other kinds of bisimulations abstracting from 	 �s have been proposed Among
them� the branching bisimulation ���� enables to capture behaviors that abstract from 	 loops and
which turns out to be a congruence wrt action re�nement

De	nition �� �
� � �Branching bisimulation� Given two LTSs t�  �Q��(� ���� and t�  
�Q��(� ����� a branching bisimulation between t� et t� is a binary relation � � Q� � Q� such that
�q�� q�� � � whenever

�� For all q�
�
� q��� if 
  	 then �q��� q�� � �� otherwise there exists q��� q

��
� � Q� s�t�

�a	 q�
�
 �q��� � q

��
�

�
� q��� and

�b	 �q�� q
��
� � � �� and �q��� q

�
�� � �

�� vice�versa �

Here follows the algorithm delivering the greatest branching bisimulation of two ILTSs SU  �U�U
�� Y� TU �

and SV  �V� V
�� Y�TV �

Algorithm 
�
���������������������������

�� De�ne the polynomials R	�U� V �  ��

�� Compute T �
U�

�resp� T �
V�
	 of SU �resp� SV 	 as in previous section�

�� Compute iteratively until stabilization the sequence �Rk�U� V ��k de�ned by�

Rk���U� V � is the canonical generator of the ��class of

����������
���������

Rk�U� V �
	�U ��Y �TU �U� Y� U

��� f�P� �Y �	Rk�U
�� V ���

�P� �Y �	 �V ��V ��T �
V�
�V� V ��	 TV �V �� Y� V

��

	Rk�U� V
���	Rk�U

�� V ����g�
	�V ��Y �TV �V� Y� V

��� f�P� �Y �	Rk�V
�� U���

�P� �Y �	 �U ��U��T �
U�
�U�U ���	 TU �U�� Y� U

��

	Rk�V�U�� 	Rk�V
�� U ����g�

Call R�U� V � the result�

The algorithm above should not fear the reader as it is an immediate translation of De�nition ��� but
in a symbolic style)
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Also any other variant of bisimulation with 	 can be proposed in the same spirit We do not give
here an exhaustive list� but refer to ���� for a complete classi�cation

��� Other kinds of state fusion criterion

In this section� we explore other means to express the state fusion criterion For instance� it can be
directly derived from either a partition� or a set of atomic propositions or any equivalence relation In
these cases� the abstract model computation could be simpli�ed Nevertheless� we insist in saying that
it is up to the user to take care of the correction of the abstraction according to the kind of properties
he aims to consider

���� State Fusion induced by a partition

Let �P�� ���Pk� be a set of polynomials in A�X�� ����Xn� such that�

Sol�Pi� � Sol�Pj�  � and
	

i���		k�

Sol�Pi�  �Z�pZ�
n� ����

This set of polynomials constitute a partition of the state space of the system The idea is then to
perform a state fusion according to this partition Compare to Section ��� we somehow already have
the equivalence classes Thus� we have neither to build the equivalence relation R�X��X��� nor to
extract the equivalence classes from this relation Moreover we do not have to enforce a particular
order on the variables� As k the number of classes is already known� the number of state variables Zi
we have to introduce in order to obtain the encoding function ��Z�X� is statically determined We
then just have to read the set of polynomials �each of them representing a di�erent class� and plug
this class in the p�DD � as illustrated in Section ��

Example � Assume we want to perform the fusion of all the states that have the same value for
variable Xi �such a variable could represent a bounded counter	� Computing the set of polynomials
Pj�X�  �Xi � j�p��� j  ����p� ��� we obtain a partition of the state space� In this particular case�
the corresponding p�DDs only have � nodes� By computing � and the reduced model according to ��	�
we represent by state z of the reduced model all states x�s agreeing on variable Xi� �

From a practical point of view� the user might rather de�ne the partition according to a set of l
atomic propositions �Q�� ���Ql� that states have to agree on �see example above� Each element of the
partition� say �IJ can be computed as � for I 
 J  ����l�� I � J  ��

�IJ�X�  
M
i�I

Qi�X� 	
M
j�J

���Qp��
j �X�� ����

Once obtained the set of polynomials �IJ � we fall into the partition case� as explained previously
Finally� as �l corresponds to the maximal number of equivalent classes� we will need at most dl�logp���e
state variables Zi to de�ne the abstract model

���
 Improvement of state fusion abstraction

Because in our systems initial states are considered �with polynomial I�X��� we have re�ned the
approach by considering only reachable R�classes� ie containing reachable states Such a re�nement
makes sens only if the set of reachable states �or the orbit� has already been computed In this case� a
class is taken into account only if it contains a reachable state� with minor changes in the algorithms

�This part constitutes a bottle neck �in terms of memory� computation time�etc� of the algorithm presented in Section
���

Irisa



Symbolic Abstractions of Automata ��

Moreover� taking into account this information leads to a simple method for minimizing the number
of state variables of the model� indeed� a given ILST S  �X�X �� Y� I� T �� j X j n might have in
theory pn reachable states However� most of the time� the cardinal of the orbit� say m� is far smaller
than pn� especially when this system is obtained by synchronized product of sub�systems� even if these
sub�systems have themselves already been abstracted Therefore� it is relevant to try to decrease the
number of state variables that are needed to encode the global system
The state variable set minimization is performed by considering the identity relation� Id�X��X��  Ln
i���X�i �X�i� The algorithm to compute the fusion criterion �as in Section ��� with additional

reachability condition delivers a �reduced� model S� with less state variables� namelly at most logp�m�
Of course� reachable graphs of Ext�S�� and Ext�S� are isomorphic

� Abstraction by Restriction

This abstraction aims to simplify the model by disallowing some behaviors A naive approach would
consist in modifying the structure of the automata by removing either a set of events or a set of states

In our framework� abstraction by restriction wrt a set of events� is performed on the basis of a
polynomial A�Y �� which denotes the events y that are kept in the desired behavior �ie all transitions
labeled by the others are then removed� The abstracted system is simply obtained by intersecting
the transition relation T with the polynomial A�

T ��X�Y�X ��  T �X�Y�X ��	A�Y �� ����

In the case of an abstraction by restriction wrt a set of states O�X�� which can possibly be
deduced from a property �eg invariant property��� the idea is to intersect the transition relation of
the ILTS with this polynomial in order to consider only the states that satisfy O� The new transition
relation of the system is then inductively given by��

I	�X�  I 	O�X�
T ��X�Y�X ��  T �X�Y�X ��	O�X ��

����

Also� more general systems and restriction speci�cations�objectives can be considered� for example�
observing automata can be composed with the original one in order to get more subtle restrictions
of the behaviors Both techniques have been considered� and for the latter one� we have explored
particular kind of restrictions where the status of events is twofold � some events� called uncontrollable�
cannot be prevented from occurring �eg think of an open system in an environment�� whereas the
others� though controllable can be disabled When we restrict the behavior of the system to a given
set of states� we are possibly disabling some events that are not controllable �situation that is not
allowed in this new framework� Hence� we propose a way to re�ne the abstraction by restriction
which disables only controllable events Also� some minimality features of the restriction will be taken
into account � actually� the abstracted model will have a smaller behavior than the original one �
to ful�ll the restriction objectives � but as large as possible� otherwise� the abstracted model �doing
nothing� would correspond most of the time

The adopted principle is to over�constrain the initial system � by additional �boolean�polynomial�
equations� called the controller The resulting model� called restricted
controlled system� can be under�
stood as a parallel composition of the original system and the controller The �restriction synthesis�
process� we describe now� is borrowed from the controller synthesis methodology as carried out in
��� ���

�If the interest is to forbid some set of states F �X�� O�X� will be equal to F �X�
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��� The restriction synthesis achievement

The starting point is the following� given a model for the system and the restriction objectives� a
�controller� must be derived by various means such that the resulting behavior of the closed loop
system meets the restriction objectives The speci�cation of the system is represented by an ILTS
while the restrictions applied to the system are achieved by incorporating new algebraic equations in
the original ILTS

The model� From now on� an ILTS will be given by

S  �X�X �� Y�K� T �X�Y�K�X ��� I� ��#�

where X and X � represents the state variables$ Y and K are respectively the sets of uncontrollable
and controllable event variables Each event �y� k� contains an uncontrollable component y and a
controllable one k To distinguish the two components� the vector y is called an event and the vector
k a control  We have no direct in�uence on the y part which depends only on the state x� but we can
observe it On the other hand� we have full control over k and we can choose any value of k provided
it is admissible � k is admissible at �x� y� whenever ��X �T ��x� y� k�  �
Let us also introduce the polynomial Q de�ned over the variables X� Y� K by�

Q�X�Y�K�  �X �T �X�Y�K�X ��� ��	�

This polynomial will be called the constraint equation of S Intuitively� it denotes the set of events
�y� k� that are possible in a particular states x

The restriction policy� The behavior of an ILST S can then be restricted by �rst restricting initial
states and then by choosing suitable values for k�� k�� � � � � kn� � � � to restrict the executions Di�erent
strategies can be chosen to determine the value of the controls ki�s We will here consider restriction
policies where the value of the control k is statically computed from the value of x and y Such a
controller is called a static controller It is of the form��

C	�X�  �
C�X�Y�K�  �

����

where the equation C	�X�  � determines the restricted initial states and C�X�Y�K� describes how
to choose the controls
The restricted system is then simply given by

SR  �X�X
�� Y�K� T 	 C� I 	 C	�� ��
�

When the restricted system is in state x� and when an event y occurs� any value k such that Q�x� y� k�  
� and C�x� y� k�  � can be chosen$ ie given a state x and an event y� choosing a k such that
C�x� y� k�  � implies an evolution of the state in accordance with the restriction objective

However� not every controller �C�C	� is acceptable � �rst� the restricted system SR must have initial
states $ thus� the equations I�X�  � and C	�X�  � must have common solutions Furthermore�
events y in S must have their counterpart in SR Hence the following de�nition of an acceptable
controller�

De	nition �� An acceptable controller for S is a controller as in ���	 satisfying�

�� Sol�I� � Sol�C	� � �� and

�� for each reachable state x in SR� any event y that can occur in x for S can also occur in SR� �
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��� Some examples of restriction objectives

Here is the a non�exhaustive list of the various restriction objectives �as well as their de�nitions� for
which we are able to synthesize a controller ��� ��� ����

� The invariance of a set of states� A set of states E is invariant for an ILTS S if every
trajectory initialized in x remains in E

� The �global� reachability of a set of states� A set E is �globally	 reachable in S � if starting
from any possible state� there exists a trajectory that reaches E

� The attractivity of a set of states from another set of states� Let E and F be two set
of states Then� F is attractive for E if every trajectory initialized in E reaches F 

� The persistence of a set of states� A set of states E is persistent if it is attractive from the
initial states and if E is invariant

� The recurrence of a set of states� A set of states E is recurrent if it is visited in�nitely
often

� The invariance of a set of states ! one of the above control objectives

Finally note that some other restriction objectives� dealing with quantitative criterions can also
be considered In general� these restriction objectives are expressed as partial order relations Such
relations can� for example� be described by means of numerical cost functions �see ���� ����

Let us �rst introduce technical material� namelly �more or less� classical state predicate transform�
ers that will be use to achieve restriction synthesis

� The operator
�
pre de�ned by �

�
pre �F �  fxj�y� ��KQ��x� y�  �� �k�Q�x� y� k�  � and fx�j T �x� y� k� x��  �g � Fg ����

It is the set of states for which whatever event occurs� there exists a control which �forces� the
system to evolve in F  In terms of polynomials� we obtain�

�
pre �gF �  �Y f��KQ��X�Y �� �K�X ��T �X�Y�K�X ��	 gF �X

���g ����

� The operator pre de�ned by �

pre�F �  fxj�y��k��x�� T �x� y� k� x�� � Fg ����

A state x belongs to pre�F � whenever it has a successor which belongs to F  Its polynomial
version is given by�

pre�gF �  �Y �K�X �T �X�Y�K�X ��	 gF �X
�� ����

The rest of the section explains in detail how reachability�safety restriction objectives are treated
Proofs and details could be found in ��� ��� ���

�In ��� ��� ���� the ILST to be controlled is supposed to be deterministic �see Remark ��� However� the generalization
to non
deterministic ILTS is not di�cult�
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Restriction of S to a set of states E� Let gE be the principal generator of the set of states E
Consider now the following sequence of polynomials�


g	  gE

gi��  gi	
�
pre �gi�

����

This sequence of polynomials �gi��i�I� is converging whatever gE is� indeed� each gi denotes a �nite set�
and the sequence decreases The limit of this �x�point computation is either the constant polynomial
� and this restriction problem has no solution� or some polynomial g� with Sol�g� � � In this case�
we can state�

Theorem � �
� Let S  �X�X �� Y�K�T � I� be an ILTS and E �or equivalently gE	 be a set of states�
With the preceding notations� consider the systems of equations �where g is obtained by iterating ���		��

C	�X�  g�X�
C�X�Y�K�  �X �f�T �X�Y�K�X ��� g�X ��g

����

If C		 I �� �� then �C	� C� is acceptable for S and all reachable states of SR  �X�X
�� Y�K� T 	C� I	

C	� belong to E� Otherwise this restriction problem has no solution� �

Reachability of a set of states E� Consider the following sequence of polynomials�

g	  gE

gi��  gi�
�
pre �gi�

��#�

This sequence converges since increasing and bounded by the state space� which is �nite

Theorem � �
� Let S  �X�X �� Y�K�T � I� be an ILTS and E �or equivalently gE	 be a set of
states� Consider the system of equations as de�ned by ���	 �where g is obtained by iterating ���		�
If C	 	 I �� �� then �C	� C� is acceptable for S and ensures the �global	 reachability of E in SR  
�X�X �� Y�K�T 	 C� I 	 C	�� Otherwise this restriction problem has no solution� �

Reachability of a set of states E �gE� and invariance of F �gF �� For all set of states V � let
us denote Reach�V�E� the set of states which are origin of a trajectory leading to E and containing
only states of V  Let gV be the principal generator of V  Then the polynomial characterization of
Reach�V�E�� written Reach�gV � gE�� is obtained as the result of the following �x�point computation�

h	  gE 	 gV
hi��  hi � �gV 	 pre�hi��

��	�

This �increasing and bounded� sequence converges whatever the set V is Consider now the following
sequence of polynomials� 


g	  gF

gi��  Reach�gi 	 �
�
pre �gi�� gE��

����

Theorem � �
� Let S  �X�X �� Y�K�T � I� be an ILTS and E�F �or equivalently gE � gF 	 be two
sets of states� Consider the systems of equations as de�ned by ���	 �where g is obtained by iterating
���	� If C	 	 I �� �� then �C	� C� is acceptable and ensures both the �global	 reachability of E and
the invariance of F in SR  �X�X

�� Y�K�T 	 C� I 	 C	�� Otherwise this restriction problem has no
solution� �
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� Supervisory Control Problem using Bisimulation Techniques

In the speci�cations of real�time reactive systems��� area� many applications require high reliability and
safety Traditionally� these requirements are checked a posteriori using simulation techniques and�or
property veri�cation Control theory of discrete event systems allows to use constructive methods�
that ensure� a priori� required properties on the system behavior In this approach� the validation
phase is reduced to properties not guaranteed by the programming process There exist di�erent
theories for the control of discrete event systems since the ���s ��
� ��� Usually� the starting point
of these theories is� given a model for the system and the control objectives� a controller must be
derived by various means such that the resulting behavior of the closed loop system meets the control
objectives

In the Ramadge and Wonham theory of discrete events systems �DES� ��
�� the behaviors of discrete
event systems are modeled by in�nite sequences of events over a �nite alphabet that represents all the
possible actions of a system The plant is represented by some kind of automaton� a labeled transition
system �LTS�� that generates sequences of events �or actions� through its execution The control of
the plant is then performed by inhibiting some events in (c the set of controllable events as opposed
to the set (uc �uc stands for uncontrollable� of events that cannot be prevented from occurring

In ���� G Barret and S Lafortune solved the Supervisory Control Problem �SCP� by exploiting the
relation between a given bisimulation and the controllability of a language ��� provides algorithms
allowing the automatic synthesis of controllers according to the plant and their speci�cation based
on the computation of a greatest bisimulation of the plant and the speci�cation However� the im�
plementation of these algorithms is explicit It makes the computation of the supervisory controllers
not practical because of the size of the states space which is often too important when dealing with
realistic applications �even if the proposed algorithms are polynomial in the number of states� A con�
trario� the proposed approach provides symbolic computations� based on an implicit representation of
the plant� encoded by polynomials and at a lower level by p�nary decision diagrams �p�DD�� a slight
extension of the Binary Decision Diagrams �BDD� �#�

��� The Supervisory Control Problem

Assuming that the plant to be controlled is modeled as a Labeled Transition System �LTS� that is a
��tuple G  hX �(� x	� �i� where X is the ��nite� set of states� ( is the set of events� x	 � X is the
initial state� and � is the partial transition function from X �( to X  In the sequel� we simply write
x � G instead of x � X 

The behavior of the system is denoted by the pre�x�closed language L�G� ��
�� generated by G�
Some of the events in ( are uncontrollable� ie� their occurrence cannot be prevented by a controller�
while the others are controllable In this regard� ( is partitioned as (  (c
(uc� where (c represents
the set of controllable events and (uc the set of uncontrollable events

����� Basic Results

We now present some preliminaries for the Supervisory Control Problem that can be found in ��
�
We �rst recall the de�nition of controllability �

De	nition �
 Let H and G be two LTSs� s�t� L�H� � L�G�� L�H� is said to be controllable w�r�t�
L�G� and (uc if L�H�(uc � L�G� � L�H�� �

�In the following� all the languages will be assumed to be pre�x
closed�
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In other words� L�H� is conditionally invariant wrt L�G� under events of (uc ��
�
In the Ramadge and Wonham framework� a supervisor is given by a function S � L�G� � f �

��$ (uc � g� delivering the set of actions that are allowed in G by the control after a trajectory
s � L�G� Write S�G for the closed loop system� consisting of the initial plant G controlled by the
supervisor S

Supervisory Control Problem ��
�
Given a plant modeled by an LTS G  hX �(� x	� �i� (uc � ( and a desired language K � L�G��

The problem is to build a supervisor S such that L�S�G� � K is controllable� and for any other
supervisor S� s�t� L�S��G� � K� L�S��G� � L�S�G��
In the sequel� we will be more interested in the computation of S�G rather than in the computation

of the supervisor S itself� since one can easily extract S from S�G

The solution of the SCP is classically called the most permissive solution � using K	 to denote the
supremal controllable sub�language of K wrt L�G� and (uc� we have L�S�G�  K	 �see ��
�� The
standard algorithm used to compute this supremal language is an iterative algorithm starting with the
automaton product H � G� with L�H�  K The iterative procedure consists of �i� removing states
that violate the controllability condition� and �ii� removing states that are not reachable ��
�

De	nition � Assume given a plant G  hX �(� x	� �i and let a desired behavior be modeled by the
LTS H� We denote by �H � G�	 the LST obtained by using the standard algorithm ���� to compute
the supremal controllable sub�language of L�H� w�r�t� L�G� and (uc� Hence L�H�

	  L��H �G�	�
�

We now present another algorithm ��� relying on a relation between the controllability and a bisimu�
lation equivalence approach

����
 Solution of the SCP using Bisimulation

We present now the (��bisimulation� where (� is some subset of ( $ it reduces to strong bisimulation
���� when (�  (

De	nition �� ��� �� Given two LTSs H  hXH �(� xH�
� �Hi and G  hXG�(� xG�

� �Gi� and (
� � (�

A (��bisimulation of H and G is a binary relation � � XH �XG s�t� �xH � xG� � � whenever

�� for all � � (�� for all transition x�H  �H�xH � �� there exists a state x�G s�t� x�G  �G�xG� �� and
�x�H � x

�
G� � ��

�� vice�versa �

(��bisimulations of H and G are closed under arbitrary unions ��� So there exists a greatest one�
noted ���  We now formalize the link between (��bisimulation and controllability�

Theorem � �� Let H and G be as in De�nition �� with L�H� � L�G�� Denote by S	 the accessible
state space of �H �G�	� Let ��uc

be the greatest (uc�bisimulation of H and G� then�

�� �xH�
� xG�

� � S	 i� xH�
��uc

xG�
� and

�� �xH � xG� � S	 i� xH��uc
xG and �xH � xG� is reachable from �xH�

� xG�
� by a sequence of state

transitions that never leave ��uc
� �

From this theorem� we can easily derive an algorithm providing �H �G�	 It �rst computes the (uc�
bisimulation��uc

of the H and G �using the algorithm of ����� and next builds some product model
from H and G according to the ��uc

relation So the following Algorithm ����
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Algorithm �
���������������������

�� Compute ��uc
the greatest (uc�bisimulation of H and G

�� If xH�
���uc

xG�
� then let R be the empty LTS�

Otherwise� let R  �XR�(� x	R � �R�� where�

XR  f�xH � xG� � XH �XGg
xR�

 �xH�
� xG�

�

�� � ( �

�R��xH � xG�� ��  

�
��H�xH � ��� �G�xG� ��� if �H�xH � ����uc

�G�xG� ��
Undefined otherwise�

�� Let R	 denotes the accessible LTS of R

Theorem � ��L�R	�  L�H�	  L��H �G�	�� �

��� The SCP in the ILTS framework

��
�� (��Bisimulation in the ILTS framework

Let us introduce the notion of symbolic A�Bisimulation� where A is a polynomial that will characterize
the set of events (� of De�nition �� The notion is strongly inspired from De�nition #

De	nition �� Consider two �n�m	�iLTSs TU  �U � Y� IU ��U �� TV  �V� Y�IV ��V�� and a polyno�
mial A � Z�pZ�Y �� A symbolic A�bisimulation of TU and TV is a binary relation R � U � V s�t�
�u� v� � R �or uRv	 whenever

�� for all u
P
�U u�� there exists a �nite set of transitions �v

Pi�V vi�i�I � such that�

�a	 ��� �P 	A�� �'iPi  �� and

�b	 u�Rvi� for all i � I�

�� vice versa� �

In De�nition ��� the clause ����P	A���'iPi  � can be reinterpreted as Sol�P ��Sol�A� �
S
i Sol�Pi��

that is any transition from u to u� satisfying the �criterion� denoted by A can be mimicked from v
Since A�bisimulations are closed under arbitrary unions� we can talk about the greatest A�bisimulation�
written �A in the following� and say that �u and v are A�bisimilar� whenever u�Av
Symbolic A�bisimulation between iLTSs corresponds to Sol�A��bisimulation �in the sense of De��

nition ��� between the underlying extensional LTSs�

Theorem � �Expressiveness� Let TU and TV be two iLTSs� R is a symbolic A�bisimulation between
TU and TV i� R is a Sol�A��bisimulation between Ext�TU � and Ext�TV��

Proof � �� Let R be a symbolic A�bisimulation between TU and TV  Let uRv and let u
y
�U u� in

Ext�TU �� with y � Sol�A� Then there exists u
P
�U u� with P �y�  � and A�y�  � By de�nition of

R� there exists some indexes i such that v
Pi�V vi� ���P 	A��'iPi  � and u

�Rvi Because P �y�  �

and �� � P 	 A� � 'iPi  � when applied to y� Pi�y�  � for some i which proves that v
y
�V vi� and

we are done Transition v
y
�V v� is dealt similarly

�� Let R be a Sol�A��bisimulation of Ext�TU � and Ext�TV� Let uRv and let u
P
�U u� in TU  As

uRv� for each y	 � Sol�A��Sol�P �� there exists v
y�
�V vy� in Ext�TV� with u

�Rvy�  Then� in TV there
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exists some P y� st v
P y�

� V vy� and P y��y	�  � Consider the polynomial 'y�Sol�P�A�P
y�Y � Clearly

by construction� Sol�P 	A� � Sol�'y�Sol�P�A�P
y�� which entails ���P 	A��'y�Sol�P�A�P

y�Y � � �
This shows that the vy are the good candidates� which concludes the proof �

Assume now given two ILTSs SU  �U�U �� Y� IU �TU �� SV  �V� V� Y� IV � TV �� and A � Z�pZ�Y �
Algorithm � computes the greatest symbolic A�bisimulation of SU and SV 

Algorithm ��
�����������������

�� De�ne the polynomial �	�U� V �
def
 ��

�� Compute iteratively until stabilization the sequence ��k�U� V ��k de�ned by�

�k���U� V � is the canonical generator of the ��class of

��
�

�k�U� V �
	 �U ��Y �TU �U� Y� U

��	A�Y �� �V �TV �V� Y� V �	 �k�U
�� V ���

	 �V �Y �TV �V� Y� V �	A�Y �� �U ��TU �U� Y� U
��	 �k�U

�� V ���

�� Call �A�U� V � the result�

Theorem �� With the preceding notations� �A�u� v�  �� u�Av � u�Sol�A�v� �

The proof is similar to the one of Theorem ��� of ����

��
�
 Application to the SCP

In this section� we present the application of the techniques developed in the previous section to solve
the SCP The non�blocking aspect of the SCP is here discard� but would also �t within this framework

Event�controlled ILTS�
In order to match Section ��� we need to introduce the notion of Event�controlled ILTS� which

are assumed to be deterministic
 So the de�nition�

De	nition �� An Event�controlled ILTS is given by a deterministic �n�m��ILTS and two polynomials
Pc and Puc of Z�pZ�Y � s�t�

Sol�Pc� � Sol�Puc�  � ��
�

Sol�Pc� 
 Sol�Puc� � �Z�pZ�
m ����

�

For such an Event�controlled ILTS and with the preceding notations� Sol�Pc� �resp Sol�Puc�� corre�
sponds to the set of controllable �resp uncontrollable� events as in Section ��� ie Sol�Pc�  (c and
Sol�Puc�  (uc Note that Equation ��
� ensures that an event is either controllable or uncontrollable

The Desired Behavior�
Let T  �X�X �� Y� I�T � Puc� Pc� be an Event�controlled ILTS modeling the plant Let O�X�Y�X

��
be a polynomial in Z�pZ�X�Y�X

��� called a control objective on T 
Consider now the Event�controlled �n�m��ILST TO  �X�X �� Y� I�T 	 O� Puc� Pc� TO mod�

els the desired behavior Intuitively� we only consider in the explicit LTS Ext�T � the set of s�
tates�events�transitions that satisfy O�X�Y�X ��  �

�i�e��x� y� Sol�T �x� y�X ��� as at most one element
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O is used to express control objectives as predicates over the states and�or the events� for example�
if we want to ensure a safety property over a particular set of states of the plant �say Sol���X���� the
control objectives O will be de�ned as O�X�X ��  ��X� 	 ��X �� In other words� the supervisor�
we want to compute with this particular polynomial� has to ensure the invariance of the set of states
Sol���X�� Some other control objectives can also be considered� O can result from a previous SCP
computation �eg attractivity� reachability� optimal control �����

The supervisor Computation�
Assume we have two Event�controlled ILTSs T and TO as de�ned in the previous section First of

all� remark that TO is the initial system T restricted by polynomial O Hence the proposition�

Proposition � L�Ext�TO�� � L�Ext�T �� �

That is to say� the behavior of TO is a sub�behavior of T  Or in other words� the language generated by
Ext�TO� is included in the language generated by Ext�T � In the sequel we rename the states variables
�source and target� of T and TO such that T  �X�X

�� Y� I�T � and TO  �XO�X
�
O� Y� IO�TO� Let

�Puc be the result of Algorithm � applied on T and TO� ie the greatest symbolic Puc�bisimulation of
T and TO

Build now the ILTS TC  �XC �X
�
C � YC � IC �TC�� where

� XC  X 
XO� X
�
C  X � 
X �

O� and YC  Y

� IC�XC�  I�X� 	 IO�XO�	 �Puc�X�XO�

� TC�XC � Y�X
�

C
� � T �X�Y�X ��� TO�XO� Y�X

�

O
�� �Puc�X

�� X �

O
�

By Algorithm �� we have to consider the accessible set of states of the system TC  To do so� we
compute the orbit Orb of the system� as follows��

Orb	�XC�  IC�XC�
Orbi���XC�  *��XC���Y TC�XC � Y�X

�
C��	Orbi�XC���

where * is a function which renames the variable X � in X It is then su�cient to intersect the
transition relation TC with the orbit to obtain a new relation� where all the states are accessible

T �
C�XC � Y�X

�
C�  TC�XC � Y�X

�
C�	Orb�X �

C�

With the preceding notations� we can state the following theorem�

Theorem �� If Sol�IC� is non empty� then the ILTS T �C  �XC �X
�
C � Y� IC �T

�
C� generates the supre�

mal controllable sub�language of L�Ext�TO�� w�r�t� L�Ext�T �� and Sol�Puc��

Proof � First by Assumption T and TO are deterministic and by Proposition �� the behavior of
TO is included in the one of T  By Theorem �� we have to show that Ext�T �C� is R

	 of Algorithm
�� consider �x� xO� y�� st T �

C�x� xO� y� x
�� x�O�  � for some x� and x�O Because T �x� y� x

��  ��

TO�xO� y� x
�
O�  � and �Puc�x

�� x�O�  �� �x� xO�
y
���x�� x�O� holds in Ext�T �C� whenever x

y
��x��

xO
y
��Ox

�
O and x��Sol�Puc�x

�
O �Theorem ��� We exactly retrieve the de�nition of the transition

function �R of Algorithm � which� by construction of T
�
C is restricted to accessible states �
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A The Sigali Tool Box

The Sigali tool box �
� o�ers algebraic polynomial computation functionalities It relies on an imple�
mentation of polynomials by Ternary Decision Diagram �TDD� �for three valued logics� in the same
spirit of BDD �#�� but where the paths in the data structures are decorated by values in f��� �� �g
instead of f�� �g�
From a practical point of view� ILST can be obtain for �free�� provided we have speci�ed the system

in the high level language Signal ��	� �� In fact� the equational nature of Signal leads naturally to
the use of a method based on polynomial dynamical equation systems over Z��Z as a formal model of
programs behavior��#� The model essentially expresses boolean data and synchronizations� ie the
control part of the Signal program There exists a lot of examples using Sigali for Signal programs�
among them� a production cell ���� a power transformer station controller ��#�� an experiment with
reactive data��ow tasking in active robot vision ��
��

A�� Some elements of the Sigali syntax

A���� The Basic Syntax

We can write polynomial expressions� lists of polynomials� etc All the usual polynomial operations
are also available �!� �� ,� � For example� the polynomial a���b� b�� is written a�����b�b��� 

The list of variables� polynomials� equations� etc are written as follows� �a	b	c	d
 is a set of

variables� �a�b	c�d
 is a list of polynomials and �a�b�x	a�d���b��
 is an equation system As for
the polynomial operations� all the possible operations over lists have been de�ned �union� intersection�
complementary� �
The function call is classically written f�x	y	z� For example� in order to check the invariance of

a set of states de�ned by a polynomial g wrt an ILTS S� we write�

� Invariant�S	g�

The result of such a computation is either true or false
The a�ectation is simply written as follows� symbol�expression  For example�

g� gen��a�b�x	a�d���b��
�

�We can also deal with numerical aspects using Arithmetic Decision Diagrams �ADDs� ����
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will attached the name g to the principal generator of this equation system �which is then computed�
Fix point computation can also be performed For example� given ��

p	  �
pi��  p� ! �

the corresponding expression in Sigali is

loop x�x���� init �

Of course� such sequences do not always converge This is not checked by the system

A���
 Some useful functions

There exist more than ��� di�erent functions that belong to the kernel of the Sigali languages We
here just provides the one that we will use in Section A�

declare�var�var�� Lvar declaration of variables

union lvar�Lvar�Lvar�� Lvar performs the union of variable lists

di� lvar�Lvar�Lvar�� Lvar di� lvar�L��L��	 returns the sublist of L� from which the
variables of L� have been removed

implies�Poly�Poly�� Poly implies�P��P�����
P����P�

complementary�Poly�� Poly complementary�P����
P�����P

intersection�Poly�Poly������ Poly P  intersection�P��P��� Sol�P � � Sol�P�� � Sol�P��

union�Poly�Poly������ Poly P  union�P��P��� Sol�P � � Sol�P�� � Sol�P��

exist�LVAR�Poly�� Poly exist�L�P� Existential elimination over the polynomial P
w�r�t� the variables of L

forall�LVAR�Poly�� Poly forall�L�P�Universal elimination over the polynomial P w�r�t� L

rename�Poly�Lvar��Lvar��� Poly rename�P�L��L�� renaming of the variables L� by
the variables L� in P

Moreover� starting from the existing functions� it is also possible to de�ne new functions The
syntax is the following� def f�x	y	z��expression
For example� assume we want to compute the set of reachable states of a given ILTS S �ie the orbit

of S� S is formally given by two polynomials� the implicit transition system� Rel�X	Y	X nexts���

and the initial states Ini�X���� where X �resp X nexts� is the set of states variables at the current
instant �resp at the next instant� and Y is the set of event variables
We �rst introduce the function succ�P� that basically computes the set of reachable states from

Sol�P� in one step�

def succ�P�� rename�exist�X	intersection�P	exist�Y	Rel��	X nexts	X�

The orbit of the ILST S is then simply given by �

def Orbit�S�� loop x � union�x	succ�x�� init Ini

A�� Quotient system computation w�r�t� the strong bisimulation

We here assume that the ILST has already been de�ned in Sigali It is formally given by two
polynomials� Rel�X	Y	X nexts��� and Ini�X��� First we a copy of the ILST Rel into Rel d by
renaming the variables

� copy of states variables at the current instant�

X�d � declare�X�nexts��

� copy of states variables at the next instant�

X�d�nexts � declare�X�d��
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� The copy of Rel�X�Y�X�nexts��

Rel�d � rename�Rel�union�lvar�X�X�nexts��union�lvar�X�d�X�d�nexts���

� new set of variables that will be used further �

X�X�d � union�lvar�X�X�d��

X�X�d�nexts � union�lvar�X�nexts�X�d�nexts��

We then compute the greatest auto�bisimulation according to Algorithm �

Bis� loop x �

intersection�x�

forall�X�nexts� forall�Y�

implies�Rel�exist�X�d�next�intersection�Rel�d�rename�x�X�X�d�X�X�d�nexts�������

forall�X�d�nexts� forall�Y�

implies�Rel�d�exist�X�next�intersection�Rel� rename�x�X�X�d�X�X�d�nexts�������

init 	�

As a result� we obtain a relation Bis�X�Xd�� such that Bis�x� xd�  �� x�xd
We now compute the function � describe in Section ���

phi � classes�Bis�Orbit�X�X�d�Z��

As a result� we have a relation ��Z�X�� such that ��z� x�  � � z is the representative of the
bisimulation lass of x is As explained in Section ��� some new variables Z have been added during
this computation We can recover their list as follows �

Z � diff�lvar�varof�phi��X��

�the set of state variables at the next instant�

Z�nexts � declare�Z��

Finally� the reduced model is computed as follows �according to Relation �	���

�The implicit reduced transition relation Rel�Red�Z�Y�Z
	�	 is � �

Rel�red � exist�union�lvar�X�X�nexts��

intersection�phi�Rel� rename�phi�union�lvar�Z�X��union�lvar�Z�nexts�X�nexts�����

� the polynomial encoding the new initial states is given by � �

Init�red � exist�X�intersection�phi�Ini���

A�� Experimental results in Z��Z�

we here provide some experimental results dealing with the computation of the reduced model of
a given model S according to �strong� bisimulation T corresponds to the transition relation of S
whereas T � corresponds to the one of the reduced system In the X �resp Y � Z� column� we write the
number of variables �hence� the relation T �X�Y�X �� will have �jXj ! jY j variables� We here make a
comparison between the number of reachable states in the two systems as well as the size �in terms of
TDD nodes� of their transition relations

Initial System T �X�Y�X �� Reduced System T ��Z� Y� Z��

Name X Y Reachable States TDD Nodes Z Reachable States TDD Nodes

CO�z�z � � � ��� � � ��

TREAT�z�z � �� �� ���� � �� ���

PRESS�z�z �� � �� ��� � � �

LINK CELL�z�z �� �� �� ���� � � ���

DEP CELL�z�z �� �� ���� ������ � ��� �����

SRI�z�z �� �� ���� ����� � � ��

POWER TRSP ���z�z �� �� ����� ����� � ��� �����

POWER TRSP ��z�z �� �� ������ ������ � ���� �����
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