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Abstract

We consider the standard model of finite two-person
zero-sum stochastic games with signals. We are interested
in the existence of almost-surely winning or positively win-
ning strategies, under reachability, safety, Büchi or co-
Büchi winning objectives. We prove two qualitative deter-
minacy results. First, in a reachability game either player
1 can achieve almost-surely the reachability objective, or
player 2 can ensure surely the complementary safety ob-
jective, or both players have positively winning strategies.
Second, in a Büchi game if player 1 cannot achieve almost-
surely the Büchi objective, then player 2 can ensure pos-
itively the complementary co-Büchi objective. We prove
that players only need strategies with finite-memory, whose
sizes range from no memory at all to doubly-exponential
number of states, with matching lower bounds. Together
with the qualitative determinacy results, we also provide fix-
point algorithms for deciding which player has an almost-
surely winning or a positively winning strategy and for com-
puting the finite memory strategy. Complexity ranges from
EXPTIME to 2EXPTIME with matching lower bounds,
and better complexity can be achieved for some special
cases where one of the players is better informed than her
opponent.

Introduction

Numerous advances in algorithmics of stochastic games
have recently been made [10, 9, 7, 5, 12, 14], motivated in
part by application in controller synthesis and verification of
open systems. Open systems can be viewed as two-players
games between the system and its environment. At each
round of the game, both players independently and simul-
taneously choose actions and the two choices together with
the current state of the game determine transition probabil-
ities to the next state of the game. Properties of open sys-
tems are modeled as objectives of the games [9, 13], and
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strategies in these games represent either controllers of the
system or behaviors of the environment.

Most algorithms for stochastic games suffer from the
same restriction: they are designed for games where play-
ers can fully observe the state of the system (e.g. concur-
rent games [10, 9] and stochastic games with perfect infor-
mation [8, 14]). The full observation hypothesis can hin-
der interesting applications in controller synthesis. In many
systems in interaction with both a user and a controller,
full monitoring for the controller is hardly implementable
in practice and the user has very partial information about
the system. Recently, algorithms for games where one of
the players has partial observation and her opponent is fully
informed have been proposed [17, 6]. Here we consider the
general case where both players have partial observations.

In the present paper, we consider stochastic games with
signals, that are a standard tool in game theory to model
partial observation [23, 20, 18]. When playing a stochastic
game with signals, players cannot observe the actual state of
the game, nor the actions played by their opponent, but are
only informed via private signals they receive throughout
the play. Stochastic games with signals subsume standard
stochastic games [22], repeated games with incomplete in-
formation [1], games with imperfect monitoring [20], con-
current games [9] and deterministic games with imperfect
information on one side [17, 6]. Players make their deci-
sions based upon the sequence of signals they receive: a
strategy is hence a mapping from finite sequences of private
signals to probability distributions over actions.

From the algorithmic point of view, stochastic games
with signals are considerably harder to deal with than
stochastic games with full observation. While values of the
latter games are computable [9, 5], simple questions like
‘is there a strategy for player 1 which guarantees winning
with probability more than 1

2?’ are undecidable even for re-
stricted classes of stochastic games with signals [16]. For
this reason, rather than quantitative properties (i.e. ques-
tions about values), we focus in the present paper on quali-
tative properties of stochastic games with signals.

We study the following qualitative questions about
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stochastic games with signals, equipped with reachability,
safety, Büchi or co-Büchi objectives:

(i) Does player 1 have an almost-surely winning strategy,
i.e. a strategy which guarantees the objective to be
achieved with probability 1, whatever the strategy of
player 2?

(ii) Does player 2 have a positively winning strategy, i.e.
a strategy which guarantees the opposite objective to
be achieved with strictly positive probability, whatever
the strategy of player 1?

Obviously, given an objective, properties (i) and (ii) cannot
hold simultaneously. For games with a reachability, safety
or Büchi objective, we obtain the following results:

(1) Either property (i) holds or property (ii) holds; in other
words these games are qualitatively determined.

(2) Players only need strategies with finite-memory, whose
memory sizes range from no memory at all to doubly-
exponential number of states.

(3) Questions (i) and (ii) are decidable. We provide fix-
point algorithms for computing uniformly all initial
states that satisfy (i) or (ii), together with the corre-
sponding finite-memory strategies. The complexity of
the algorithms ranges from EXPTIME to 2EXPTIME.

These three results are detailed in Theorems 1, 2, 3 and 4.
We prove that these results are tight and robust in several
aspects. Games with co-Büchi objectives are absent from
these results, since they are neither qualitatively determined
(see Fig. 3) nor decidable (as proven in [2]).

Our main result, and the element of surprise, is that
for winning positively a safety or co-Büchi objective, a
player needs a memory with a doubly-exponential num-
ber of states, and the corresponding decision problem is
2EXPTIME-complete. This result departs from what was
previously known [17, 6], where both the number of mem-
ory states and the complexity are simply exponential. These
results also reveal a nice property of reachability games,
that Büchi games do not enjoy: Every initial state is ei-
ther almost-surely winning for player 1, surely winning for
player 2 or positively winning for both.

Our results strengthen and generalize in several ways re-
sults that were previously known for concurrent games [10,
9] and deterministic games with imperfect information
on one side [17, 6]. First, the framework of stochastic
games with signals strictly encompasses all the settings
of [17, 10, 9, 6]. In concurrent games there is no signal-
ing structure at all, and in deterministic games with imper-
fect information on one side [6] transitions are deterministic
and player 2 observes everything that happens in the game,
including results of random choices of her opponent.

No determinacy result was known for deterministic
games with imperfect information on one side. In [17, 6],
algorithms are given for deciding whether the imperfectly
informed player has an almost-surely winning strategy for
a Büchi (or reachability) objective but nothing can be in-
ferred in case she has no such strategy. This open question
is solved in the present paper, in the broader framework of
stochastic games with signals.

Our qualitative determinacy result (1) is a radical gener-
alization of the same result for concurrent games [9, Th.2],
while proofs are very different. Interestingly, for concur-
rent games, qualitative determinacy holds for every omega-
regular objectives [9], while for games with signals we
show that it fails already for co-Büchi objectives. Inter-
estingly also, stochastic games with signals and a reacha-
bility objective have a value [19] but this value is not com-
putable [16], whereas it is computable for concurrent games
with omega-regular objectives [11]. The use of randomized
strategies is mandatory for achieving determinacy results,
this also holds for stochastic games without signals [22, 10]
and even matrix games [24], which contrasts with [4, 17]
where only deterministic strategies are considered.

Our results about randomized finite-memory strategies
(2), stated in Theorem 2, are either brand new or generalize
previous work. It was shown in [6] that for deterministic
games where player 2 is perfectly informed, strategies with
a finite memory of exponential size are sufficient for player
1 to achieve a Büchi objective almost-surely. We prove the
same result holds for the whole class of stochastic games
with signals. Moreover we prove that for player 2 a doubly-
exponential number of memory states is necessary and suf-
ficient for achieving positively the complementary co-Büchi
objective.

Concerning algorithmic results (3) (see details in Theo-
rem 3 and 4) we show that our algorithms are optimal in
the following meaning. First, we give a fix-point based al-
gorithm for deciding whether a player has an almost-surely
winning strategy for a Büchi objective. In general, this algo-
rithm is 2EXPTIME. We show in Theorem 5 that this prob-
lem is indeed 2EXPTIME-hard. However, in the restricted
setting of [6], it is already known that this problem is only
EXPTIME-complete. We show that our algorithm is also
optimal with an EXPTIME complexity not only in the set-
ting of [6] where player 2 has perfect information but also
under weaker hypothesis: it is sufficient that player 2 has
more information than player 1. Our algorithm is also EX-
PTIME when player 1 has full information (Proposition 2).
In both subcases, player 2 needs only exponential memory.

Part of our results have been concurrently obtained
in [21] whose contribution is weaker than our: no determi-
nacy result is provided, nothing is said about strategies used
by player 2 nor the memory she needs, and the algorithm
provided is enumerative rather than fix-point based.
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The paper is organized as follows. In Section 1 we intro-
duce partial observation games, in Section 2 we define the
notion of qualitative determinacy and we state our determi-
nacy result, in Section 3 we discuss the memory needed by
strategies. Section 4 is devoted to decidability questions and
Section 5 investigates the precise complexity of the general
problem as well as special cases.

1 Stochastic games with signals.

We consider the standard model of finite two-person
zero-sum stochastic games with signals [23, 20, 18]. These
are stochastic games where players cannot observe the ac-
tual state of the game, nor the actions played by their op-
ponent, their only source of information are private sig-
nals they receive throughout the play. Stochastic games
with signals subsume standard stochastic games [22], re-
peated games with incomplete information [1], games with
imperfect monitoring [20] and games with imperfect infor-
mation [6].

Notations. Given a finite set K, we denote by D(K) =
{δ : K → [0, 1] |

∑
k δ(k) = 1} the set of probability

distributions on K and for a distribution δ ∈ D(K), we
denote supp(δ) = {k ∈ K | δ(k) > 0} its support.

States, actions and signals. Two players called 1 and 2
have opposite goals and play for an infinite sequence of
steps, choosing actions and receiving signals. Players ob-
serve their own actions and signals but they cannot observe
the actual state of the game, nor the actions played and the
signals received by their opponent. We borrow notations
from [18]. Initially, the game is in a state k0 ∈ K chosen ac-
cording to an initial distribution δ ∈ D(K) known by both
players; the initial state is k0 with probability δ(k0). At each
step n ∈ N, players 1 and 2 choose some actions in ∈ I
and jn ∈ J . They respectively receive signals cn ∈ C
and dn ∈ D, and the game moves to a new state kn+1.
This happens with probability p(kn+1, cn, dn | kn, in, jn)
given by fixed transition probabilities p : K × I × J →
D(K × C ×D), known by both players. Formally a game
is a tuple (K, I, J, C,D, p).

Plays and strategies. Players observe their own actions
and the signals they receive. It is convenient to assume
that the action i player 1 plays is encoded in the signal
c she receives, with the notation i = i(c) (and symmet-
rically for player 2). This way, plays can be described
by sequences of states and signals for both players, with-
out mentioning which actions were played. A finite play
is a sequence (k0, c1, d1, . . . , cn, dn, kn) ∈ (KCD)∗K
such that for every 0 ≤ m < n, p(km+1, cm+1, dm+1 |

km, i(cm+1), j(dm+1)) > 0. An infinite play is a sequence
in (KCD)ω whose prefixes are finite plays.

A (behavioral) strategy of player 1 is a mapping σ :
D(K) × C∗ → D(I). If the initial distribution is δ and
player 1 has seen signals c1, . . . , cn then she plays action i
with probability σ(δ, c1, . . . , cn)(i). Strategies for player 2
are defined symmetrically. In the usual way, an initial dis-
tribution δ and two strategies σ and τ define a probability
measure Pσ,τ

δ on the set of infinite plays, equipped with the
σ-algebra generated by cylinders.

We use random variables Kn, In, Jn, Cn and Dn to de-
note respectively the n-th state, action of player 1, action of
player 2, signal of player 1 and signal of player 2.

Winning conditions. The goal of player 1 is described
by a measurable event Win called the winning condition.
Motivated by applications in logic and controller synthe-
sis [13], we are especially interested in reachability, safety,
Büchi and co-Büchi conditions. These four winning condi-
tions use a subset T ⊆ K of target states in their definition.
The reachability condition stipulates that T should be vis-
ited at least once, Win = {∃n ∈ N,Kn ∈ T}, the safety
condition is complementary Win = {∀n ∈ N,Kn )∈ T}.
For the Büchi condition the set of target states has to be vis-
ited infinitely often, Win = {∀m ∈ N,∃n ≥ m,Kn ∈
T}, and the co-Büchi condition is complementary Win =
{∃m ∈ N,∀n ≥ m,Kn )∈ T}.

Almost-surely and positively winning strategies. When
player 1 and 2 use strategies σ and τ and the initial distri-
bution is δ, then player 1 wins the game with probability:

Pσ,τ
δ (Win) .

Player 1 wants to maximize this probability, while player 2
wants to minimize it. The best situation for player 1 is when
she has an almost-surely winning strategy.

Definition 1 (Almost-surely winning strategy). A strategy
σ for player 1 is almost-surely winning from an initial dis-
tribution δ if

∀τ, Pσ,τ
δ (Win) = 1 . (1)

When such a strategy σ exists, both δ and its support
supp(δ) are said to be almost-surely winning as well.

A less enjoyable situation for player 1 is when she only
has a positively winning strategy.

Definition 2 (Positively winning strategy). A strategy σ for
player 1 is positively winning from an initial distribution δ
if

∀τ, Pσ,τ
δ (Win) > 0 . (2)

When such a strategy σ exists, both δ and its support
supp(δ) are said to be positively winning as well.
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The worst situation for player 1 is when her opponent
has an almost-surely winning strategy τ , which ensures
Pσ,τ

δ (Win) = 0 for all strategies σ chosen by player
1. Symmetrically, a strategy τ for player 2 is positively
winning if it guarantees ∀σ, Pσ,τ

δ (Win) < 1. These no-
tions only depend on the support of δ since Pσ,τ

δ (Win) =∑
k∈K δ(k) · Pσ,τ

1k
(Win).

1ac

1
2α⊥

1
2⊥⊥

2 ac

1
2⊥⊥

1
2β⊥

s

t
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∗∗

g1c

g2c

g2c

g1c

Figure 1. When the initial state is chosen at
random between states 1 and 2, player 1 has
a strategy to reach t almost surely.

Consider the one-player game depicted on Fig. 1. The
objective of player 1 is to reach state t. The initial distribu-
tion is δ(1) = δ(2) = 1

2 and δ(t) = δ(s) = 0. Player 1
plays with actions I = {a, g1, g2}, where g1 and g2 mean
respectively ‘guess 1’ and ‘guess 2’, while player 2 plays
with actions J = {c} (that is, player 2 has no choice).
Player 1 receives signals C = {α, β,⊥} and player 2 is
‘blind’, she always receives the same signal D = {⊥}.
Transitions probabilities are represented in a quite natural
way. When the game is in state 1, player 1 plays a and
player 2 plays c, then player 1 receives signal α or ⊥ with
probability 1

2 , player 2 receives signal⊥ and the game stays
in state 1. In state 2 when action of player 1 is a and ac-
tion of player 2 is c, player 1 cannot receive signal α but
instead she may receive signal β. When ‘guessing the state’
i.e. playing action gi in state j ∈ {1, 2}, player 1 wins the
game if i = j (she guesses the correct state) and loses the
game if i )= j. The star symbol ∗ stands for any action. In
this game, player 1 has a strategy to reach t almost surely.
Her strategy is to keep playing action a as long as she keeps
receiving signal ⊥. The day player 1 receives signal α or
β, she plays respectively action g1 or g2. This strategy is
almost-surely winning because the probability for player 1
to receive signal ⊥ forever is 0.

2 Qualitative Determinacy.

If an initial distribution is positively winning for player 1
then by definition it is not almost-surely winning for his op-

ponent player 2. A natural question is whether the converse
implication holds.

Definition 3 (Qualitative determinacy). A winning con-
dition Win is qualitatively determined if for every game
equipped with Win, every initial distribution is either
almost-surely winning for player 1 or positively winning for
player 2.

Comparison with value determinacy. Qualitative deter-
minacy is similar to but different from the usual notion of
(value) determinacy which refers to the existence of a value.
Actually both qualitative determinacy and value determi-
nacy are formally expressed by a quantifier inversion. On
one hand, qualitative determinacy rewrites as:

(∀σ ∃τ Pσ,τ
δ (Win) < 1) =⇒ (∃τ ∀σ Pσ,τ

δ (Win) < 1) .

On the other hand, the game has a value if:

sup
σ

inf
τ

Pσ,τ
δ (Win) ≥ inf

τ
sup

σ
Pσ,τ

δ (Win) .

Both the converse implication of the first equation and the
converse inequality of the second equation are obvious.

While value determinacy is a classical notion in game
theory [15], to our knowledge the notion of qualitative de-
terminacy appeared only in the context of omega-regular
concurrent games [10, 9] and stochastic games with perfect
information [14].

Existence of an almost-surely winning strategy ensures
that the value of the game is 1, but the converse is not true.
Actually it can even hold that player 2 has a positively win-
ning strategy while at the same time the value of the game
is 1. For example, consider the game depicted on Fig. 2,
which is a slight modification of Fig. 1 (only signals of
player 1 and transitions probabilities differ). Player 1 has

1ac

2
3α⊥

1
3β⊥

2 ac

2
3β⊥

1
3α⊥

s

t

∗∗

∗∗

g1c

g2c

g2c

g1c

Figure 2. A reachability game with value 1
where player 2 has a positively winning strat-
egy.
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signals {α, β} and similarly to the game on Fig 1, her goal
is to reach the target state t by guessing correctly whether
the initial state is 1 or 2. On one hand, player 1 can guar-
antee a winning probability as close to 1 as she wants: she
plays a for a long time and compares how often she received
signals α and β. If signals α were more frequent, then she
plays action g1, otherwise she plays action g2. Of course,
the longer player 1 plays a’s the more accurate the predic-
tion will be. On the other hand, the only strategy available to
player 2 (always playing c) is positively winning, because
any sequence of signals in {α, β}∗ can be generated with
positive probability from both states 1 and 2.

Qualitative determinacy results. The first main result of
this paper is the qualitative determinacy of stochastic games
with signals for the following winning objectives.

Theorem 1. Reachability, safety and Büchi games are qual-
itatively determined.

While qualitative determinacy of safety games is not too
hard to establish, proving determinacy of Büchi games is
harder. Notice that the qualitative determinacy of Büchi
games implies the qualitative determinacy of reachability
games, since any reachability game can be turned into an
equivalent Büchi one by making all target states absorbing.

The proof of Theorem 1 is postponed to Section 4, where
the determinacy result will be completed by a decidability
result: there are algorithms for computing which initial dis-
tributions are almost-surely winning for player 1 or posi-
tively winning for player 2. This is stated precisely in The-
orems 3 and 4.

A consequence of Theorem 1 is that in a reachability
game, every initial distribution is either almost-surely win-
ning for player 1, surely winning for player 2, or positively
winning for both players. Surely winning means that player
2 has a strategy τ for preventing every finite play consistent
with τ from visiting target states.

Büchi games do not share this nice feature because co-
Büchi games are not qualitatively determined. An example
of a co-Büchi game which is not determined is represented
in Fig. 3. In this game, player 1 observes everything, player
2 is blind (she only observes her own actions), and player
1’s objective is to avoid state t from some moment on. The
initial state is t.

On one hand, player 1 does not have an almost-surely
winning strategy for the co-Büchi objective. Fix a strategy
σ for player 1 and suppose it is almost-surely winning. To
win against the strategy where player 2 plays c forever, with
probability 1 σ should eventually play a b. Otherwise, the
probability that the play stays in state t is positive, and σ
is not almost-surely winning, a contradiction. Since σ is
fixed there exists a date after which player 1 has played b
with probability arbitrarily close to 1. Consider the strategy

1 t 2

∗d

bc

∗d

ac ∗c∗∗

Figure 3. Co-Büchi games are not qualita-
tively determined.

of player 2 which plays d at that date. Although player 2 is
blind, obviously she can play such a strategy which requires
only counting time elapsed since the beginning of the play.
With probability arbitrarily close to 1, the game is in state
2 and playing a d puts the game back in state t. Playing
long sequences of c’s followed by a d, player 2 can ensure
with probability arbitrarily close to 1 that if player 1 plays
according to σ, the play will visit states t and 2 infinitely
often, hence will be lost by player 1. This contradicts the
existence of an almost-surely winning strategy for player 1.

On the other hand, player 2 does not have a positively
winning strategy either. Fix a strategy τ for player 2 and
suppose it is positively winning. Once τ is fixed, player
1 knows how long she should wait so that if action d was
never played by player 2 then there is arbitrarily small prob-
ability that player 2 will play d in the future. Player 1 plays
a for that duration. If player 2 plays a d then the play
reaches state 1 and player 1 wins, otherwise the play stays
in state t. In the latter case, player 1 plays action b. Player
1 knows that with very high probability player 2 will play
c forever in the future, in that case the play stays in state 2
and player 1 wins. If player 1 is very unlucky then player 2
will play d again, but this occurs with small probability and
then player 1 can repeat the same process again and again.
Similar examples can be used to prove that stochastic Büchi
games with signals do not have a value [19].

3 Memory needed by strategies.

3.1 Finite-memory strategies.

Since our ultimate goal are algorithmic results and con-
troller synthesis, we are especially interested in strategies
that can be finitely described, like finite-memory strategies.

Definition 4 (Finite-memory strategy). A finite-memory
strategy for player 1 is given by a finite set M called the
memory together with a strategic function σM : M →
D(I), an update function updM : M × C → D(M), and
an initialization function initM : P(K) → D(M). The
memory size is the cardinal of M .
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In order to play with a finite-memory strategy, a player
proceeds as follows. She initializes the memory of σ to
initM (L), where L = supp(δ) is the support of the initial
distribution δ. When the memory is in state m ∈ M , she
plays action i with probability σM (m)(i) and after receiv-
ing signal c, the new memory state is m′ with probability
updM (m, c)(m′).

On one hand it is intuitively clear how to play with a
finite-memory strategy, on the other hand the behavioral
strategy associated with a finite-memory strategy1 can be
quite complicated and requires the player to use infinitely
many different probability distributions to make random
choices (see discussions in [10, 9, 14]).

In the games we consider, the construction of finite-
memory strategies is often based on the notion of belief.
The belief of a player at some moment of the play is the set
of states she thinks the game could possibly be in, according
to the signals she received so far.

Definition 5 (Belief). From an initial set of states L ⊆ K,
the belief of player 1 after receiving signal c (hence playing
action i(c)), is the set of states k such that there exists a state
l in L and a signal d ∈ D with p(k, c, d | l, i(c), j(d)) > 0.
The belief of player 1 after receiving a sequence of signals
c1, . . . , cn is defined inductively by:

B1(L, c1, . . . , cn) = B1(B1(L, c1, . . . , cn−1), cn).

Beliefs of player 2 are defined similarly.

Our second main result is that for the qualitatively de-
termined games of Theorem 1, finite-memory strategies are
sufficient for both players. The amount of memory needed
by these finite-memory strategies is summarized in Table 1
and detailed in Theorem 2.

Almost-surely Positively
Reachability belief memoryless
Safety belief doubly-exp
Büchi belief
Co-Büchi doubly-exp

Table 1. Memory required by strategies.

Theorem 2 (Finite-memory is sufficient). Every reachabil-
ity game is either won positively by player 1 or won surely
by player 2. In the first case playing randomly any action
is a positively winning strategy for player 1 and in the sec-
ond case player 2 has a surely winning strategy with finite-
memory P(K) and update function B2.

Every Büchi game is either won almost-surely by player
1 or won positively by player 2. In the first case player 1 has

1cf. [3] for a precise definition.

an almost-surely winning strategy with finite-memoryP(K)
and update function B1. In the second case player 2 has a
positively winning strategy with finite-memory P(P(K) ×
K).

The situation where a player needs the least memory is
when she wants to win positively a reachability game. To
do so, she uses a memoryless strategy consisting in playing
randomly any action.

To win almost-surely games with reachability, safety and
Büchi objectives, it is sufficient for a player to remember her
belief. A canonical almost-surely winning strategy consists
in playing randomly any action which ensures the next be-
lief to be almost-surely winning 2. Similar strategies were
used in [6]. These two results are not very surprising: al-
though they were not stated before as such, they can be
proved using techniques similar to those used in [17, 6].

The element of surprise is the amount of memory needed
for winning positively co-Büchi and safety games. In these
situations, it is still enough for player 1 to use a strategy with
finite-memory but, surprisingly perhaps, an exponential size
memory is not enough. Instead doubly-exponential memory
is necessary as will be proved in the next subsection.

Doubly-exponential size memory is also sufficient. Ac-
tually for winning positively, it is enough for player 1 to
make hypothesis about beliefs of player 2, and to store in
her memory all pairs (k, L) of possible current state and be-
lief of her opponent. The update operator of the correspond-
ing finite-memory strategy uses numerous random choices
so that the opponent is unable to predict future moves. More
details are available in the proof of Theorem 4.

3.2 Doubly-exponential memory is neces-
sary to win positively safety games.

We now show that a doubly-exponential memory is nec-
essary to win positively safety (and hence co-Büchi) games.
We construct, for each integer n, a reachability game, whose
number of state is polynomial in n and such that player 2 has
a positively winning strategy for her safety objective. This
game, called guess my setn, is described on Fig. 4. The
objective of player 2 is to stay away from t, while player 1
tries to reach t.

We prove that whenever player 2 uses a finite-memory
strategy in the game guess my setn then the size of the
memory has to be doubly-exponential in n, otherwise the
safety objective of player 2 may not be achieved with pos-
itive probability. This is stated precisely later in Propo-
sition 1. Prior to that, we briefly describe the game
guess my setn for fixed n ∈ N.

2for reachability and safety games, we suppose without loss of gener-
ality that target states are absorbing.
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s

∗

t ∗

Player 1 chooses secretly a set
X ⊂ {1, . . . , n} of size n

2

Player 1 announces publicly
1
2

( n
n/2

)
sets different from X

Player 2 has 1
2

( n
n/2

)
tries

for finding X

Player 1
cheats

X not found

X found

Figure 4. A game where player 2 needs a lot
of memory to stay away from target state t.

Idea of the game. The game guess my setn is divided
into three parts. In the first part, player 1 generates a set
X ! {1, . . . , n} of size |X| = n/2. There are

( n
n/2

)
possi-

bilities of such sets X . Player 2 is blind in this part and has
no action to play.

In the second part, player 1 announces by her actions
1
2

( n
n/2

)
(pairwise different) sets of size n/2 which are dif-

ferent from X . Player 2 has no action to play in that part,
but she observes the actions of player 1 (and hence the sets
announced by player 1).

In the third part, player 2 can announce by her action
up to 1

2

( n
n/2

)
sets of size n/2. Player 1 observes actions of

player 2. If player 2 succeeds in finding the set X , the game
restarts from scratch. Otherwise, the game goes to state t
and player 1 wins.

It is worth noticing that in order to implement the game
guess my setn in a compact way, we allow player 1 to
cheat, and rely on probabilities to always have a chance to
catch player 1 cheating, in which case the game is sent to
the sink state s, and player 1 loses. That is, player 1 has
to play following the rules without cheating else she cannot
win almost-surely her reachability objective. However we
do not need to allow player 2 to cheat. Notice that player 1
is better informed than player 2 in this game.

Concise encoding. We now turn to a more formal descrip-
tion of the game guess my setn, to prove that it can be en-
coded with a number of states polynomial in n. There are
three problems to be solved, that we sketch here. First, re-
membering set X in the state of the game would ask for an
exponential number of states. Instead, we use a fairly stan-
dard technique: recall at random a single element x ∈ X .

In order to check that a set Y of size n/2 is different from
the set X of size n/2, we challenge player 1 to point out
some element y ∈ Y \ X . We ensure by construction that
y ∈ Y , for instance by asking it when Y is given. This way,
if player 1 cheats, then she will give y ∈ X , leaving a pos-
itive probability that y = x, in which case the game is sure
that player 1 is cheating and punishes player 1 by sending
her to state s where she loses.

The second problem is to make sure that player 1 gen-
erates an exponential number of pairwise different sets
X1, X2, . . . , X 1

2 ( n
n/2). Notice that the game cannot re-

call even one set. Instead, player 1 generates the sets in
some total order, denoted <, and thus it suffices to check
only one inequality each time a set Xi+1 is given, namely
Xi < Xi+1. It is done in a similar but more involved way
as before, by remembering randomly two elements of Xi

instead of one.
The last problem is to count up to 1

2 ·
( n
n/2

)
with a loga-

rithmic number of bits. Again, we ask player 1 to increment
a counter, while remembering only one of the bits and pun-
ishing her if she increments the counter wrongly.

Proposition 1. Player 2 has a finite-memory strategy with
3 × 2

1
2 ·( n

n/2) different memory states to win positively
guess my setn.

No finite-memory strategy of player 2 with less than
2

1
2 ·( n

n/2) memory states wins positively guess my setn.

Proof. The first claim is quite straightforward. Player 2 re-
members in which part she is (3 different possibilities). In
part 2, player 2 remembers all the sets proposed by player
1 (2

1
2 ·( n

n/2) possibilities). Between part 2 and part 3, player
2 inverses her memory to remember the sets player 1 did
not propose (still 2

1
2 ·( n

n/2) possibilities). Then she proposes
each of these sets, one by one, in part 3, deleting the set
from her memory after she proposed it. Let us assume first
that player 1 does not cheat and plays fair. Then all the sets
of size n/2 are proposed (since there are 2 · 1

2 ·
( n
n/2

)
such

sets), that is X has been found and the game starts another
round without entering state t. Else, if player 1 cheats at
some point, then the probability to reach the sink state s is
non zero, and player 2 also wins positively her safety objec-
tive.

The second claim is not hard to show either. The strategy
of player 1 is to never cheat, which prevents the game from
entering the sink state. In part 2, player 1 proposes the sets
X in a lexicographical way and uniformly at random. As-
sume by contradiction that player 2 has a counter strategy
with strictly less than 2

1
2 ·( n

n/2) states of memory that wins
positively the safety objective. Consider the end of part 2,
when player 1 has proposed 1

2 ·
( n
n/2

)
sets. If there are less

than 2
1
2 ·( n

n/2) states the memory of player 2 can be in, then

7



there exists a memory state m∗ of player 2 and at least two
sets A,B among the 1

2 ·
( n
n/2

)
sets proposed by player 1

such that the memory of player 2 after A is m∗ with non
zero probability and the memory of player 2 after B is m∗
with non zero probability. Now, A ∪ B has strictly more
than 1

2 ·
( n
n/2

)
sets of n/2 elements. Hence, there is a set

X ∈ A ∪ B with a positive probability not to be proposed
by player 2 after memory state m∗. Without loss of gener-
ality, we can assume that X /∈ A (the other case X /∈ B is
symmetrical). Now, for each round of the game, there is a
positive probability that X is the set in the memory of player
1, that player 1 proposed sets A, in which case player 2 has
a (small) probability not to propose X and then the game
goes to t, where player 1 wins. Player 1 will thus eventually
reach the target state with probability 1, hence a contradic-
tion. This achieves the proof that no finite-memory strategy
of player 2 with less than 2

1
2 ·( n

n/2) states of memory is pos-
itively winning.

4 Decidability.

We turn now to the algorithms which compute the set
of supports that are almost-surely or positively winning for
various objectives.

Theorem 3 (Deciding positive winning in reachability
games). In a reachability game each initial distribution
δ is either positively winning for player 1 or surely win-
ning for player 2, and this depends only on supp(δ) ⊆ K.
The corresponding partition of P(K) is computable in time
O

(
G · 2K

)
, where G denotes the size of the description of

the game. The algorithm computes at the same time the
finite-memory strategies described in Theorem 2.

As often in algorithmics of game theory, the computation
is achieved by a fix-point algorithm.

Sketch of proof. The set of supports L ⊆ P(K) surely-
winning for player 2 are characterized as the largest fix-
point of some monotonic operator Φ : P(P(K)) →
P(P(K)). The operator Φ associates with L ⊆ P(K) the
set of supports L ∈ L that do not intersect target states and
such that player 2 has an action which ensures that her next
belief is in L as well, whatever action is chosen by player 1
and whatever signal player 2 receives. For L ⊆P (K), the
value of Φ(L) is computable in time linear in L and in the
description of the game, yielding the exponential complex-
ity bound.

To decide whether player 1 wins almost-surely a Büchi
game, we provide an algorithm which runs in doubly-
exponential time and uses the algorithm of Theorem 3 as
a sub-procedure.

Theorem 4 (Deciding almost-sure winning in Büchi
games). In a Büchi game each initial distribution δ is ei-
ther almost-surely winning for player 1 or positively win-
ning for player 2, and this depends only on supp(δ) ⊆ K.
The corresponding partition of P(K) is computable in time
O(22G

), where G denotes the size of the description of the
game. The algorithm computes at the same time the finite-
memory strategies described in Theorem 2.

Sketch of proof. The proof of Theorem 4 is based on the
following ideas.

First, suppose that from every initial support player 1
can win the reachability objective with positive probability.
Since this positive probability can be bounded from below,
repeating the same strategy can ensure that Player 1 wins
the Büchi condition with probability 1. According to Theo-
rem 3, in the remaining case there exists a support L surely
winning for player 2 for her co-Büchi objective.

We prove that in case player 2 can force the belief of
player 1 to be L someday with positive probability from
another support L′, then L′ is positively winning as well for
player 2. This is not completely obvious because in gen-
eral player 2 cannot know exactly when the belief of player
1 is L. For winning positively from L′, player 2 plays to-
tally randomly until she guesses randomly that the belief
of player 1 is L, at that moment she switches to a strategy
surely winning from L. Such a strategy is far from being
optimal, because player 2 plays randomly and in most cases
she makes a wrong guess about the belief of player 1. How-
ever player 2 wins positively because there is a chance she
is lucky and guesses correctly at the right moment the belief
of player 1.

Player 1 should surely avoid her belief to be L or L′ if
she wants to win almost-surely. However, doing so player
1 may prevent the play from reaching target states, which
may create another positively winning support for player 2,
and so on...

Using these ideas, we prove that the set L∞ ⊆ P(K) of
supports almost-surely winning for player 1 for the Büchi
objective is the largest set of initial supports from where

(†) player 1 has a strategy for winning positively the reach-
ability game while ensuring at the same time her belief
to stay in L∞.

Property (†) can be reformulated as a reachability con-
dition in a new game whose states are states of the original
game augmented with beliefs of player 1, kept hidden to
player 2.

The fix-point characterization suggests the following al-
gorithm for computing the set of supports positively win-
ning for player 2: P(K)\L∞ is the limit of the sequence
∅ = L′0 ! L′0 ∪ L′′1 ! L′0 ∪ L′1 ! L′0 ∪ L′1 ∪ L′′2 ! . . . !
L′0 ∪ · · · ∪ L′m = P(K)\L∞, where
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(a) from supports in L′′i+1 player 2 can surely guarantee
the safety objective, under the hypothesis that player 1
beliefs stay outside L′i,

(b) from supports in L′i+1 player 2 can ensure with pos-
itive probability the belief of player 1 to be in L′′i+1

someday, under the same hypothesis.

The overall strategy of player 2 positively winning for
the co-Büchi objective consists in playing randomly for
some time until she decides to pick up randomly a belief L
of player 1 in some L′′i . She forgets the signals she has re-
ceived up to that moment and switches definitively to a strat-
egy which guarantees (a). With positive probability, player
2 is lucky enough to guess correctly the belief of player 1 at
the right moment, and future beliefs of player 1 will stay in
L′i, in which case the co-Büchi condition holds and player
2 wins.

Property † can be formulated by mean of a fix-point ac-
cording to Theorem 3, hence the set of supports positively
winning for player 2 can be expressed using two nested fix-
points. This should be useful for actually implementing the
algorithm and for computing symbolic representations of
winning sets.

5 Complexity and special cases.

In this section we show that our algorithms are optimal
regarding complexity. Furthermore, we show that these al-
gorithms enjoy better complexity in restricted cases, gen-
eralizing some known algorithms [17, 6] to more general
subcases, while keeping the same complexity.

The special cases that we consider regard inclusion be-
tween knowledges of players. To this end, we define the
following notion. If at each moment of the game the belief
of player x is included in the one of player y, then player x
is said to have more information (or to be better informed)
than player y. It is in particular the case when for every tran-
sition, the signal of player 1 contains the signal of player 2.

5.1 Lower bound.

We prove here that the problem of knowing whether the
initial support of a reachability game is almost-surely win-
ning for player 1 is 2EXPTIME-complete. The lower bound
even holds when player 1 is more informed than player 2.

Theorem 5. In a reachability game, deciding whether
player 1 has an almost-surely winning strategy is
2EXPTIME-hard, even if player 1 is more informed than
player 2.

Sketch of proof. We do a reduction from the membership
problem for EXPSPACE alternating Turing machines. Let

M be an EXPSPACE alternating Turing machine, and w
be an input word of length n. From M and w we build
a stochastic game with partial observation such that player
1 can achieve almost-surely a reachability objective if and
only if w is accepted by M. The idea of the game is that
player 2 describes an execution of M on w, that is, she
enumerates the tape contents of successive configurations.
Moreover she chooses the rule to apply when the state of
M is universal, whereas player 1 is responsible for choos-
ing the rule in existential states. When the Turing machine
reaches its final state, the play is won by player 1. In this
game, if player 2 really implements some execution of M
on w, player 1 has a surely winning strategy if and only if
w is accepted by M.

This reasoning holds under the assumption that player 2
effectively describes the execution of M on w consistent
with the rules chosen by both players. However, player 2
could cheat when enumerating successive configurations of
the execution. To prevent player 2 from cheating, it would
be convenient for the game to remember the tape contents,
and check that in the next configuration, player 2 indeed
applied the chosen rule. However, the game can remem-
ber only a logarithmic number of bits, while the configura-
tions have a number of bits exponential in n. Instead, we
ask player 1 to pick any position k of the tape, and to an-
nounce it to the game (player 2 does not know k), which is
described by a linear number of bits. The game keeps the
letter at this position together with the previous and next let-
ter on the tape. This allows the game to compute the letter a
at position k of the next configuration. As player 2 describes
the next configuration, player 1 will announce to the game
that position k has been reached again. The game will thus
check that the letter player 2 gives is indeed a. This way,
the game has a positive probability to detect that player 2 is
cheating. If so, the game goes to a sink state which is win-
ning for player 1. To increase the probability for player 1
of observing player 2 cheating, player 1 has the possibility
to restart the whole execution from the beginning whenever
she wants. If player 2 cheats infinitely often, player 1 will
detect it with probability one, and will win the game almost-
surely.

We now have to take into account that player 1 could
cheat: she could point a certain position of the tape contents
at a given step, and point somewhere else in the next step.
To avoid this kind of behaviour, a small piece of information
about the position pointed by player 1 is kept secret in the
state of the game. If player 1 is caught cheating, the game
goes to a sink state losing for player 1.

This construction ensures that player 1 has an almost
sure winning strategy if and only if w is accepted by the
alternating Turing machine M. Note that in the game de-
scribed above player 1 does not have full information but
has more information than player 2.
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5.2 Special cases.

A first straightforward result is that in a safety game
where player 1 has full information, deciding whether she
has an almost-surely winning strategy is in PTIME.

Now, consider a Büchi game. In general, as shown in
the previous section, deciding whether the game is almost-
surely winning for player 1 is 2EXPTIME-complete. How-
ever, it is already known that when player 2 has a full ob-
servation of the game the problem is EXPTIME-complete
only [6]. We show that our algorithm keeps the same EX-
PTIME upper-bound even in the more general case where
player 2 is more informed than player 1, as well as in the
case where player 1 fully observes the state of the game.

Proposition 2. In a Büchi game where either player 2
has more information than player 1 or player 1 has com-
plete observation, deciding whether player 1 has an almost-
surely winning strategy or not (in which case player 2 has
a positively winning strategy) can be done in exponential
time.

Sketch of proof. In both cases, player 2 needs only expo-
nential memory because if player 2 has more information,
there is always a unique belief of player 1 compatible with
her signals, and in case player 1 has complete observation
her belief is always a singleton set.

Note that the latter proposition does not hold when
player 1 has more information than player 2. Indeed in the
game from the proof of Theorem 5, player 1 does have more
information than player 2 (but she does not have full infor-
mation).

6 Conclusion.

We considered stochastic games with signals and estab-
lished two determinacy results. First, a reachability game
is either almost-surely winning for player 1, surely winning
for player 2 or positively winning for both players. Second,
a Büchi game is either almost-surely winning for player 1
or positively winning for player 2. We gave algorithms for
deciding in doubly-exponential time which case holds and
for computing winning strategies with finite memory.

The question ‘does player 1 have a strategy for winning
positively a Büchi game?’ is undecidable [2], even when
player 1 is blind and alone. An interesting research direc-
tion is to design subclasses of stochastic games with signals
for which the problem is decidable.
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