
Combining Theorem Proving and Narrowing

for Rewriting-Logic Specifications

Vlad Rusu

Inria Rennes Bretagne Atlantique, France
Vlad.Rusu@inria.fr

Abstract. We present an approach for verifying dynamic systems spec-
ified in rewriting logic, a formal specification language implemented in
the Maude system. Our approach is tailored for invariants, i.e., prop-
erties that hold on all states reachable from a given class of initial
states. The approach consists in encoding invariance properties into in-
ductive properties written in membership equational logic, a sublogic of
rewriting logic also implemented in Maude. The invariants can then be
verified using an inductive theorem prover available for membership
equational logic, possibly in interaction with narrowing-based symbolic
analysis tools for rewriting-logic specifications also available in the Maude
environment. We show that it is possible, and useful, to automatically
test invariants by symbolic analysis before interactively proving them.

1 Introduction

Rewriting logic [1], abbreviated as rl in this paper, is a formal specification lan-
guage, in which a system’s dynamics can be expressed by means of rewrite rules
over a system’s state defined in some version of equational logic. The adequacy of
rewriting logic for specifying dynamic systems has been demonstrated by many
practical applications, including programming language semantics [2], security
protocols [3], and bioinformatics [4]. There are several systems which implement
different variants of this logic, including Maude [5], Elan [6], and cafeObj [7].
Membership equational logic [8], hereafter called mel in this paper, is the logic
implemented in Maude as rl’s underlying equational logic.

The Maude system [5] consists of a language for expressing rl and mel spec-
ifications, and a set of tools for analysing such specifications and verifying them
against user-defined properties. The automatic tools provided by the Maude
system include an enumerative, finite state-space searching tool and an enumer-
ative, finite-state model checker for linear temporal logic properties [9] and also
for an extension of it called linear temporal logic of rewriting [10]. A symbolic
state exploration tool based on narrowing techniques has also recently been made
available in Maude [11], and narrowing-based symbolic model checking for linear
temporal logic has also been studied [12]. Infinite-state rewriting logic specifica-
tions can be verified in Maude with respect to temporal-logic properties, using
equations to reduce infinite-state spaces to finite-state ones [13].

G. Fraser and A. Gargantini (Eds.): TAP 2010, LNCS 6143, pp. 135–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

136 V. Rusu

Our contribution is an approach for verifying invariants of infinite-state rl
specifications. Intuitively, an invariant is a predicate that holds in all states
that are reachable from a given class of initial states. Our approach consists
in encoding the verification of invariance properties on the reachable model of
rl theories, into the verification of mel properties on the initial model of mel
theories. As a consequence, invariance properties can be proved using inductive
theorem provers for mel, such as the itp tool [14]. Since our formalisation is con-
sistent with that underlying Maude’s narrowing-based symbolic analysis tools,
our theorem-proving approach can be used in interaction with them.

Specifically, we demonstrate in this paper the usefulness of symbolic simula-
tion in helping the interactive proofs of invariants. Such proofs are performed by
induction in the theorem prover, and when the induction step fails, the user must
provide the theorem prover with state predicates that (1) are invariants and (2)
imply the induction step. While proving (2) is typically automatic - it amounts
to proving an implication, the proof of (1) typically has to be performed, again,
by induction. Then, assume the user poses a “wrong” state predicate, for which
(1) is not provable. Unaware of her error, she will try to prove the invariance of
her predicate, also by induction in the theorem prover. The failing induction will
lead her to attempt to pose yet other additional auxiliary invariants. . . in a proof
effort that cannot succeed. By contrast, symbolic simulation can automatically
falsify invariants by symbolically exploring the system’s reachable states up to a
given depth, thereby preventing the user from entering dead ends in her proofs.

The rest of the paper is organised as follows. In Section 2 we provide back-
ground on mel and on rl. In Section 3 we recall results about narrowing in the
context of rl: the soundness and (under some conditions) the completeness of
narrowing for solving reachability problems for rewriting-logic specifications [3].
A class of rl systems satisfying those conditions is identified, and we argue that
the class is expressive enough to express many communication protocols. Hence,
for systems in that class, narrowing can find all their reachable states starting
from a possibly infinite set of initial states, up to a bounded depth; this property
is important for our goals - testing invariants before trying to prove them.

In Section 4 we define the notion of a mel invariant ϕ of a rl specification
R starting from an initial (possibly, infinite) set of states denoted by a (possi-
bly, non-ground) term t0, as follows: ϕ is provable in the initial model of the
underlying mel theory E of R, for all states reachable in R from initial states.

The core of the approach is presented in Section 5. First, we define an auto-
matic translation that takes a rl theory R and a (possibly, non-ground) term t0,
and generates a mel theory M(R, t0), which enriches the mel subtheory of R
with a new sort, called Reachable , and with the membership axioms that in-
ductively define this sort. We then show (†) if R is topmost, then, for ground
terms t, and up to equality modulo the equations E of R, the statements “being
of sort Reachable in M(R, t0)” and “being reachable in the reachability model of
R from ground instances of t0” are equivalent. Next, we use the M(R, t0) theory
to give an alternative definition of an invariant ϕ of a rl theory R starting from
a possibly non-ground term t0, as follows: ϕ(t) is provable in the initial model

Combining Theorem Proving and Narrowing 137

of the mel subtheory of R, for all ground terms t that have sort Reachable in
M(R, t0) (again, up to equality modulo E). That the two given definitions of
invariance are equivalent follows from (†). The advantage of the second defini-
tion is that it allows us to prove invariants of rl specifications by induction on
the sort Reachable, using existing inductive theorem provers for mel such as
Maude’s itp. Section 6 illustrates the theorem-proving of invariants integrated
with narrowing-based symbolic falsification of invariants on a Bakery mutual-
exclusion algorithm. Section 7 discusses related and future work, and concludes.

2 Membership Equational Logic and Rewriting Logic

We briefly present membership equational logic and rewriting logic [1,8,11].
A membership equational logic (mel) signature is a tuple (K, Σ, S) where

K is a set of kinds, Σ is a K∗ × K indexed family of function symbols Σ =
{Σw,k}(w,k)∈K∗×K , and S = {Sk}k∈K is a pairwise disjoint K-indexed family
of sets of sorts - where Sk is the set of sorts of kind k. A signature (K, Σ, S)
is often denoted simply by Σ; then, TΣ denotes the set of ground terms over
signature Σ. Given a set X = {x1 : k1, . . . , xn : kn} of kinded variables, TΣ(X)
denotes the set of terms with free variables in the set X . Similarly, TΣ,k and
TΣ,k(X) denote, respectively, the set of ground terms of kind k and the set of
terms of kind k with free variables in the set X . A mel atomic formula over
(K, Σ, S) is either an equality t = t′, where t and t′ are terms in TΣ,k(X), for
some kind k ∈ K, or a membership assertion t : s, where t is a term in TΣ,k(X)
and s is a sort in Sk, for some kind k ∈ K. A mel sentence is a Horn clause

(∀X)t = t′ if C, or (1)
(∀X)t : s if C (2)

where the condition C has the form
∧

i∈I(ui = vi)∧
∧

j∈J (wj : sj), for some finite
sets of indices I, J . Sentences of the form (1) are called conditional equations,
and sentences of the form (2) are called conditional memberships. A sentence is
unconditional when it does not have a condition.

A mel theory is a tuple M = (Σ, E) that consists of a mel signature Σ and
a set of mel sentences over Σ. mel has a complete deduction system [8], in the
sense that a formula ϕ is provable from the sentences of a theory (Σ, E), denoted
as (Σ, E) � ϕ (or simply E � ϕ), if and only ϕ is semantically valid, i.e., it holds
in all the models of that theory. The standard model of a specification is called
its initial model [8]. In the initial model, sorts are sets of equivalence classes
of ground terms modulo the equations E, where two ground terms t, t′ are in
the same equivalence class, denoted by t =E t′, iff E � (∀∅)t = t′. We write
E �ind (∀X)ϕ to say that the sentence ϕ holds in the initial model of (Σ, E).

Example 1. The specification NAT in Figure 1 defines natural numbers with
addition. In the initial model of NAT , the natural number n ≥ 1 is represented
by the “sum” 1 + · · · + 1 of length n, and the term 0 represents the number 0.

138 V. Rusu

KNAT = {Nat?} with SNat? = {Nat}.
ΣNAT (λ,Nat?) = {0, 1}.
ΣNAT (Nat?Nat?,Nat?) = {+}.
ΣNAT w,Nat? = ∅, otherwise

ENAT =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 : Nat ,
1 : Nat ,
(∀N) 0 + N = N
(∀N,M) N + M = M + N
(∀N,M, P) (N + M) + P = N + (M + P)

Fig. 1. A specification of natural numbers

Note the three equations for associativity, communitativity, and unity (ACU).
These axioms can either be declared explicitly, or they can be attached to the
”+” operator as so-called equational attributes. For our purposes we use the for-
mer solution with theorem proving, and the latter one with narrowing. The main
reason is that Maude’s itp theorem prover that we use does not handle ACU
operators. In contrast, unification (an essential part of the narrowing-based sym-
bolic analysis, which we also use) is finitary and complete for ACU operators,
provided they are not defined by other equations (or provided the remaining
equations have certain technical properties) [15]. The finiteness and complete-
ness of ACU-unification are important for the completeness of narrowing as a
symbolic simulation technique for a class of rewriting-logic specifications expres-
sive enough to encode typical communication protocols. We shall come back to
this issue at the end of Section 3 after we present rewriting logic and narrowing.

A rewriting logic (rl) theory is a tuple R = (K, Σ, S, E, R), - often abbrevi-
ated as (Σ, E, R) - where (K, Σ, S, E) is a mel theory and R is a set of rewrite
rules (ρ) (∀X) l → r if C where l, r ∈ TΣ,k(X) for some kind k that de-
pends on the rule, and the condition C has the form

∧
i∈I(ui = vi)∧

∧
j∈J (wj : sj)

for some finite sets of indices I and J ; that is, like for mel sentences, we consider
that only equations and memberships are allowed in the conditions of the rules.
Note that in its most general form [16] rewriting logic also allows for rewrites
in conditions and frozen arguments, which we do not consider here. Moreover,
we shall only consider topmost theories [3]: a theory is topmost if there exists
a certain kind k ∈ K such that (i) for all rewrite rules of the above form,
l, r ∈ TΣ,k(X), and (ii) no operation in Σ takes arguments of the kind k. Many
authors have shown the adequacy of rl for specifying dynamic systems (includ-
ing the restricted topmost theories [3] - ”almost” all distributed systems can be
so described). The idea is to specify the system’s state kind by equations and
membership axioms, and the system’s dynamics by (topmost) rewrite rules over
the kind of states.

Example 2. Mutual exclusion of two processes to a resource can be ensured
by the so-called Bakery algorithm. The processes can be in modes Sleep (not
interested in obtaining the resource), Try (when they are trying to obtain the
resource) and Critical (when they have the resource). To control transitions
between these modes, each process has a ticket, which is a natural number. The
main idea is that a process gets the resource when it has the smallest ticket
(because that process has been trying to get the resource for the longest time),
or, alternatively, when the other process is not interested in getting the resource.

Combining Theorem Proving and Narrowing 139

To specify the system as a rl theory BAK we use the specification NAT of
natural numbers with addition in Figure 1, as well as a (trivial) specification of
the kind Mode? with the only sort Mode, and the three constants S, T, and C of
the sort Mode. The states of the system are built using a constructor 〈. . .〉 that
takes two modes and two natural numbers and returns a term in the sort State.
The evolution of the system is described by the rewrite rules in Figure 2.

Here, l1 and l2 are variables of the sort Mode and t1, t2, x are variables of
the sort Nat. We describe the evolution of the first process (the left-hand side
column); the evolution of the second process, in the right-hand side column, is
similar.

〈S , l2, t1, t2〉→〈T , l2, t2 +1, t2〉
〈T , l2, t1, 0〉→〈C , l2, t1, 0〉
〈T , l2, t1, t1+x+1〉→〈C , l2, t1, t1+x+1〉
〈C , l2, t1, t2〉→〈S , l2, 0, t2〉

〈l1,S , t1, t2〉→〈l1, T , t1, t1 +1〉
〈l1,T , 0, t2〉→〈l1,C , 0, t2〉
〈l1,T , t2+x+1, t2〉→〈l1,C , t2+x+1, t2〉
〈l1,C , t1, t2〉→〈l1,S , t1, 0〉

Fig. 2. BAK: Bakery algorithm. We only use unconditional rewrite rules, since condi-
tional narrowing is outside the scope of Maude’s current implementation of narrowing.

The first rule moves the process from the Sleep to the Try mode, and changes
the value of its ticket t1, by ”assigning” to it the term t2 + 1. Then, the first
process may move to the Critical mode if (a) the other process has its ticket
equal to 0, or (b) the first process has the smallest ticket. The latter condition is
obtained by having the ticket of the second process denoted by the term t1+x+1,
for some x of the sort Nat, where t1 is the ticket of the first process. Finally, the
first process goes back to the Sleep mode and sets its ticket back to zero.

Assume that we want to simulate the behaviours of the BAK starting from a
possibly infinite class of initial states. Let the initial states be denoted by the
term 〈S, S, t, t〉, in which both processes are in the Sleep modes and have the
same initial value t for their tickets, where t is a variable of the sort Nat - the
actual initial value of the tickets is left unspecified. The desired simulation cannot
be performed using Maude’s enumerative state-exploration tools, because those
tools require a unique initial state, i.e., a ground term. By contrast, narrowing
can simulate the executions of our system, starting from a non-ground term.

Reachability. The notation R � (∀X)t0 → t expresses the fact that the term
t ∈ TΣ(X) is provable from the term t0 ∈ TΣ(X) in the deduction system of R
(which amounts to applying the rewrite rules of R modulo the equations E
of R). The reachability model [16] of R is a transition system whose states are
equivalence classes of ground terms modulo E. For all states [t]E , [t′]E , there is
a transition [t]E →R [t′]E in this model iff there exists a proof R � (∀∅)t → t′

using exactly one rewrite rule of R. We denote by [t]E →∗
R [t′]E the fact that

the state [t′]E is reachable from the state [t]E in the reachability model of R.

140 V. Rusu

3 Narrowing, and a Class of Systems It Can Analyse

In the context of rewriting logic, narrowing is used for symbolically solving reach-
ability problems [3,11] (and more generally, for symbolically model checking lin-
ear temporal-logic properties [12]). We consider reachability problems of the form
”given terms t0 ∈ TΣ(X) and t ∈ TΣ does there exist a (ground) substitution
σ : X → TΣ such that [t0σ]E →∗

R [t]E holds” for topmost theories R, whose
rewrite rules are unconditional and do not have supplementary variables in their
right-hand sides wth respect to their left-hand sides - to simplify matters and to
be consistent with the current implementation of narrowing in Maude.

Given a substitution σ : X �→ TΣ(X), we write t1
σ
�R t2 if there exists in R

a rule (ρ) (∀X) l → r such that the variables occuring in t1 and l are disjoint
and such that E � t1σ = lσ and E � rσ = t2. That is, it is provable in the mel
subtheory (Σ, E) of R that σ is a unifier for t1 and the left-hand side l of the
rule (ρ) and that σ matches the right-hand side r of the rule with the term t2.

For t1, t
′
1, t2, t

′
2 ∈ TΣ(X) we write t′1

σ
�R,E t′2 if t′1 =E t1

σ
�R t2 =E t′2. The

narrowing relation �R,E⊆ TΣ(X)×TΣ(X) is defined by t1 �R,E t2 iff t1
σ
�R,E

t2 for some substitution σ. Let �∗
R,E be the reflexive transitive closure of �R,E .

The soundness of narrowing for solving reachability problems in Maude [11] says
essentially that for all terms t0 ∈ TΣ(X) and t ∈ TΣ, if t0�

∗
R,Et then there

exists a ground substitution σ : X �→ TΣ such that [t0σ]E→∗
R[t]E .

On the other hand, completeness of narrowing, meaning that narrowing
t0�

∗
R,Et ”finds” in some sense all solutions σ such that [t0σ]E→∗

R[t]E , does
not hold in general, but only under some technical conditions [3]. The most
important condition is that unification modulo E be finitary and complete; that
is, for any equation of the form t1=Et2, for t1, t2 ∈ TΣ(X), the algorithm returns
a finite set of substitutions, which are all the solutions of the equation1.

And this is precisely the case when E consists of ACU axioms for some oper-
ations in Σ, such as those defined for the ”+” operation in our specification of
natural numbers (Figure 1), or the encoding of sets in mel based on an ACU
”union” operation. These observations are important because they suggest a
class of systems that can be effectively symbolically simulated by narrowing, in
the sense that narrowing eventually ”reaches” all reachable states. The Bakery
algorithm in Figure 2 is one such system, thanks to the ACU-based definition
of natural numbers given in Figure 1. More generally, finite control and possibly
unbounded counters, typically encountered in such protocols, can be encoded
using our ACU-based encoding of natural numbers. Even more generally, com-
munication protocols with unordered channels also fall in this class - by encoding
unordered channels using sets constructed with an ACU definition of union.

One limitation remaining is that such communication protocols often require
conditions on the counters: such as, e.g., the conditions on the tickets in the

1 The other conditions are (in addition to those posed at the beginning of this section)
that the theory (Σ, E) is in the order-sorted fragment of mel and that that the
equations be regular and sort-preserving : left-hand and right-hand sides have the
same variables, and left-hand side does not have a greater sort than right-hand side.

Combining Theorem Proving and Narrowing 141

Bakery algorithm. However, we can encode such affine conditions - comparisons
of linear-arithmetic terms with constants - by unconditional rules, as follows.
Assume a system endoded in rl having one conditional topmost rule of the
form 〈l〉 → 〈r〉 if Σn

i=1aixi > b (and possibly other rules). We enrich the sort
State with two integer components. The initial states will now have the form
〈I, Σn

i=1aixi, b〉, where I is the expression denoting initial the states of the origi-
nal system. Each rule except the one we are encoding, of the form 〈l′〉 ⇒ 〈r′〉 if C′,
becomes 〈l′, x, y〉 ⇒ 〈r′, x, y〉 if C′ - that is, all the rules except the one we are
encoding leaves the ”new” components of the State unchanged. Our rule of in-
terest becomes 〈l, x, x+n+1〉 ⇒ 〈r, x, x+n+1〉, where the effect of checking the
condition to ”see” if the rule can be applied on a term is achieved by unifying
the left-hand side of our rule: 〈l, x, x+n+1〉 with that term. By generalising this
encoding to several linear-arithmetic conditions and to several rules, we obtain
an unconditional system equivalent to a conditional one.

Thus, narrowing can effectively simulate a class of systems expressive enough
to encode communication protocols with finite control, counters, and channels.

4 Invariants of Rewrite Theories

We continue by discussing in this section the notion of invariant for a rewrite
theory. In general, a predicate over the states of a dynamic system is an invariant
if the predicate holds in all the states of the system that are reachable from a
given class of initial states. To formalize this notion in the case of a system
specified in a (topmost) rl theory R, we have to answer the following questions:

1. how are the states and the dynamics to be specified?
2. how are the state predicates to be formalized?
3. when are the predicates to be considered as holding in a state?

For item (1) we adopt the usual rl representations: states are equivalence classes
(modulo the equations E of R) of ground terms of a certain kind [State]. There
is a possibly infinite set of initial states denoted by a term t0, possibly with
variables, of the kind [State]; then, initial states are equivalence classes of ground
instances of t0. Regarding the dynamics of the system, it shall naturally be
defined by reachability in the reachability model of R.

With regards to item (2): state predicates shall be formalised by Horn sen-
tences of the form (∀x : [State])(∀Y)ϕ having a free variable x of the kind [State]
(and possibly other free variables in the set Y , with x /∈ Y). Finally, for item (3),
a state predicate ϕ shall be considered to hold in a state t when the predicate
ϕ(t/x), obtained from ϕ by substituting the variable x with the term t, holds in
the initial model of the mel subtheory of the rl theory: E �ind (∀Y)ϕ(t/x).

In summary, when a system is specified as a topmost rl theory R, we formalize
the intuitive notion of an invariant as a state predicate ϕ holding in all states
are reachable from an initial state - denoted by 〈R, t0〉 �ind �ϕ - as follows.

Definition 1. 〈R, t0〉 �ind �ϕ if for all ground terms t ∈ TΣ, and all ground
substitutions σ : X �→ TΣ, [t0σ]E →∗

R [t]E implies E �ind (∀Y)ϕ(t/x).

142 V. Rusu

Example 3. Consider the rl specification BAK from Example 2. We have seen
that the states of the system are quadruples consisting of two modes and two
natural numbers built using the constructor 〈. . . 〉 of the sort State. The mutual
exclusion between readers and writers is encoded as the state predicate mutex :

(∀x : [State])(∀ t1, t2 : Nat). mutex(〈C, C, t1, t2〉) = false
(∀x : [State])(∀ t1, t2 : Nat, l1, l2 : Mode). l1 �= C ⇒ mutex(〈l1, l2, t1, t2〉) = true
(∀x : [State])(∀ t1, t2 : Nat, l1, l2 : Mode). l2 �= C ⇒ mutex(〈l1, l2, t1, t2〉) = true

The invariance of mutex on the BAK system starting from all states denoted by
the term 〈S, S, t, t〉 with the variable t : Nat, is written 〈BAK, 〈S, S, t, t〉〉 �ind

�mutex and defined by: for all ground terms t of kind [State], and for each
ground term n : Nat, 〈S, S, n, n〉 →∗

BAK [t]EBAK implies NAT �ind mutex(t/x).

Before we proceed to verifying invariants by theorem proving, we show how
invariants can be disproved using Maude’s narrowing-based symbolic analysis.

Disproving invariants. Disproving an invariance statement 〈R, t0〉 �ind �ϕ
amounts to finding a ground substitution σ and a sequence [t0σ]E →∗

R [t]E
such that E ��ind ϕ(t/x). If we find a narrowing sequence t0 �∗

R,E t such
that E ��ind ϕ(t/x), then, by soundness of narrowing there exists a sequence
[t0σ]E →∗

R [t]E such that E ��ind ϕ(t/x), hence, 〈R, t0〉 �ind �ϕ is disproved.
The completeness of narrowing says that all such ”disproofs” will eventually

be found by narrowing. Concretely, such sequences t0 �∗
R,E t can be found by

Maude’s search command. Consider a variant BAK′ of our running example, in
which the term 1 is replaced everywhere by the term 0. The invariance statement
〈BAK′, 〈S, S, t, t〉〉 �ind �mutex can be disproved (falsified) by Maude’s following
command: search〈S, S, t, t〉 �∗ 〈C, C, t1, t2〉, which immediately finds the term
〈C, C, 0, 0〉 violating the mutex predicate. A more involved use of the search
command to check auxiliary invariants that are needed in an inductive proof of
the ”main” mutual-exclusion invariant of the BAK system is shown in Section 6.

5 Theorem Proving for Invariance Properties

The previous section discussed the falsification of invariants. In this section we
propose an approach for proving invariants. The structure of the section is as
follows. We first define an automatic translation that takes a topmost rl theory
R and a term t0, possibly with variables, and generates a mel theory M(R, t0),
which enriches R with a sort called Reachable and with memberships defining
this sort. We show that for all ground terms t, the state [t]E is reachable in the
initial model of R from an initial state [t0σ] if and only if the term t has the sort
Reachable in the initial model of M(R, t0σ). Then, we prove that, for any state
predicate (∀x : [State])(∀Y)ϕ, the statements 〈R, t0〉 �ind �ϕ and M(R, t0) �ind

(∀x : [State])(∀Y)(x : Reachable ⇒ ϕ) are equivalent. This equivalence is the
basis for proving invariants using inductive theorem provers, such as the itp tool.

In the following definition, we “encode” reachability in a rl theory R (start-
ing from a possibly non-ground term t0) in a mel theory M(R, t0) using a
membership axiom for t0 and a membership axiom μ(ρ) for each rule ρ in R.

Combining Theorem Proving and Narrowing 143

Definition 2. Consider a rl theory R = (K, Σ, S, E, R), a sort State ∈ S,
and a term t0 ∈ TΣ,[State](X). We denote by M(R, t0) the following mel theory
(KM(R,t0), ΣM(R,t0), SM(R,t0), EM(R,t0)) constructed as follows:

– KM(R,t0) = K
– ΣM(R,t0) = Σ
– SM(R,t0) =S∪S′

[State] with S′
[State] =S[State]∪{Reachable} and Reachable /∈ S

– EM(R,t0) = E ∪ {(∀X)t0 : Reachable} ∪ {μ(ρ)|ρ ∈ R}, with μ((∀X) l →
r if C)) being the membership (∀X) r : Reachable if l : Reachable ∧ C. �

Example 4. Consider the Bakery system given in Example 2. The mel theory
M(BAK, 〈S, S, t, t〉) consists of the following elements:

– KM(BAK,〈S,S,t,t〉) = KBAK.
– ΣM(BAK,〈S,S,t,t〉) = ΣBAK.
– SM(BAK,〈S,S,t,t〉) = SBAK ∪ S′

[State], with S′
[State] = SBAK[State] ∪ {Reachable}

– EM(BAK,〈S,S,t,t〉) = EBAK ∪ E′, where E′ is the set of memberships axioms
shown in Figure 3.

〈S,S, t, t〉 : Reachable

〈T , l2, t2 +1, t2〉 : Reachable if 〈S , l2, t1, t2〉 : Reachable
〈C , l2, t1, 0〉 : Reachable if 〈T , l2, t1, 0〉 : Reachable
〈C , l2, t1, t1+x+1〉 : Reachable if 〈T , l2, t1, t1+x+1〉 : Reachable
〈S , l2, 0, t2〉 : Reachable if 〈C , l2, t1, t2〉 : Reachable

〈l1,T , t1, t1 +1〉 : Reachable if 〈l1, S , t1, t2〉 : Reachable
〈l1,C , 0, t2〉 : Reachable if 〈l1,T , 0, t2〉 : Reachable
〈l1,C , t2+x+1, t2〉 : Reachable if 〈l1, T , t2+x+1, t2〉 : Reachable
〈l1,S , t1, 0〉 : Reachable if 〈l1,C , t1, t2〉 : Reachable

Fig. 3. Membership axioms for M(BAK, 〈S, S, t, t〉)

Lemma 1. Consider a rl theory R = (K, Σ, S, E, R), with State ∈ S and
t ∈ TΣ,[State]. For all t′ ∈ TΣ,[State], [t]E →∗

R [t′]E iff M(R, t) � t′ : Reachable.

Proof. The idea of the proof is that each transition in the reachability model of
R, generated by using a rule (ρ) of R, can be emulated by an deduction in the
proof system of M(R, t), using the membership μ(ρ) given in Definition 2.

(⇒) By induction on the length of the sequence [t]E →∗
R [t′]E .

If the length is 0 then E � (∀∅)t = t′. The membership t : Reachable in
M(R, t) implies M(R, t) � t : Reachable, hence, M(R, t) � t′ : Reachable.

Assume the statement holds for sequence of length n. Any sequence [t]E →n+1
R

[t′]E of length n + 1 can be decomposed into [t]E →n
R [t′′]E→R[t′]E , such that

the last step uses a rule (ρ) (∀X)l → r if C with a ground substitution σ.

1. then, t′′ ≡ t′′σ =E lσ because t′′ is ground (and ≡ denotes syntactical
equality), t′ =E rσ, and E � Cσ. The latter implies a fortiori M(R, t) � Cσ;

144 V. Rusu

2. by induction, M(R, t) � t′′ : Reachable, hence, M(R, t) � lσ : Reachable;
3. hence, using the membership (μ(ρ)) r : Reachable if l : Reachable ∧ C from

Definition 2 with σ, M(R, t) � rσ : Reachable, i.e., M(R, t) � t′ : Reachable.

(⇐) By induction on the length of the proof M(R, t) � t′ : Reachable, where
by length we here mean the number of applications of memberships of the form
(μ(ρ)) r : Reachable if l : Reachable∧C generated from rules (ρ) (∀X)l → r if C.

If the length is 0 then t′ : Reachable has been proved using the membership
t : Reachable for the initial term, hence, t =E t′ and [t]E →∗

R [t′]E follows.
Assume the statement holds for sequence of length n. Any proof M(R, t) �

t′ : Reachable of length n + 1 can be decomposed into a proof M(R, t) � t′′ :
Reachable of length n, for some t′′ ∈ TΣ , followed by an application of a mem-
bership (μ(ρ)) r : Reachable if l : Reachable ∧ C with a ground substitution σ
such that t′ =E rσ, t′′ =E lσ, and M(R, t) � Cσ. Since the sort Reachable is
“new” in M(R, t), it does not occur in the condition C, hence, E � Cσ. Since
t′′ is ground, t′′ ≡ t′′σ =E lσ. Hence, the rule (ρ) (∀X)l → r if C can be ap-
plied on t′′ and generates the transition [t′′]E→R[t′]E . By induction hypothesis,
[t]E →∗

R [t′′]E . The transitivity of the →∗
R relation concludes. �

We have proved the equivalence between [t]E →∗
R [t′]E and M(R, t) � t′ :

Reachable for ground terms t, t′. In particular, in our setting where the terms t are
ground instances of the (possibly, non-ground) term t0, we obtain the equivalence
between for all ground substitutions σ, [t0σ] →∗

R [t]E and for all ground substitu-
tions σ, M(R, t0σ) � t : Reachable. However, in order to reason by induction on
Reachable, we need a different hypothesis, namely, M(R, t0) �ind t : Reachable.
The following lemma bridges the gap between those statements.

Lemma 2. For t0 ∈ TΣ(X) and t ∈ TΣ, M(R, t0) �ind t : Reachable if and
only if M(R, t0σ) � t : Reachable for all ground substitutions σ : X �→ TΣ.

Proof. Let us denote by M(R) the mel theory obtained by removing the mem-
bership (∀X)t0 : Reachable from the theory M(R, t0) in Definition 2. Then,
M(R, t0) �ind t : Reachable iff M(R) �ind ((∀X)t0 : Reachable ⇒ t : Reachable).
Since truth in the initial model for a statement is equivalent to deduction of all
ground instances of that statement, we obtain that the last entailment is equiva-
lent to M(R) � (t0σ : Reachable ⇒ t : Reachable) for all ground substitutions σ,
itself equivalent to M(R, t0σ) � t : Reachable for all ground substitutions σ. �

Theorem 1. Consider a rl theory R = (K, Σ, S, E, R), with State ∈ S, a term
t0 ∈ TΣ,[State](X), and a state predicate (∀x : [State], ∀Y)ϕ. Then 〈R, t0〉 �ind �ϕ
if and only if M(R, t0) �ind (∀x : [State])(∀Y)(x : Reachable ⇒ ϕ).

Proof. Since x /∈ Y , M(R, t0) �ind (∀x : [State])(∀Y)(x : Reachable ⇒ ϕ)
is equivalent to M(R, t0) �ind (∀x : [State])(x : Reachable ⇒ (∀Y)ϕ), and
using the fact that truth in the initial model for a statement is equivalent
to deduction of ground instances of that statement, we obtain equivalently
∀t ∈ TΣ,[State].M(R, t0) �ind (t : Reachable ⇒ (∀Y)ϕ(t/x)). Then, using the

Combining Theorem Proving and Narrowing 145

equivalence A � (B ⇒ C) iff (A � B implies A � C) we obtain equivalently

∀t ∈ TΣ,[State]. ([M(R, t0)�ind t : Reachable] implies
[M(R, t0)�ind (∀Y)ϕ(t/x)]) (3)

By using Lemmas 1 and 2, the left-hand side of the above implication is equiv-
alent to for all ground substitutions σ, [t0σ]E →∗

R [t]E . Then, the implica-
tion (3) is equivalent to (‡) for all t ∈ TΣ,[State] and all ground substitutions
σ, [t0σ]E →∗

R [t]E implies M(R, t0) �ind (∀Y)ϕ(t/x). Finally, we note that
truth in the initial model of M(R, t0) and truth in the initial model of E are
equivalent, for all statements that do not refer to the “new” sort Reachable,
because, for, the truth of such statements, the memberships defining Reachable
in M(R, t0) are irrelevant. And ϕ does not refer to this sort, precisely because
it is “new”. Hence, the last statement (‡) in our chain of equivalences is itself
equivalent to for all t ∈ TΣ,[State] and all ground substitutions σ, [t0σ]E →∗

R
[t]E implies E �ind (∀Y)ϕ(t/x), which by Definition 1 is 〈R, t0〉 �ind �ϕ. �

6 Testing Invariants before Proving Them

The results in the previous section show that proving invariants is equiva-
lent to proving inductive theorems in the initial model of a mel theory, thus,
invariants can be proved by induction. Consider the specification BAK and
its mutex predicate. To prove the statement 〈BAK, 〈S, S, t, t〉〉 �ind �mutex ,
we prove (∀x)(x : Reachable =⇒ mutex(x) = true) in the initial model of
M(BAK, 〈S, S, t, t〉) using the itp tool. We describe that proof in some detail,
and show that narrowing-based symbolic simulation is really useful in preventing
the user from taking a wrong direction in the proof.

The proof goes by induction on the sort Reachable. This generates nine sub-
goals: one for the membership defining the initial state, and eight for the eight
other memberships defining the sort Reachable (all memberships shown in Fig. 3).

The subgoal for the initial states is automatically proved by the itp. Out
of the eight remaining subgoals, four are also automatically proved by the itp.
Those are the subgoals corresponding to the memberships whose left-hand sides
are states where at least one process is not in the Critical mode. These are,
for the first process: 〈T , l2, t2+1, t2〉 : Reachable if 〈S , l2, t1, t2〉 : Reachable and
〈S , l2, 0, t2〉 : Reachable if 〈C , l2, t1, t2〉 : Reachable, and the symmetrical ones
for the second process. In the left-hand sides of these memberships, the mutex
predicate obviously holds, and the itp tool “realises” this.

The remaining subgoals cannot be automatically proved by the itp, because
it needs additional information that only the user can provide.

Corresponding to the following membership of the first process:

〈C , l2, t1, t1 + x + 1〉 : Reachable if 〈T , l2, t1, t1 + x + 1〉 : Reachable

the itp presents us with essentially the following subgoal, written as a sequent :

146 V. Rusu

〈T , l2, t1, t1 + x + 1〉:Reachable
mutex(〈T , l2, t1, t1 + x + 1〉)
mutex(〈C , l2, t1, t1 + x + 1〉)

That is, using the hypotheses “above” the line, one has to prove the conclusion
“below” the line. In order to simplify her proof, the user performs a case splitting
on the variable l2, which generates three sub-subgoals for the given subgoal.
Two of them are automatically proved by the itp, because their conlusions are
mutex(C , T, t1, t1 + x + 1〉) and mutex(C , S, t1, t1 + x + 1〉), which obviously
hold. However, the third sub-subgoal is not proved by the itp: it has the form

〈T , C, t1, t1 + x + 1〉:Reachable
mutex(〈T , C, t1, t1 + x + 1〉)
mutex(〈C , C, t1, t1 + x + 1〉) (4)

By examining the hypotheses in the subgoal (4), the user realises that the second
one is trivially true, hence, it is useless; and that the conclusion is trivially false.
The only remaining possibility for proving the subgoal is therefore to prove that
the first hypothesis: 〈T , C, t1, t1 + x + 1〉 : Reachable does not hold. After some
thinking, the user realises that indeed, states of the form 〈T , C, t1, t1 + x + 1〉
should not be reachable, because the very basic principle of the Bakery algorithm
is that the process that is in the critical section should have the smallest ticket ;
but that is precisely not the case in the states of the above form.

Happy with her reasoning, the user poses the following lemma to the itp:

〈l1, l2, t1, t1 + x〉 : Reachable
l2 �= C

(5)

She postpones proving (5), and confidently uses it to sucessfully prove the sub-
goal (4). Eventually, she completes the proof of the main invariant mutex, and
returns to proving (5). However, no matter how hard she tries, she does not
succeed. . . of course, because the lemma is not true! Indeed, had the user tried
to falsify (5) using Maude’s narrowing-based search command, she would have
realised her error: search 〈S, S, t, t〉 �∗ 〈l1, C, x, x + y〉 immediately finds the
solution x = 0, l1 = S, y = 1+w for some w : Nat, which contradicts Lemma (5).

Fixing the error in the lemma amounts to adding the hypothesis t1 > 0.
The fixed lemma is indeed provable, but now, the new lemma does not solve
by itself the subgoal (4), for which it was posed in the first place! To deal with
this problem, the whole proof has to be re-thought, and a possible solution is
to prove that states of the form 〈T , C, t1, t1 + x + 1〉 such that t1 > 0 are not
reachable. The proof eventually succeeds, but with more effort than if the error
in the lemma had been found using Maude’s narrowing-based search command.

7 Conclusion, Related Work, and Future Work

State-space exploration and model checking, both enumerative and symbolic,
abstraction for reducing infinite-state systems to finite ones, and interactive the-
orem proving for infinite-state systems are well-known verification techniques.

Combining Theorem Proving and Narrowing 147

(automatic)ϕ

Maude

Equational abstractions
(Symbolic) Model checking
(Symbolic) Search

This paper

S

Inductive theorem proving

Maude

Smel �ind
ϕ′

mel�ϕmel

Srl �ind
⇐⇒

Fig. 4. Our approach in the context of Maude’s verification tools

For rewriting-logic specifications, all but the last one are currently supported in
the Maude environment. Our contribution adds a part currently missing. The
approach is based on an automatic translation of invariance properties of a signif-
icant fragment of rewriting logic (topmost, without rules in conditions or frozen
arguments) into inductive properties of membership equational logic. The pro-
posed approach can then be used in conjunction with those other tools (Figure 4)
thanks to the “semantical consistency” between the definition of invariance in
reachable models of rl theories and the definition of narrowing. We illustrate
on a simple Bakery algorithm the combination of theorem proving with narrow-
ing for “testing” lemmas before proving them. The results are encouraging. We
expect the benefits to be even more substantial for more complex systems and
proofs. This statement has to be assessed by experiments. We have identified a
class of systems that can be effectively symbolically simulated by narrowing, and
can encode communication protocols; these are our natural future case studies.

Related Work. Unification and narrowing are features introduced in the latest
version of Maude [11]. A tool built around Maude - the Maude NRL Analyser [17]
has been used for verifying security protocols, a topic also present in [3]. We are
users of (the Maude implementation of) narrowing in combination with our
theorem-proving approach, and plan to use them on communication protocols.

Regarding theorem proving, our work is inspired by Bruni and Meseguer, who
proposed in [16] a different encoding of rl into mel. Their translation handles
rl in its full generality, and their goal is to define the semantics and proof theory
of rl in terms of those of mel. By contrast, our encoding only captures a subset
of rl, which has been shown in [3] to be expressive enough for specifying many
classes of systems. But, in addition to [16] we also encode invariance proper-
ties for the given subset of rl as inductive properties in mel, which provides
us with an effective way of verifying invariants by theorem proving, possibly in
interaction with Maude’s other symbolic analysis tools. Moreover, our encod-
ing is much simpler than that proposed in [16]2. A simple encoding is essen-
tial in theorem-proving, for users to “recognise” the properties they are trying
to prove.

2 We encode reachability using only one additional sort, without any new operations.
By contrast, [16] requires to double the number of kinds in the rl specification, and
for each kind, there are 4 new sorts, and 4 operations defined using 7 equations each.

148 V. Rusu

S
ϕ

�ϕCafeOBJ

CafeOBJ

�ϕcoq

Scoq �
Coq

Model checking

�ϕsmv

Sots �
�ϕots

�ϕmel

Srl �

SearchTheorem proving

Maude

SMV

Ssmv �

Theorem proving

SCafeOBJ � (=⇒)

Fig. 5. Observational Transition Systems: representation in CafeOBJ and other tools

The present paper improves our own earlier, French version of this work [18].
The notions of dynamics and invariance that we use in the present paper are
standard for systems specified in rl. Hence, our theorem-proving approach for
invariants, and narrowing-based symbolic simulation for invariant falsification
”talk about” the same notion of invariant, i.e., we have a semantical consistency.
By contrast, the notions of dynamics and invariance in [18] are ad-hoc: we de-
fined there a “ground top-level rewriting” and defined the dynamics of systems
specified in rl and the notion of invariance based on that notion. Hence, in [18]
we used enumerative state-space exploration for invariant falsification, without
certainty that the falsification procedure deals with the same notion of invari-
ant as the theorem-proving approach. Moreover, enumerative exploration can
only deal with systems with finitely many initial states (expressed using finitely
many ground terms). By contrast, symbolic analysis can deal with systems with
possibly infinitely many initial states (expressed using a non-ground term). This
is also the case of our theorem-proving approach. On the other hand, we ver-
ify in [18] a more involved, n-processes version of the Bakery Algorithm, where
nontrivial auxiliary invariants are required for proving the mutual-exclusion goal.

There is a huge body of work dedicated to proving and disproving invariants,
and it is impossible to cite all references. We limit ourselves to the approach prob-
ably closest to ours, proposed by the CafeOBJ group from Japan’s Advanced In-
stitute of Science and Technology. Their approach consists in encoding the system
under verification as an Observational Transition System (ots), and invariants as
state predicates over the states of otss. The ots can be represented into several
formalisms (Figure 5): CafeOBJ and Coq, for theorem proving [19,20]; Maude,
for invariant falsification using enumerative techniques [21]; and smv, for model
checking [22]. Closest to our work is the theorem-proving approach in CafeOBJ.
The fundamental difference between our approach and theirs lies in the fact that
we remain within one single, integrated environment and formalism (that of Maude
and of rewriting logic/membership equational logic), which allows us to rely on
a common semantics for the various verification activities (Figure 4). By con-
trast, the CafeOBJ group use several tools, with different formalisms and different

Combining Theorem Proving and Narrowing 149

underlying semantics (Figure 5). This naturally raises the question of semanti-
cal consistency. On the other hand, by not ”bothering” with semantical consis-
tency, the CafeOBJ approach can be more efficient than ours, because they can
use highly-specialised tools, which are typically more efficient than Maude’s (sym-
bolic) model checker and theorem prover that we are using.

In the future we are planning to explore the integration of our theorem prov-
ing approach with Maude’s symbolic model checker for temporal logic [12]. The
model checker builds and analyses a symbolic graph encoding the reachable
states of the system. An invariant established by theorem proving may help
the symbolic model checker, by showing that certain nodes of a symbolic graph
are unreachable and can be safely removed from it; thereby enabling the model
checker to prove certain temporal-logic properties that could not be proved be-
fore. For example, consider a version of the Bakery algorithm containing the
additional rule 〈C, C, t1, t2〉 ⇒ 〈C, C, t1, t2〉, which says that if the protocol en-
ters the critical section, it stays there forever in the same state. Assume that the
symbolic graph ”has” a symbolic state of the form 〈C, C, t1 +1, t2 +1〉. Then, on
this graph, the temporal-logic property �((t1 > 0∧t2 > 0) ⇒ �(t1 = 0∨t2 = 0)),
which says that, from all reachable states state where both tickets are nonzero,
a state where at least one ticket is 0 will eventually be reached, is not provable.
The reason is the self-loop on 〈C, C, t1 + 1, t2 + 1〉. By proving mutual exclusion
we can safely remove that state (and the loop responsible for the model checker’s
failure) from the graph, thereby possibly enabling the model checker to succeed.

References

1. Mart́ı-Oliet, N., Meseguer., J.: Rewriting logic: roadmap and bibliography.
TCS 285(2), 121–154 (2002)

2. Meseguer, J., Rosu, G.: The rewriting logic semantics project. TCS 373(3), 213–237
(2007)

3. Meseguer, J., Thati., P.: Symbolic reachability analysis using narrowing and its ap-
plication to the verification of cryptographic protocols. Higher-Order and Symbolic
Computation 20(1-2), 123–160 (2007)

4. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.:
Pathway logic: Symbolic analysis of biological signaling. In: Pacific Symposium on
Biocomputing, pp. 400–412 (2002)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. L. (eds.): All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

6. Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.E., Ringeissen, C.: An
overview of ELAN. Electr. Notes Theor. Comput. Sci. 15 (1998)

7. Diaconescu, R., Futatsugi, K.: Logical foundations of CafeOBJ. TCS 285(2), 289–
318 (2002)

8. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

9. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude ltl model checker.
Electr. Notes Theor. Comput. Sci. 71 (2002)

150 V. Rusu

10. Meseguer, J.: The temporal logic of rewriting: A gentle introduction. In: Degano,
P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS,
vol. 5065, pp. 354–382. Springer, Heidelberg (2008)

11. Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer,
J., Talcott, C. L.: Unification and narrowing in Maude 2.4. In: Treinen, R. (ed.)
RTA 2009. LNCS, vol. 5595, pp. 380–390. Springer, Heidelberg (2009)

12. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using
narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer,
Heidelberg (2007)

13. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. In: Baader,
F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 2–16. Springer, Heidelberg
(2003)

14. Clavel, M., Palomino, M., Riesco, A.: Introducing the itp tool: a tutorial. J. Uni-
versal Computer Science 12(11), 1618–1650 (2006)

15. Escobar, S., Meseguer, J., Sasse, R.: Variant narrowing and equational unification.
Electr. Notes Theor. Comput. Sci. 238(3), 103–119 (2009)

16. Bruni, R., Meseguer., J.: Semantic foundations for generalized rewrite theories.
TCS 360(1-3), 386–414 (2006)

17. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the
NRL protocol analyzer and its meta-logical properties. Theor. Comput. Sci. 367(1-
2), 162–202 (2006)

18. Rusu, V., Clavel, M.: Vérification d’invariants pour des systèmes spécifiés en logique
de réécriture. In: JFLA. Studia Informatica Universalis, vol. 7.2, pp. 317–350
(2009), http://www.irisa.fr/vertecs/Equipe/Rusu/rc09.pdf

19. Futatsugi, K.: Verifying specifications with proof scores in CafeOBJ. In: ASE, pp.
3–10. IEEE Comp. Soc., Los Alamitos (2006)

20. Ogata, K., Futatsugi, K.: State machines as inductive types. IEICE Transac-
tions 90-A(12), 2985–2988 (2007)

21. Kong, W., Seino, T., Futatsugi, K., Ogata, K.: A lightweight integration of theorem
proving and model checking for system verification. In: APSEC, pp. 59–66. IEEE
Comp. Soc., Los Alamitos (2005)

22. Ogata, K., Nakano, M., Nakamura, M., Futatsugi, K.: Chocolat/SMV: a translator
from CafeOBJ to SMV. In: PDCAT, pp. 416–420. IEEE Comp. Soc., Los Alamitos
(2005)

http://www.irisa.fr/vertecs/Equipe/Rusu/rc09.pdf

	Combining Theorem Proving and Narrowing for Rewriting-Logic Specifications
	Introduction
	Membership Equational Logic and Rewriting Logic
	Narrowing, and a Class of Systems It Can Analyse
	Invariants of Rewrite Theories
	Theorem Proving for Invariance Properties
	Testing Invariants before Proving Them
	Conclusion, Related Work, and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

