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Campus de Rennes 1, 35042 Rennes, France
Benoit.Gaudin@irisa.fr

IRISA, INRIA Rennes, Campus de Rennes 1,
35042 Rennes, France

Herve.Marchand@irisa.fr

Abstract— Modular supervisory control of discrete-event
systems (DES), where the global DES is composed of local
components that run concurrently, is considered. For supervi-
sory control of large-scale modular DES the possibility of per-
forming control-related computations locally (in components)
is of utmost importance to computational complexity.

Recently we have treated the case, where the specification
language is decomposable into local specification languages
and is included in the (global) plant language. In this paper
the case of general specification languages that are neither
necessarily decomposable nor contained in the global plant
language is studied. Sufficient conditions are found under
which any manipulation with the global plant is avoided for the
computation of supremal controllable sublanguages of (global)
indecomposable specification languages.

Keywords— Modular control of discrete-event systems,
Partial controllability, Coalgebra, Supremal controllable
sublanguages

I. INTRODUCTION

Supervisory control of modular DES (also called concur-
rent DES) is considered. Control of DES represented by
finite automata have been introduced by P.J. Ramadge and
W.M. Wonham (see e.g. [10]). Large scale modular DES
are typically composed of a large number of relatively small
(in size) local DES that run concurrently (in parallel). The
global system is formed as a synchronous product of these
local components with synchronization on shared actions.

The input alphabets of the local components were iden-
tical in the first papers on this topic ([14]). In [11] and [2]
quite a restrictive condition is imposed on events shared
by several local alphabets: they must be controllable for all
subsystems. This assumption has been generalized recently
in [12] to the condition that the shared events must have
the same control status for all subsystems that share a
particular event. This rather general assumption together
with general specification languages for the global plant
(i.e. those that are not decomposable into local specification

languages) are considered in this paper. Indecomposable
specification languages have been first considered in [2]
under the conditions that all shared events are controllable.

Our attention is restricted to modular control synthesis
without blocking as the blocking issue requires different
concepts and methods. Preliminary results on coalgebra
and coinduction can be found in the appendix. It is highly
recommended that the reader goes through the appendix
before starting to read Section 3. Section 2 is devoted to the
presentation and motivation of the main problem studied in
this paper. Section 3 is devoted to our main results. Two
novel sufficient conditions (a specification dependent and a
structural one) are presented under which optimal modular
control synthesis with complete observations is possible
without building the global plant and without a loss of
global optimality.

II. PROBLEM STATEMENT

It is very well known that not every specification lan-
guage can be achieved by a supervisory controller [10].
In the case of basic supervisory control problems with
complete observations we look for optimal safe approx-
imations that can be formulated in terms of supremal
controllable sublanguages of specification languages. There-
fore algorithms for computation of supremal controllable
sublanguages have been derived [10].

In modular control the concurrent behavior of local sub-
plants (partial automata) G1, . . . , Gn is considered. The
notation Zn = {1, 2, . . . , n} is used. The global plant
is the synchronous product G =‖n

i=1 Gi. Although the
computational complexity of the algorithm for supremal
controllable sublanguages is satisfactory (unlike several
other problems of supervisory control), in the case of
large modular DES there is an exponential blow up of
the computational complexity in terms of the number of
local components. In order to cope with this issue, modular
structure should be exploited.
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In this paper we face moreover the problem of
indecomposable specification languages, i.e. we do not
have local specification languages. Nevertheless, as is
shown in [2], it is still possible to exploit the modular
structure of the plant and to avoid the manipulation with
the global plant. On the other hand, the solution proposed
in [2] relies on rather restrictive structural conditions,
where all shared events are required to be controllable for
all subsystems that share a particular event. We want to
weaken this condition, while still preserving the possibility
of ’local’ computation, i.e. without having to manipulate
with the global plant language. The problem can be
formulated as follows:

Problem 2.1: Propose an algorithm for computation of
supremal controllable sublanguages in the context of mod-
ular DES with indecomposable specification languages that
avoids the manipulation with the global plant language.

Since a methodology to cope with general specifications
has already been introduced in [2], the main scope of the
paper is to generalize the results of [2] in two directions:
1) leave out the structural condition that all shared events
are controllable and 2) leave out the restriction on the inde-
composable specification by finding a structural (specifica-
tion independent) conditions under which the methodology
proposed in [2] can still be applied.

III. SUPREMAL CONTROLLABLE SUBLANGUAGES OF

GENERAL SPECIFICATION LANGUAGES.

As customary in modular supervisory control, local al-
phabets of the local sub-plants, denoted by Ai, i ∈ Zn

and not necessarily pairwise disjoint, are such that Ai =
Aiu ∪ Aic, where Aiu stands for the subset of locally
uncontrollable events and Aic stands for the subset of
locally controllable events. We assume that

∀i �= j, Aiu ∩ Aj = Ai ∩ Aju (1)

This assumption originally stemming from [12] means that
the events shared by two local subsystems must have the
same control status for both controllers associated to these
subsystems. We denote by Ac = ∪n

i=1Aic and Au = A\Ac

the subsets of globally controllable and globally uncontrol-
lable events, respectively. We still have Au = ∪n

i=1Aiu due
to the assumption (1).

A = ∪n
i=1Ai denotes the global alphabet and Pi : A∗ →

A∗
i the projections to the local alphabets. The concept of

inverse projection: P−1
i : Pwr(A∗

i ) → Pwr(A∗) is also
used. Recall the basic definition of controllability from [10].

Definition 3.1 (controllability): A partial language K ⊆
L is said to be controllable with respect to L and Au, if

K2Au ∩ L2 ⊆ K2

Denote the global plant and specification languages by
K and L, respectively. In our setting, L is decomposable
into local plant languages: L = L1 ‖ · · · ‖ Ln (note

that the Li may have different alphabets). In most of the
works on this topic K is similarly decomposable into local
specification languages and K ⊆ L. The general case
is when this condition is not satisfied and moreover K
may not be included in L. This case has been studied
in [2], where the assumption that all shared event are
controllable is used. The condition of G−observability was
needed for local computation of the supremal controllable
sublanguage. In this paper we consider a stronger condition
of G−controllability.

Instead of local specifications, languages Ki :=
K ∩ P−1

i (Li) are considered. These will play the role of
local components of specification languages, although their
alphabet is the global alphabet A. Still we will see some
analogy. They can be viewed as local over-approximations
of K ∩ L, because clearly K ∩ L = ∩n

i=1Ki. However,
it turns out that it is not possible to compute simply the
supremal controllable sublanguages and then take their
intersection. That expression yields a language which in
general is too small. Instead, another approach is proposed
in [2] using the newly introduced concept of partial
controllability.

Definition 3.2 (partial controllability): A partial
language K ′ ⊆ K ⊆ L is said to be partially controllable
with respect to A′, A (with A′ ⊆ A), K , and L, if

(i) K ′ is controllable with respect to A′ and L
(ii) K ′ is controllable with respect to A and K .

Remark 3.1: Since controllability concerns only second
(prefix-closed) components of partial languages, an order
relation on partial languages induced by second components
only is used: we write K ⊆ L iff K2 ⊆ L2.

It is shown in [2] that the supremal partially controllable
sublanguage of K with respect to A′, A (with A′ ⊆ A),
K , and L, denoted by sup PC(K, A′, A, L) exists. We use
the following notation for the supremal controllable sublan-
guage of K with respect to L and Au: sup C(K, Au, L) =
K/SC

Au
L (see appendix for the corresponding coinductive

definition). According to [2] supPC(K, A′, A, L) can be
computed from the formula (using our coalgebraic notation
for supremal controllable sublanguage):

supPC(K, A′, A, L) = [K/SC
A′ L]/SC

A K

Let us introduce the following concept, called
G−controllability, where the input derivatives of Ki

and P−1
i (Li) are involved (see Appendix A.2)

Definition 3.3 (G−controllability): A specification lan-
guage K is said to be G−controllable if ∀i ∈ {1, . . . , n}
and ∀s ∈ K2

i = K2 ∩P−1
i (Li)2: (Ki)s ∩A∗

u is controllable
with respect to (P−1

i (Li))s ∩ A∗
u and Aiu.

The notion of G−controllability is sufficient for
the computation of the global supremal controllable
sublanguages without building (and manipulating with)

3475



the global plant. Sufficient conditions for modular control
synthesis to equal global control synthesis in the case of
complete observations and of indecomposable specifications
are formulated below.

Theorem 3.2: Let K be G−controllable and ∀i �= j ∈
{1, . . . , n} we have Aiu ∩ Aj = Ai ∩ Aju. Then

n⋂
i=1

[Ki/
SC
Aiu

P−1
i (Li)]/SC

Au
Ki = (K ∩ L)/SC

Au
L.

Proof: Notice that the expression for the supremal
partially controllable sublanguage, consisting of two itera-
tions of supremal controllable sublanguages, is used within
the above formula. The coinductive proof principle will be
used, i.e. it is sufficient to show that

R = {〈(K ∩ L)/SC
Au

L,

n⋂
i=1

[Ki/
SC
Aiu

P−1
i (Li)]/SC

Au
Ki〉; K, L ∈ L}

is a bisimulation relation, from which the equality follows
by coinduction (see Appendix A.2).
(i) This is obvious from the coinductive definition of supre-
mal controllable sublanguages.
(ii) If for a ∈ A we have

⋂n
i=1[Ki/

SC
Aiu

P−1
i (Li)]/SC

Au
Ki

a→
then ∀i ∈ Zn : [Ki/

SC
Aiu

P−1
i (Li)]/SC

Au
Ki

a→. Thus, we have
for a ∈ A that ∀i ∈ Zn : Ki

a→, [Ki/
SC
Aiu

P−1
i (Li)]

a→
and ∀u ∈ A∗

u : (Ki)a
u→ ⇒ [Ki/

SC
Aiu

P−1
i (Li)]a

u→.
From the coinductive characterization of the inner supremal
controllable sublanguage we further obtain that if (Ki)a

u→
then P−1

i (Li)a
u→ and ∀v ∈ A∗

iu : P−1
i (Li)au

v→ ⇒
(Ki)au

v→.
We must show that (K ∩ L)/SC

Au
L

a→, which according
to the coinductive definition of the supremal controllable
sublanguage means that (K ∩L) a→, L

a→, and ∀u ∈ A∗
u :

La
u→ ⇒ (K∩L)a

u→. First of all, (K∩L) a→ immediately
follows from Ki

a→, because K∩L = K∩⋂n
i=1 P−1

i (Li) =⋂n
i=1[K∩P−1

i (Li)] =
⋂n

i=1 Ki. Now let u ∈ A∗
u such that

La
u→. We can write u = u1 . . . uN , where ∀i ∈ ZN there

exists ki ∈ Zn such that ui ∈ Akiu ⊆ Au. Note that ∀i ∈
Zn we have L2 ⊆ P−1

ki
(Lki)2. For k1 ∈ Zn we obtain from

La
u1→ that in particular P−1

k1
(Lk1)a

u1→. From our assump-
tions we have in particular that [Kk1/

SC
Ak1u

P−1
k1

(Lk1)]
a→,

i.e. according to the coinductive definition of the local
(inner) supremal controllable sublanguage P−1

k1
(Lk1)a

u1→
implies that (Kk1)a

u1→. Since by definition Kk1 ⊆ K we
obtain that (K ∩ L)a

u1→ as well. Now from Kk2 = K ∩
P−1

k2
(Lk2) and P−1

k2
(Lk2)a

u1→ we have (Kk2)a
u1→. Since

u1 ∈ A∗
u we obtain according to the coinductive definition

of the global (outer) supremal controllable sublanguage that
(Kk2)a

u1→ implies that [Kk2/
SC
Ak2u

P−1
k2

(Lk2)]a
u1→. Now for

k2 we obtain from La
u1u2→ that P−1

k2
(Lk2)au1

u2→, i.e. from
[Kk2/

SC
Ak2u

P−1
k2

(Lk2)]a
u1→ and u2 ∈ Ak2u it follows that

(Kk2)au1

u2→. In particular we have that (K ∩L)au1

u2→. We
continue inductively this way along the string u. We obtain
finally that (Kin)au1...un−1

un→. Since Kin = K∩P−1
in

(Lin)
we have finally that (K ∩ L)a

u→, because La
u→.

(iii) If (K ∩ L)/SC
Au

L
a→ for a ∈ A then it follows

from the coinductive definition of the supremal control-
lable sublanguage that (K ∩ L) a→, L

a→, and ∀u ∈
A∗

u : La
u→ ⇒ (K ∩ L)a

u→. We need to show
that ∩n

i=1[Ki/
SC
Aiu

P−1
i (Li)]/SC

Au
Ki

a→ , i.e. ∀i ∈ Zn :
[Ki/

SC
Aiu

P−1
i (Li)]/SC

Au
Ki

a→ . According to the coinductive
characterization of the supremal partially controllable sub-
language, which is also used in (ii) above we need to show
that ∀i ∈ Zn : Ki

a→, [Ki/
SC
Aiu

P−1
i (Li)]

a→ and ∀u ∈ A∗
u :

(Ki)a
u→ ⇒ [Ki/

SC
Aiu

P−1
i (Li)]a

u→. It follows further
from the coinductive characterization of the inner supremal
controllable sublanguage that if (Ki)a

u→ then P−1
i (Li)a

u→
and ∀v ∈ A∗

iu : P−1
i (Li)au

v→ ⇒ (Ki)au
v→.

The first claim is obvious from (K ∩ L) =
⋂n

i=1 Ki:
(K ∩ L) a→ implies that ∀i ∈ Zn : (Ki)

a→. The second
claim: [Ki/

SC
Aiu

P−1
i (Li)]

a→ is a special case of the claim
∀u ∈ A∗

u : (Ki)a
u→ ⇒ [Ki/

SC
Aiu

P−1
i (Li)]a

u→ for
u = ε. Let (Ki)a

u→ for a u ∈ A∗
u. We need to show that

[Ki/
SC
Aiu

P−1
i (Li)]a

u→, which according to the coinductive
definition of the inner supremal controllable sublanguage
means that P−1

i (Li)a
u→, (Ki)a

u→ (trivially satisfied) and
∀v ∈ A∗

iu : P−1
i (Li)au

v→ ⇒ (Ki)au
v→. P−1

i (Li)a
u→

is obvious from (Ki)a
u→, because ∀i : Ki ⊆ P−1

i (Li).
The rest follows from G−controllability: if P−1

i (Li)au
v→

for some u ∈ A∗
u and v ∈ A∗

iu, then auv ∈ P−1
i (Li)2,

i.e. uv ∈ P−1
i (Li)2a ∩ A∗

u. Moreover, (Ki)a
u→ , i.e.

au ∈ (Ki)2 implies that u ∈ (Ki)2a ∩ A∗
u. Thus, according

to G−controllability uv ∈ (Ki)2a, which is equivalent to
(Ki)au

v→, which was to be shown.

Remark 3.3: (i) It is obvious that our condition of
G−controllability is stronger than the condition of
G−observability introduced in [2]. On the other hand,
G−controllability cannot be replaced by G−observability.
This works only in the special setting of [2], where all shared
events are controllable.
(ii) It is obvious from the above proof that for (i) and
(ii) of the proof of Theorem 3.2, G−controllability is not
needed, i.e. under very general conditions we always have
the inclusion:

n⋂
i=1

[Ki/
SC
Aiu

P−1
i (Li)]/SC

Au
Ki ⊆ (K ∩ L)/SC

Au
L.

(iii) Note finally that the result of Theorem 3.2is not effec-
tive. Indeed, G−controllability is of limited interest, because
it implies that all Ki are partially controllable, and thus K∩L
is controllable with respect to L and Au. In this case the
terms on both sides of the claimed equality are equal to K∩L
itself. We have only an existential result that can be viewed as
a low complexity test for controllability. Effective results are
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in the sequel of this paper. The reason why G−controllability
of K implies that all Ki are partially controllable is that for
u = ε ∈ A∗

u, thus G−controllability also means that (i) of
partial controllability for K = Ki holds true, while (ii) is
trivial.

As an alternative way of ensuring the other inclusion
we can use a structural condition similar to the mutual
controllability of [12]. Following the same idea as in the
case of decomposable specification [4] we introduce the
following concept:

Definition 3.4 (Strong global mutual controllability):
Local plant (partial) languages Li, i ∈ Zn are called
globally mutually controllable if for any i �= j ∈ Zn we
have

P−1
j (L2

j)Au ∩ P−1
i (L2

i ) ⊆ P−1
j (L2

j).

Although the condition concerns languages P−1
i (Li)

over global alphabet, these are easily derived from the
local plant languages Li and we still avoid building the
representation of the whole plant. We notice that the
recognizers of P−1

i (Li) are easily obtained from the
recognizers of Li by simply adding to all states the self-
loops of events that are not in Ai. Unlike a typical situation
in supervisory control, strong global mutual controllability
is a symmetric notion of controllability, where it is not
true that one language is a sublanguage of the other. Now
we can formulate our main theorem. Sufficient structural
conditions for modular control synthesis to equal global
control synthesis in the case of complete observations
and of indecomposable specifications are formulated below.

Theorem 3.4: Let Li, i ∈ Zn be strongly globally
mutually controllable and ∀i �= j ∈ {1, . . . , n} we have
Aiu ∩ Aj = Ai ∩ Aju. Then

n⋂
i=1

[Ki/
SC
Aiu

P−1
i (Li)]/SC

Au
Ki = (K ∩ L)/SC

Au
L.

Proof: The coinductive proof principle will be used,
i.e. it is sufficient to show that R from the proof of Theorem
3.2 is again a bisimulation relation in this setting.
(i) and (ii) are the same as in the preceding theorem, because
the assumption of G−controllability is not used. It suffices
to show
(iii) Let (K ∩ L)/SC

Au
L

a→ for a ∈ A. It follows from
the coinductive definition of the supremal controllable
sublanguage that (K ∩ L) a→, L

a→, and ∀u ∈ A∗
u :

La
u→ ⇒ (K ∩ L)a

u→. We need to show that
∩n

i=1[Ki/
SC
Aiu

P−1
i (Li)]/SC

Au
Ki

a→, i.e. that ∀i ∈ Zn :
[Ki/

SC
Aiu

P−1
i (Li)]/SC

Au
Ki

a→. According to (iii) of the proof
of the previous theorem, this amounts to show the part,
where G−controllability is used. Let us show that ∀u ∈
A∗

u and ∀v ∈ A∗
iu : P−1

i (Li)au
v→ ⇒ (Ki)au

v→.
For this implication global mutual controllability is used.

If P−1
i (Li)au

v→ for some u ∈ A∗
u and v ∈ A∗

iu,
then auv ∈ P−1

i (Li)2. Since uv ∈ A∗
u we obtain that

uv = v1 . . . vk for some k ∈ N, where vi ∈ Au, i ∈
Zk. Now we proceed by induction along the string v.
According to global mutual controllability we obtain av1 ∈
P−1

j L2
j(Au) ∩ P−1

i L2
i ⊆ P−1

j L2
j . Thus, in both cases

av1 ∈ L2 = ∩n
i=1P

−1
i (L2

i ), which is equivalent to La
v1→.

Similar argument is made for any vl, l ∈ Zk. Thus, we
obtain after an inductive application of the same argument
that auv = av1 . . . vk ∈ L2, which is equivalent to Lau

v→ .
Notice that uv ∈ A∗

u. A direct application of the assumption
that (K∩L)/SC

Au
L

a→ now yields (K∩L)a
uv→, which means

that auv ∈ (K ∩ L)2 = ∩n
i=1K ∩ P−1

i (L2
i ), i.e. ∀i ∈ Zn :

we have (Ki)au = (K ∩ P−1
i (L2

i ))au
v→, which was to be

shown.
The last theorem provides a structural condition under

which supremal controllable sublanguages can be computed
without having to build the global plant. Moreover as a
structural condition, it does not depend on a particular
specification, which is very important for indecomposable
specifications.

The condition of strong global mutual controllability
is too restrictive, thus we adopt a weaker condition of
global mutual controllability. Nevertheless, it turns out
that we need moreover a condition from [2]. We obtain a
combined, more elaborate, approach and use the condition
of local consistency.

Definition 3.5 (Global mutual controllability): Local
plant (partial) languages Li, i ∈ Zn are called globally
mutually controllable if for any i �= j ∈ Zn we have

P−1
j (L2

j)(Aju ∩ Ai) ∩ P−1
i (L2

i ) ⊆ P−1
j (L2

j).

Definition 3.6 (Local consistency): A global specifica-
tion K is said to be locally consistent with respect to Au

and Li, i ∈ Zn if for any i ∈ Zn we have: ∀s ∈ K2
i and

∀u ∈ A∗
u such that su ∈ K2

i and ∀v ∈ A∗
iu: sPi(u)v ∈

K2
i ⇒ suv ∈ K2

i

Our main theorem follows. It provides sufficient
structural conditions for modular control synthesis to
equal global control synthesis in the case of complete
observations and of indecomposable specifications.

Theorem 3.5: Let Li, i ∈ Zn be globally mutually
controllable and ∀i �= j ∈ {1, . . . , n} we have Aiu ∩ Aj =
Ai ∩ Aju. Then

n⋂
i=1

[Ki/
SC
Aiu

P−1
i (Li)]/SC

Au
Ki = (K ∩ L)/SC

Au
L.

Proof: The coinductive proof principle will be used,
i.e. it is sufficient to show that R from the proof of Theorem
3.2 is again a bisimulation relation in this setting.
(i) and (ii) are the same as in the preceding theorem, because
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the assumption of G−controllability is not used. It suffices
to show
(iii) Let (K ∩ L)/SC

Au
L

a→ for a ∈ A. It follows from
the coinductive definition of the supremal controllable
sublanguage that (K ∩ L) a→, L

a→, and ∀u ∈ A∗
u :

La
u→ ⇒ (K ∩ L)a

u→. We need to show that
∩n

i=1[Ki/
SC
Aiu

P−1
i (Li)]/SC

Au
Ki

a→, i.e. that ∀i ∈ Zn :
[Ki/

SC
Aiu

P−1
i (Li)]/SC

Au
Ki

a→. According to (iii) of the proof
of the previous theorem, this amounts to show the part,
where G−controllability is used. Let us show that ∀u ∈ A∗

u

and ∀v ∈ A∗
iu : P−1

i (Li)au
v→ ⇒ (Ki)au

v→. For this im-
plication global mutual controllability and local consistency
are used. If P−1

i (Li)au
v→ for some u ∈ A∗

u and v ∈ A∗
iu,

then auv ∈ P−1
i (Li)2, i.e. aPi(u)v ∈ P−1

i (Li)2 as well.
Since Pi(u)v ∈ A∗

iu we obtain that Pi(u)v = v1 . . . vk for
some k ∈ N, where vi ∈ Aiu, i ∈ Zk. Now we proceed by
induction along the string v. We know that v ∈ Aiu. For
any j ∈ Zn : j �= i we have according to our assumption
that Aiu∩Aj = Ai∩Aju two possibilities: either v1 ∈ Aju

and then v1 ∈ Aiu ∩ Aj or v1 �∈ Aj . The case v1 �∈ Aj is
easy, because then Pj(v1) = ε, i.e. Pj(av1) = Pj(a). Since
a ∈ L2 we have also a ∈ P−1

j (Lj)2, thus av1 ∈ P−1
j (Lj)2

as well.
If v1 ∈ Aiu ∩ Aj , then according to global mutual con-

trollability we obtain av1 ∈ P−1
j L2

j(Aju ∩Ai)∩P−1
i L2

i ⊆
P−1

j L2
j . Thus, in both cases av1 ∈ L2 = ∩n

i=1P
−1
i (L2

i ),
which is equivalent to La

v1→. Similar construction is made
for any vl, l ∈ Zk, where cases vl ∈ Aju and vl �∈ Aj are
distinguished. Thus, we obtain after an inductive application
of the same argument along the string Pi(u)v ∈ A∗

iu

that aPi(u)v = auv1 . . . vk ∈ L2, which is equivalent

to La
Pi(u)v→ . Notice that in particular Pi(u)v ∈ A∗

u. A
direct application of the assumption that (K ∩ L)/SC

Au
L

a→
now yields (K ∩ L)a

Pi(u)v→ , which means that aPi(u)v ∈
(K ∩ L)2 = ∩n

i=1K ∩ P−1
i (L2

i ), i.e. aPi(u)v ∈ K2
i .

This implies using local consistency with s = a that
suv ∈ K2

i . Therefore ∀i ∈ Zn : we have (Ki)au =
(K ∩ P−1

i (L2
i ))au

v→, which was to be shown.

IV. CONCLUSION

New methods for modular computation of supremal
controllable sublanguages of indecomposable specification
languages have been presented. Although the proofs of
the main results seem at the first time technically very
complicated, their principle is very simple and a small
number of the same arguments is repeatedly used. All the
sufficient conditions we have presented can be checked eas-
ier than their counterparts for global systems. The structural
condition of strong global mutual controllability does not
depend on a particular specification, which is very important
because general indecomposable specifications are studied.
However, it is too strong, and therefore our main result
uses a weaker version that we call simply global mutual
controllability.
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APPENDIX

Coalgebras are categorical duals of algebras (the corre-
sponding functor operates from a given set rather than to a
given set). The basic introduction to the theory of universal
coalgebra is developed in analogy with the corresponding
theory of universal algebra in [9]. The concept of final
coalgebras enables definitions and proofs by coinduction.

A. Partial automata

In this section partial automata as generators of DES
are formulated coalgebraically as in (Rutten 1999). Final
coalgebra of partial automata, i.e. a partial automaton of
partial languages is then recalled. Let A be the set of events.
The empty string will be denoted by ε. Denote by 1 = {∅}
the one element set and by 2 = {0, 1} the set of Booleans. A
partial automaton is a pair S = (S, 〈o, t〉), where S is a set
of states, and a pair of functions 〈o, t〉 : S → 2× (1+S)A,
consists of an output function o : S → 2 and a transition
function t : S → (1 + S)A. The output function o
indicates whether a state s ∈ S is accepting (or terminating)
: o(s) = 1, denoted also by s ↓, or not: o(s) = 0, denoted by
s ↑. The transition function t associates to each state s in S
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a function t(s) : A → (1+S). The set 1+S is the disjoint
union of S and 1. The meaning of the state transition
function is that t(s)(a) = ∅ iff t(s)(a) is undefined, which
means that there is no a−transition from the state s ∈ S.
t(s)(a) ∈ S means that the a−transition from s is possible
and we define in this case t(s)(a) = sa, which is denoted
mostly by s

a→ sa.
A bisimulation between two partial automata S =

(S, 〈o, t〉) and S′ = (S′, 〈o′, t′〉) is a relation R ⊆ S × S ′

such that: if 〈s, s′〉 ∈ R then
(i) o(s) = o(s′), i.e. s ↓ iff s′ ↓
(ii) ∀a ∈ A : s

a→⇒ (s′ a→ and 〈sa, s′a〉 ∈ R),
(iii) ∀a ∈ A : s′ a→⇒ (s a→ and 〈sa, s′a〉 ∈ R).
We write s ∼ s′ whenever there exists a bisimulation R with
〈s, s′〉 ∈ R. This relation is the union of all bisimulations,
i.e. the greatest bisimulation also called bisimilarity.

B. Final automaton of partial languages

Below we define the partial automaton of partial lan-
guages over an alphabet (input set) A, denoted by L =
(L, 〈oL, tL〉). More formally,

L = {(V, W ) | V ⊆ W ⊆ A∗, W �= ∅,
and W is prefix-closed}.

The transition function tL : L → (1 + L)A is defined
using input derivatives. Recall that for any partial language
L = (L1, L2) ∈ L, La = (L1

a, L2
a), where Li

a = {w ∈
A∗ | aw ∈ Li}, i = 1, 2. If a �∈ L2 then La is undefined.
Given any L = (L1, L2) ∈ L, the partial automaton
structure of L is given by:

oL(L) =
{

1 if ε ∈ L1

0 if ε �∈ L1

tL(L)(a) =
{

La if La is defined
∅ otherwise

Notice that if La is defined, then L1
a ⊆ L2

a, L2
a �= ∅, and

L2
a is prefix-closed. The following notational conventions

will be used: L ↓ iff ε ∈ L1, and L
w→ Lw iff Lw is defined

iff w ∈ L2.
Recall from (Rutten 1999) that L = (L, 〈oL, tL〉) is final

among all partial automata: for any partial automaton S =
(S, 〈o, t〉) there exists a unique homomorphism l : S → L.
Another characterization of finality of L is that it satisfies
the principle of coinduction: for all K and L in L, if K ∼ L
then K = L. Recall that the unique homomorphism l given
by finality of L maps a state s ∈ S to l(s) = (L1

s, L
2
s) =

({w ∈ A∗ | s
w→ and sw ↓}, {w ∈ A∗ | s

w→}) ∈ L.

C. Coinductive definitions

Coinduction is a concept that is dual to induction. Coin-
duction in its full generality must be put into a general
framework of universal coalgebra that uses the category
theory. In order to make the paper more accessible to
a reader not very familiar with category theory we have
preferred to introduce the coinduction only in its special

form: on final coalgebra of partial languages. It is the same
as with mathematical induction that is by many people
understood only on the initial algebra of natural numbers
(with the structure given by successor operation: ∀n ∈
N : succ(n) = n + 1), where definitions of functions
by induction correspond to giving initial values and suc-
cessors on functions, hence yielding recursive formulas,
and proofs by induction correspond to the famous two-
step procedure, which amounts to verify that a relation is a
congruence relation with respect to the successor operation.
Similarly, a definition by coinduction amounts to defining
the corresponding structure, here output and derivatives on
operations to be defined, and a proof by coinduction consists
in verifying the conditions of a bisimulation relation.

Recall from [8] the following coinductive definitions of
the synchronous and the supervised products with complete
observations. For the synchronous product we assume that
K is defined over the alphabet A1 and L over A2. Then
the synchronous product K ‖ L is a language over A1∪A2

with the following coinductive definition:
Definition (Synchronous product)

(K ‖ L)a =

⎧⎪⎨
⎪⎩

Ka ‖ La if a ∈ A1 ∩ A2

Ka ‖ L if a ∈ A1 \ A2

K ‖ La if a ∈ A2 \ A1

and (K ‖ L) ↓ iff K ↓ and L ↓.
In the definitions below Au ⊆ A stands for the subset of

uncontrollable events. Now we recall from [3] the following
binary operation on partial languages:

Definition (Supremal controllable sublanguage) Define
the following binary operation on (partial) languages for all
K, L ∈ L and ∀a ∈ A:

(K/SC
AucL)a =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ka/
S
CLa if K

a→ and L
a→

and if ∀u ∈ A∗
u :

La
u→ ⇒ Ka

u→
∅ otherwise

and (K/S
CL) ↓ iff L ↓ .

We have shown in [3] that for a partial order that
considers only second (prefix-closed) components of the
languages involved:

Theorem (K/S
CL) = sup(C(K, L)) = sup{M ⊆ K :

M is controllable with respect to L and Auc}, i.e. K/S
CL

equals the supremal controllable sublanguage of K .
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