
Supervisory Control and Deadlock Avoidance
Control Problem for Concurrent Discrete Event

Systems
Benoit Gaudin and Hervé Marchand

IRISA, Campus Universitaire de Beaulieu, 35042 Rennes, France
{Benoit.Gaudin,Herve.Marchand}@irisa.fr

Abstract— We tackle the Non-Blocking Supervisory Control
Problem control for Concurrent Discrete Event Systems that
are defined by a collection of components that interact with
each other. In this study, we first outline the method allowing
to solve the state avoidance control problem on concurrent
systems. We then present results offering an efficient method
to detect deadlock states in the controlled system, which once
combined with the previous method, allows us to solve a
particular class of the non-blocking state avoidance control
problem.

I. INTRODUCTION

Supervisory control ([1], [2]) consists in modifying a
system (plant) such that the modified (or controlled) system
satisfies a given specification (e.g. a safety property). We
focus on the control of Concurrent Discrete Event Systems
defined by a collection of components that interact with
each other. Several approaches have been considered to
take into account the structure of concurrent systems ([3],
[4], [5], [6]). In most of the above works, the authors
adopt a language-based approach and their methodology
is characterized by the fact that the specification (i.e. the
expected behavior) can be decomposed according to the
structure of the plant. It may happen that the specification
is more related to the notion of states rather than to the
notion of trajectories of the system (the mutual exclusion for
example). For this class of problem, one of the main issue
is the state avoidance control problem, i.e. the supervisor
has to control the plant so that the controlled plant remains
in a safe set of states or dually do not reach a set of
forbidden states (See e.g. [1]). Note that if one wants to
use a language-based approach (as in e.g. [7]) to encode
this problem, then the obtained specification does not fit
with the structure of the system (it may be not separable),
and may be of the size of the global system itself. This
renders the use of the above works useless or at least
intractable. These reasons lead us to develop techniques
totally devoted to the state avoidance control problem.
Following the methodology described in [8] and [9], we
have developed in [10] a methodology that decompose
the computation in two phases (an off-line and an on-line
computation) leading to a supervisor than can be easily
evaluated on the fly.

In [10], the non-blocking aspect was not taken into ac-
count, which means that, once controlled the system may be
blocking. In this paper, we focus on the deadlock avoidance

control problem which consists in ensuring that all the
deadlock states (from which no action can be triggered) can
not be reachable in the controlled system. It turns out that
there exists two types of deadlock states: the one induced
by composition and the one induced by control. For the
first one, we adapt to our model the techniques described
in [11] in order to efficiently extract deadlock states from a
concurrent system without having to build the system itself.
This deadlock states are then added to the set of forbidden
states. Further the action of the supervisor may add some
new deadlock states in the controlled system. However, we
can not reuse as such the first method to detect them because
the controlled system is no more a concurrent system. It is
actually given by a concurrent system that is constrained
by a supervisor. We thus provide two methods based on the
structure of the system and of the supervisor that can be
used in parallel to detect such deadlock states. The first one
is based on the characterization of these states according to
the status of the events that have been removed by control,
whereas the second is based on an incremental detection of
the set of deadlock states according to some projections of
the system and of the supervisor that have the property to
keep the deadlock status of the states.

II. PRELIMINARIES

Each component of the system is modeled as Finite State
Machines (FSM), defined by a 4-tuple G = (Σ, Q, qo, δ),
where Σ is a finite alphabet. For q ∈ Q, δ(q) denotes the
active event set of q. Similarly, δ−1(q) denotes the set of
events that lead to q. We also define the operator PreG

A for all
E ⊆ Q by PreG

A(E) = E∪{q ∈ Q| ∃σ ∈ A, δ(σ, q) ∈ E},
which corresponds to states that can reach the set E by
triggering at most one event belonging to A.

State Avoidance Control Problem. Let G be a plant mod-
eled as an FSM (Σ, Q, q0, δ). In order to control this FSM,
we classically partition the alphabet into controllable events
Σc and uncontrollable events Σuc. Given this partition, a
supervisor S is given by a function S : Q → 2Σc ,
delivering the set of actions that are disabled in state
q of G by control. We write S/G for the closed-loop
system, consisting of the initial plant G controlled by the
supervisor S. In the sequel, we are interested in solving the
State Avoidance Control Problem (SACP), which consists
in computing a maximal supervisor ensuring that a set of

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuB01.4

0-7803-9568-9/05/$20.00 ©2005 IEEE 2763

forbidden states cannot be reached in the controlled system.
In order to solve this problem, we first introduce the weak
forbidden set I:

I(E) = CoReachG
Σuc

(E) =
⋃

n≥0

PreG
A

(n)
(E) (1)

I(E) is the set of states from which it is possible to evolve
into E triggering a sequence of uncontrollable events.

Proposition 1: Given an FSM G and a set of states E ⊆
Q, if q0 /∈ I(E), then the supervisor SE of G, s.t. ∀q ∈ Q

SE(q) = {σ ∈ Σc| δ(σ, q)! ∧ δ(σ, q) ∈ I(E)} (2)

is one of the most permissive supervisors ensuring the avoid-
ance of E in G.

III. SACP FOR CONCURRENT SYSTEMS

Let us consider a plant G modeled as a collection of
FSM Gi = 〈Σi, Qi, qoi, δi〉. The global system is given
by G = G1 ‖ · · · ‖ Gn where the operation ‖ is the
classical parallel composition (i.e. G1 ‖ G2 represents the
concurrent behavior of G1 and G2 with synchronization
on the shared events). The resulting FSM will be noted
〈Σ, Q, qo, δ〉 with Σ = ∪iΣi. Σs represents the set of shared
events of G, i.e Σs =

⋃
i�=j(Σi ∩Σj). Now, given the set

of FSMs Gi modeling G, IN(.) is a function, which for
each σ ∈ Σ gives the set of indexes i ∈ {1, . . . , n} such
that σ ∈ Σi. For each Gi, we have Σi = Σi,uc

.∪ Σi,c. The
alphabet of the global plant G is given by Σ = ∪iΣi, Σc =
∪iΣi,c, and Σuc = Σ \ Σc. Moreover, we assume that the
following relation holds between the control status of shared
events, i.e. ∀i, j, Σi,uc∩Σj,c = ∅, which simply means that
the components that share an event agree on the control
status of this event. Under this hypothesis, we have that
Σuc = ∪iΣi,uc.

In [10], the problem under investigation was the SACP
for concurrent systems. We here briefly recall the main
results given in this paper. It can be shown that a set of
states E can be expressed by a union of product sets E =⋃

k≤N Ek with Ek = Ek
1 ×· · ·×Ek

n with Ek
i ⊆ Qi. Given

the concurrent structure of the system, this decomposition
of sets in terms of product sets will be the basis for the
expression of states that will have to be forbidden by
control. As explained in Section II, this problem can be
reduced to the computation of the set of weak forbidden
states I(E) = CoReachG

Σuc
(E) and an optimal supervisor

ensuring the avoidance of E is then simply given by the
formula (2). However, due to the state space explosion, this
computation may be unfeasible for concurrent systems. This
is why specific methods, taking into account the structure
of the system, have been developed in [10]. We here focus
on concurrent systems G = G1 ‖ · · · ‖ Gn, for which
the uncontrollable events are local to each component (i.e.
Σs ⊆ Σc)1. Under this hypothesis, it is shown in [10] that

I(E) =
⋃

k≤N

(×iI(Ek
i)

)
(3)

1To simplify the paper, the general case (i.e. when Σs ∩ Σuc �= ∅) is
not presented here (See [10] for the details).

Now, given I(E) as in (3), one can easily extract a
supervisor as follows

SE(q) = {σ ∈ Σc| δ(σ, q)! ∧ δ(σ, q) ∈
⋃

k≤N

(×iI(Ek
i)

)} (4)

The expression of the supervisor given by (4) is interesting
for computational reasons. Indeed, whereas concurrent sys-
tems can be very complex, determining SE only consists
here in computing sets (I(Ek

i))1≤i≤n,1≤k≤N . The counter
part of this approach is that on-line computations are needed
during the execution phase, which is not the case when the
system is modeled by one FSM (See [10] for details).

IV. DEADLOCK AVOIDANCE CONTROL PROBLEM

Next, we are interested in deadlock avoidance. Intuitively,
given a system G = G1 ‖ · · · ‖ Gn, a deadlock state is a
state from which no event can be triggered in the system
(i.e. q ∈ Q is a deadlock state of G if δ(q) = ∅). An
FSM (or a plant) is said to be deadlock-free if no state
is in deadlock. The Deadlock Avoidance Control Problem
(DACP) consists in computing a supervisor S ensuring
that all the deadlock states are no more reachable in the
controlled system.

The classical method that is used to solve this problem
is given by the following iteration:
(a) Extraction of the set of deadlock states in G, say DG.
(b) Computation of the possibly blocking supervisor S

w.r.t. to G and DG ensuring avoidance of DG.
(c) Repeat points (a) and (b) with G := S/G until S/G

is deadlock-free.
Remark 1: Note that if one want to prevent, at the same

time, a set of states E to be reachable in G, it is sufficient
to control the system so that the set E ∪ DG becomes
not reachable (point (b)) and that the obtained system is
deadlock-free, in order to obtain a maximal deadlock-free
supervisor ensuring the avoidance of E.
This is the method we want to be applied on system
G. From Section III, we already know how to efficiently
solve point (b). Now all the problem consists in extracting
the deadlock states without having to build the whole
system (point (a)). One can note that initially G is a
concurrent system whereas after an iteration, we need to
extract deadlock states from a controlled system that is
no more a concurrent system (i.e. the controlled system
is given by G and a supervisor S). We thus need specific
methods to characterizes deadlock-states in order to reduce
the complexity of this computation by reducing the state
space in which the deadlock states can be searched. In
Section IV-A, we focus on the characterization of deadlock
states in a concurrent system, whereas in Section IV-B,
we outline a methodology allowing to efficiently extract
deadlock states from a controlled system S/G.

A. Characterization of the deadlock states of G

When dealing with a concurrent system, the method that
is used to characterize the deadlock states is quite classical
(see e.g. [11]). We here recall the main aspects of this
method. Let us consider G = G1 ‖ · · · ‖ Gn a concurrent

2764

system, such that Gi = (Σi, Qi, q0i, δi). The set of states
of G is given by Q = Q1×· · ·×Qn. Now, it is worthwhile
noting that the fact that a state q = (q1, . . . , qn) is in
deadlock in G is due to the synchronization between the
different components of G. This entails that

q is in deadlock in G =⇒ ∀i ≤ n, δi(qi) ⊆ Σs (5)

where Σs denotes the set of shared events of G. In other
words, a state may be in deadlock if only shared events can
be locally triggered from each component. ∀i ≤ n, let us
denote by PBi(Gi) the set {qi ∈ Qi| δi(qi) ⊆ Σs}. Now if
DG denotes the set of deadlock states in G, we have that

DG ⊆ PB(G) � PB1(G1) × · · · × PBn(Gn) (6)

(6) is interesting in the sense that it reduces the state space
in which a deadlock state can be, since the size of set
PB1(G1) × · · · × PBn(Gn) can be expected to be much
smaller than that of the whole system G. This is actually
the case when the concurrent system is loosely synchronized
(i.e. the shared events are triggered with a few frequency).

Example 1: Let us consider G = G1 ‖ G2 ‖ G3 (Fig. 1).

q1
3

q1
2

q1
1

q1
0

σ3 a

σ2

σ1

(a) G1

q2
3

q2
2

q2
1

q2
0

σ2 σ1

b

σ2

u2

(b) G2

q3
2

q3
1

q3
0

σ3

c

σ1, c

(c) G3

Fig. 1. A concurrent system containing deadlock states

The alphabet of each subsystem is given by Σ1 =
{a, σ1, σ2, σ3}, Σ2 = {b, u2, σ1, σ2} and Σ3 = {c, σ1, σ3}.
The only uncontrollable event is u2 and is a local event of
subsystem G2. We also have that Σs = {σ1, σ2, σ3}. The set
PB of possible deadlock in G is given by

PB = {q1
0 , q

1
1 , q

1
2} × {q2

0 , q
2
2} × {q3

1}
and according to (6), PB(G) contains the deadlock states of
G, which means that, in this case, only 6 states have to be
checked, whereas the size of Q is 48. Finally, checking for
each of these states whether some events can be triggered
from them, we obtain that only (q1

1 , q
2
0 , q3

1) and (q1
1 , q

2
2 , q3

1)
are in deadlock in G. �
The characterization of deadlock states given by equa-
tion (5) can help to perform the point (a) of the method
solving DACP. Nevertheless, this is only helpful at the first
iteration of the method, because the method is based on the
fact that G is a concurrent system, which is no more the
case after the first iteration.
B. Characterization of deadlock states in S/G

In this section, we give useful results to characterize
deadlock states of a controlled concurrent system. These
characterizations are given using the structure of both the
system under control (which is concurrent), and the supervi-
sor (which is given by Equation (4)). Let G be a concurrent

system and S a supervisor ensuring the avoidance of a set
E given by E =

⋃
k Ek

1 × · · · × Ek
n, with ∀i, k Ek

i ⊆ Qi.
Note that E can be seen as the set of deadlock states that
have been found at the previous step of the computations.
In the sequel, for theoretical reasons, we shall assume that
the controlled system S/G can be modeled by a sub-FSM
(Σ, Q, qo, δS/G) of G, such that

∀q ∈ Q, δS/G(q) = δG(q) \ S(q) (7)

We say that q is a deadlock state of S/G if δS/G(q) = ∅.
Now, given this controlled system S/G, deadlock states

of S/G are either deadlock states of G or states on
which the supervisor is acting. For the latter, the state is
in deadlock because the supervisor disables some events.
There actually exists two different cases:

(1) either the supervisor only disables shared events,
(2) or the supervisor disables at least one local event.

Based on Equations (4) and (7), we now give two different
results that will help to characterize deadlock states depend-
ing whether they are in deadlock because of (1) or (2).

Proposition 2: Let G = G1 ‖ · · · ‖ Gn and S be a
supervisor acting upon on G. If q ∈ Q is in deadlock in S/G
and S(q) ⊆ Σs, then q ∈ PB(G) as defined by Equation (6).

Proof: Let q = (q1, . . . , qn) be a state of G, with
qi ∈ Qi. Assume that q is a deadlock state of S/G, and
S(q) ⊆ Σs and q /∈ PB(G). Since q /∈ PB(G), ∃i ≤ n
such that δi(qi) �⊆ Σs. Thus it exists σ ∈ Σi \Σs, such that
δi(qi, σ)!. Now, as σ is local we also have that δ(q, σ)!. Now
by assumption, S(q) ⊆ Σs, which means that σ /∈ S(q) and
therefore q is not a deadlock state in S/G.

Proposition 2 entails that PB(G) not only contains dead-
lock states of G, but also deadlock states of S/G from
which only shared events are disabled by control.

Proposition 3 shows how to use the particular structure
of the supervisor given by equation (4) to characterize the
states that are in deadlock because at least one local event
has been disabled by S. But first we need to introduce the
following notations:

Let A be a non empty subset of {1, . . . , n}. When a
set of states E ⊆ Q of G is given as a union of product
sets E =

⋃
k≤N Ek, with Ek = Ek

1 × · · · × Ek
n and ∀i, k

Ek
i ⊆ Qi, then the projection of E over A is given by

pA(E) =
⋃

k≤N

×i∈AEk
i (8)

Proposition 3: Let G = G1 ‖ · · · ‖ Gn and S, defined
by (4), be a supervisor acting upon G, ensuring the avoidance
of E =

⋃
k Ek

1 × · · · × Ek
n, with ∀i, k Ek

i ⊆ Qi. If q is a
deadlock state of S/G and σ ∈ Σi \ Σs is such that σ ∈
S(q) ∩ δ(q), then

p{i}c(q) ∈ p{i}c(E),

where {i}c is the complementary set of {i} in {1, . . . , n}.
Proof: Consider q ∈ Q be such that ∃σ ∈ Σi \ Σs

such that δ(q, σ) = q′ = (q′1, . . . , q
′
n) and assume that q is

a deadlock state in S/G, which means that δS/G(q) = ∅.

2765

Morevoer, we also have that ∀j �= i, q′j = qj and q′i =
δi(qi, σ). Now, as δS/G(q) = ∅, we have that δ(q) ⊆ S(q)
and thus σ ∈ S(q). We thus deduce from (4) that q′ ∈
I(E). Moreover, as E =

⋃
j≤m Ej , ∃j ≤ m such that

q′ ∈ I(Ej
1) × · · · × I(Ej

n), from which we deduce that
pIN(σ)c(q′) ∈ ×k∈IN(σ)cI(Ej

k). Consequently, ∀k /∈ IN(σ),
q′k ∈ I(Ej

k). Now as IN(σ) = {i}, we have that ∀k /∈
IN(σ), q′k = qk and we obtain that ∀k ∈ IN(σ)c, qk ∈
I(Ej

k).
Let us now show that ∀k ∈ IN(σ)c, qk ∈ Ej

k. To do
so, let us assume that qk /∈ Ej

k . Let k ∈ IN(σ)c. Since
qk ∈ I(Ej

k), if qk /∈ Ej
k, then ∃σ′ ∈ Σuc,k \ Σs such that

δk(qk, σ′)!.We thus obtain that δ(q, σ′)!. However, σ′ ∈ Σuc

thus σ′ /∈ S(q), which entails that σ′ ∈ δS/G(q) (According
to (7)). This contradicts the fact that q is a deadlock state
in S/G and thus ∀k ∈ IN(σ)c, qk ∈ Ej

k, or in other words,
p{i}c(q) ∈ p{i}c(E).
According to the previous proposition, we know that if q is
in deadlock in the controlled system because the supervisor
ensuring the avoidance of E disables a local event of Σi,
then ∀j �= i, qj ∈ Ek

j , or in other words,

q ∈
⋃

k

(
Ek

1 × · · · × Ek
i−1 × Qi × Ek+1

i · · · × Ek
n

)
(9)

Hence, if a local event of Σi is disabled from state q, then
it gives information about n − 1 components of q. This
characterization can be useful to reduce the state space in
which looking for deadlock states of S/G.

Example 2: Let us consider the concurrent system of
example 1 again. As shown in Example 1, states (q1

1 , q
2
0 , q3

1)
and (q1

1 , q
2
2 , q3

1) are in deadlock in G. We thus make the
use of the techniques presented in Section III to compute a
supervisor S that ensures the avoidance of these two states.
To this end, according to (4), we first compute the set of
states (I({qj

i }))i,j and we obtain that I({q2
2}) = {q2

1, q
2
2}

and I({qj
i }) = {qj

i } for the others local states. From this
sets we easily derive a supervisor S following (4). We can
now use Proposition 2 and 3 to reduce the state space of S/G
in which we have to identify deadlocks. First, using Propo-
sition 2, we search for deadlock states of S/G that belongs
to PB(G) (which only contains 2 tuples (see example 1))).
The result gives us states (q1

0 , q
2
0 , q

3
1) and (q1

1 , q2
2 , q

3
1) (which

were already identified as deadlock states in G). Further,
using Proposition 3, we can identify the states that are in
deadlock because at least one local event have been disabled
by control. In this example, only two states (q1

1 , q2
0 , q

3
1) and

(q1
1 , q2

2 , q
3
1) are forbidden. Thus according to (9), we first

identify deadlock states of the form (q1
1 , q

2
2 ,−). We obtain

that (q1
1 , q2

2 , q
3
0) is a deadlock state of S/G. Then looking

for states of the form (q1
1 ,−, q3

1), we obtain that (q1
1 , q

2
3 , q3

1)
is a deadlock state of S/G ((q1

1 , q
2
2 , q

3
1) is also detected but

was already identified as a deadlock state of G). Morevoer,
no deadlock states of the form (−, q2

2 , q
3
1) exists. Applying

the same technique with the forbidden state (q1
1 , q

2
0 , q

3
1), we

obtain that (q1
1 , q2

0 , q
3
1) and (q1

1 , q2
3 , q

3
1) also are deadlock

states of S/G. �

In this section, we outline methods that allow to restrict the
state space in which a state can be in deadlock. However,
these methods somehow assume that the system is a loosely
synchronous system and that the number of product sets that
are forbidden is not too large.

V. INCREMENTAL COMPUTATION

To alleviate these problems we here provide a method
based on the concurrent structure of the system that allows
to incrementally detect the states that are in deadlock. For
that purpose, we introduce the notion of projections of a
supervisor and of a controlled system S/G.

First, we introduce several notions of projection, accord-
ing to a concurrent system. Let G = G1 ‖ · · · ‖ Gn with
Gi = (Σi, Qi, q0i, δi). Let A be a non empty subset of
{1, . . . , n}. For simplicity, we say that a FSM Gi belongs
to A if i ∈ A. We denote Σs,A the set of events defined by

Σs,A =
⋃

i∈A∧j /∈A
(Σi ∩ Σj) (10)

Σs,A represents the set of shared events of G that are events
of both one FSM belonging to A and one that does not.

Definition 1: The projection of system G = G1 ‖ · · · ‖
Gn over A, denoted pA(G), is defined by

pA(G) =‖i∈A GA
i (11)

where GA
i denotes the FSM (ΣA

i , Qi, q0i , δi), with ΣA
i =

Σi \ Σs,A and δAi is the restriction of δi from Qi × Σi to
Qi × ΣA

i . �
Now, if Σ′ is a subset of Σ then pA(Σ′) represents the

set of events of Σ′ which belongs to pA(G) (i.e belongs to⋃
i∈A ΣA

i).

Definition 2: Let G be a concurrent system and E a set of
states of G. Let SE be the supervisor ensuring the avoidance
of E in G as described by equation (4).

• The projection of SE w.r.t. A, denoted pA(SE) is the
supervisor defined for all state q of pA(G) by

pA(SE)(q) = {σ ∈ pA(Σc)|
δpA(G)(q, σ)! ∧ δpA(G)(q, σ) ∈ pA(I(E))}

• The projection of the controlled system SE/G w.r.t. A,
denoted pA(SE/G) is defined by

pA(SE/G) = pA(SE)/pA(G) (12)
�

pA(SE) can be seen as a supervisor ensuring the avoid-
ance of pA(I(E)) over pA(G). pA(SE/G) is then the
corresponding controlled system.

We now introduce lemma 1 which makes the link be-
tween the dynamic of the global system and the one of its
projections.

Lemma 1: Let G =‖1≤i≤n Gi be a concurrent system.
We denote G = (Σ, Q, q0, δ). Let A be a non empty subset
of {1, . . . , n}, q ∈ Q and σ ∈ Σ, then

δpA(G)(pA(q), σ)!
=⇒ δ(q, σ)! ∧ [δpA(G)(pA(q), σ) = pA(δ(q, σ))]

2766

Proof: Assume that δpA(G)(pA(q), σ)!. Therefore, IN(σ) ⊆
A and we can deduce that ∀i ∈ IN(σ), δi(qi, σ)! which
implies that δ(q, σ)!. We now denote q′ = δpA(G)(pA(q), σ)
and q′′ = δ(q, σ). From (11)

(∀i ∈ IN(σ), q′i = δi(qi, σ)) ∧ (∀i /∈ IN(σ), q′i = qi)

Hence ∀i ∈ A \ IN(σ), q′i = qi. Moreover, ∀i ∈
IN(σ), δi(qi, σ) = q′′i and ∀i /∈ IN(σ), q′′i = qi. We
can deduce that ∀i ∈ A, q′i = q′′i . Finally, we obtain
q′ = pA(q′′). Hence the result.

Lemma 1 shows that only events that can be triggered
from a state q in G, can be triggered from pA(q) in pA(G).
Moreover, the state reached triggering this event from pA(q)
in pA(G) corresponds to the projection over A of the one
reached from q in G.

The next lemma shows how the projection of a supervisor
acts upon the projection of a system.

Lemma 2: Let G =‖1≤i≤n Gi be a concurrent system.
We denote G = (Σ, Q, q0, δ). Let A be a non empty subset
of {1, . . . , n} and q ∈ Q. Consider a set of states E ⊆ Q and
SE ensuring the avoidance of E, as described in (4). Then,

SE(q) ∩ pA(Σ) ⊆ pA(SE)(pA(q))

Proof: Let us consider σ ∈ SE(q)∩pA(Σ). Since σ ∈
pA(Σ), we obtain IN(σ) ⊆ A (according to Definition 1).
Moreover, according to Equation 4,

σ ∈ SE(q) =⇒ σ ∈ Σc ∧ δ(q, σ)! ∧ δ(q, σ) ∈ I(E)

But δ(q, σ)! =⇒ ∀i ∈ IN(σ), δi(qi, σ)!
=⇒ ∀i ∈ IN(σ) ∩ A, δi(qi, σ)!
=⇒ δpA(G)(pA(q), σ)!

Therefore, from lemma 1, if δpA(G)(pA(q), σ)! then

δ(q, σ)! ∧ [δpA(G)(pA(q), σ) = pA(δ(q, σ))] (α)

But if δ(q, σ) ∈ I(E), then pA(δ(q, σ)) ∈
pA(I(E)). Hence from (α), if δ(q, σ) ∈ I(E), then
δpA(G)(pA(q), σ) ∈ pA(I(E)). Finally, we can deduce that

σ ∈ SE(q) =⇒ (δpA(G)(pA(q), σ)!
∧ δpA(G)(pA(q), σ)) ∈ pA(I(E)))

which in turns implies that σ ∈ pA(SE)(pA(q)).
Based on this lemma, we can now prove the following
property

Proposition 4: With the notations of lemma 2, if q ∈ Q is
a deadlock state of SE/G, then for all ∅ ⊂ A ⊆ {1, . . . , n},
pA(q) is a deadlock state of pA(SE/G).

Proof: Let q ∈ Q be a deadlock state of SE/G, i.e
δSE/G(q) = ∅. According to definition of SE/G, we obtain
that δ(q) \ SE(q) = ∅ which means that

δ(q) ⊆ SE(q) (α)

Therefore by definition again,

δpA(SE/G)(pA(q)) = δpA(G)(pA(q)) \ pA(SE)(pA(q))

If δpA(G)(pA(q)) = ∅, then the result holds. other-
wise, we consider σ ∈ δpA(G)(pA(q)). In this case,
δpA(G)(pA(q), σ)! and from lemma 1 we obtain δ(q, σ)!
and finally σ ∈ δ(q). Hence, from (α), σ ∈ SE(q).
From lemma 2 (we have pA(Σ) ∩ δ(q)), we ob-
tain that σ ∈ pA(SE)(pA(q)). Finally we can de-
duce that, δpA(G)(pA(q)) ⊆ pA(SE)(pA(q)). Therefore,
δpA(SE/G)(pA(q)) = ∅.

The intuitive meaning of Proposition 4 is the following: if
you consider the projection of a deadlock state of S/G over
a subset of the components, then this projected state is also
in deadlock in the projected controlled system. This result
allows to detect deadlock states of S/G in an incremental
manner. At each step, previous computations can be used,
reducing the state space in which the deadlocks are.

To begin the detection of deadlock states, let us first
consider the set D1 of states that are in deadlock in
pA(SE/G), with A = {1} and that belong to pA(PB(G)).
Further, we add a new component, say G2 and we detect the
deadlock states on p{1,2}(SE/G) knowing that the deadlock
states are in D1 × Q2. We thus incrementally add the
components until we obtain the whole controlled system.
Note that, at each iteration of this procedure, we can make
the use of propositions 2 and 3 to restrict the state space in
which we have to find deadlock states.

Example 3: Let us now illustrate the proposed method in
this paper, combining the various results previously given. To
that aim, let us consider the simple concurrent system given
by figure 2. This system G is composed of three subsystems:
G = G1 ‖ G2 ‖ G3.

q1
2

q1
1

q1
0

σ1

a

a

(a) G1

q2
2

q2
1

q2
0

σ1 b

σ2

(b) G2

q3
2

q3
1

q3
0

σ2

c

c

(c) G3

Fig. 2. A controlled concurrent system containing deadlock states

The alphabet of each subsystem is given by Σ1 = {a, σ1},
Σ2 = {b, σ1, σ2} and Σ3 = {c, σ2}. For simplicity, there
is no uncontrollable event in the system. We also have that
Σs = {σ1, σ2}. Moreover, we suppose here that the product
sets E1 = {q1

2} × {q2
2} × {q3

1} and E2 = {q1
1} × {q2

0} ×
{q3

0 , q
3
1} are forbidden. We denote E = E1 ∪ E2 the set of

forbidden states, and SE denotes the supervisor ensuring the
non reachability of E in G, as described by (4). Our goal is
now to detect the deadlock states of this controlled system.
To that aim, we consider the set PB(G) of possible deadlock
in G

PB(G) = {q1
1} × {q2

0 , q
2
1} × {q3

1}
To apply incremental computation, we first consider the

projection of SE/G over {1}. p{1}(G) is given by figure 3
(a), and p{1}(SE) ensures the avoidance of p{1}(E) over

2767

p{1}(G). p{1}(E) corresponds to the union of {q1
2} and

{q1
1}. Applying propositions 2, 3 and 4, we look for states of

p{1}(SE/G) which are in deadlock and either are forbidden
or belong to PB1. Since δp{1}(G)(q1

0 , a) = q1
1 which is a

forbidden state, we actually have that δp{1}(SE/G)(q1
0) = ∅.

As mentioned above, q1
0 is in deadlock in p{1}(SE/G), but it

is not forbidden and does not belong to PB1. Hence the only
interesting state is q1

1 which is in deadlock and forbidden
(and in PB1). We note D1 = {q1

1}.
Then, in a second part, we add one component and consid-

er the system p{1,2}(SE/G). p{1,2}(G) is given by figure 3
(b). p{1,2}(E) is now given by the union of {q1

2} × {q2
2}

and {q1
1} × {q2

0}, and p{1,2}(SE) ensures the avoidance of
p{1,2}(E) over p{1,2}(G). Applying results of proposition-
s 2, 3 and 4 again, we now look for states of p{1,2}(SE/G)
which are in deadlock and either are forbidden or belong
to PB1 × PB2. Moreover, thanks to proposition 4, it is
sufficient to restrict our search to the states for which the
first component belongs to D1. The considered system is
quite simple here, but such an incremental method can
help in significantly saving computations (in our example,
D1 only contains one state). At this step, two states are
considered: (q1

1 , q2
0) which is forbidden and in deadlock in

p{1,2}(SE/G), and (q1
1 , q2

1) which is in deadlock and belongs
to PB1 × PB2. We denote D2 = {(q1

1 , q
2
0), (q

1
1 , q2

1)}.
Finally, at the last step, we consider SE/G, and the pur-

pose is to detect deadlock states in this system. Likely, thanks
to the previous computations, not all states of SE/G need
to be considered, but only the ones for which the projection
over {1, 2} belongs to the set D2. Finally (q1

1 , q2
0 , q

3
1) and

(q1
1 , q2

1 , q
3
1) are detected to be deadlock states in SE/G.

Actually, to ensure the fact that there is no more deadlock
states in this system, some computations still need to be
performed. Indeed, the computations made above give access
to the deadlock states of SE/G from which either only
shared events are prevented from occurring, or at least one
local event of Σ3 is prevented from occurring. (q1

1 , q
2
0 , q3

1) is
of the first type and (q1

1 , q2
1 , q

3
1) is of the second one.

To consider other cases, deadlock states of SE/G from
which at least one local event of Σ1 is disabled, should also
be detected too. For that purpose one can apply the same
method: computation of the set D′

1 of deadlock and forbid-
den states of p2(SE/G). Then computation of the set D′

2 of
deadlock and forbidden states of p2,3(SE/G) for which the
component over G2 belongs to D′

1. And Finally, computation
of deadlock states of SE/G for which the projection over
{2, 3} belongs to D′

2. Finally, the same method should be
applied again to detect deadlock states of SE/G from which
at least one local event of Σ2 is disabled.

Finally, in this example, performing all the computations
mentioned above gives us the following set of deadlock
states: {(q1

1 , q
2
0 , q3

1), (q
1
1 , q2

1 , q
3
1)}.

VI. CONCLUSION

In this paper, the non-blocking State Avoidance Control
Problem over concurrent discrete event systems is consid-
ered. We first outline a method allowing to efficiently com-

q1
2

q1
1

q1
0

a

a

(a) p{1}(G1)

q1
2 q2

2

q1
1 q2

1

q1
0 q2

0

a

σ1

a

σ1 b

(b) p{1,2}(G1 ‖ G2)

Fig. 3. Projections of the system G

pute a supervisor ensuring the avoidance of a set of states
E (see [10] for details). Regarding the Deadlock Avoidance
Control Problem, we first provide some characterizations
of deadlock states in such systems, using the structure of
both the system and the supervisor. In a second time, an
incremental method, also based on the structure of both
the system and the supervisor is given. This method uses
notion of projection of concurrent systems, supervisors, and
states. Moreover, it can be combined with the results that
help to characterize deadlock states, in order to improve the
efficiency of their detection. At this step, two ways seem
relevant to complete this work. We first want to apply for
the control of large scale systems, to underline the practical
interest of our method. In particular, we would be interested
in considering examples classified as ”hard” in [9]. We also
want to extend these kind of results to livelock detection.
Indeed, since blocking state of a system is either a deadlock
or a livelock state, this could allow to ensure the classical
non blocking using in supervisory control.

REFERENCES

[1] W. M. Wonham, “Notes on control of discrete-event system-
s,” Department of ECE, University of Toronto, Tech. Rep. ECE
1636F/1637S, July 2003.

[2] C. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Kluwer Academic, 1999.

[3] M. deQueiroz and J. Cury, “Modular supervisory control of large
scale discrete-event systems,” in Discrete Event Systems: Analysis
and Control. Proc. WODES’00, pp. 103–110. 2000.

[4] K. Akesson, H. Flordal, and M. Fabian, “Exploiting modularity for
synthesis and verification of supervisors,” in Proc. of the IFAC, 2002.

[5] Y. Willner and M. Heymann, “Supervisory control of concurrent
discrete-event systems,” International Journal of Control, vol. 54,
no. 5, pp. 1143–1169, 1991.

[6] K. Rohloff and S. Lafortune, “The control and verification of similar
agents operating in a broadcast network environment,” in 42nd IEEE
Conference on Decision and Control, Hawaii, USA, December 2003.

[7] B. Gaudin and H. Marchand, “Modular supervisory control of a class
of concurrent discrete event systems,” in Workshop on Discrete Event
Systems, WODES’04, September 2004.

[8] R. Minhas, “Complexity reduction in discrete event systems,” Ph.D.
dissertation, Univeristy of Toronto, September 2002.

[9] A. Vahidi, B. Lennarston, and M. Fabian, “Efficient supervisory
synthesis of large systems,” in Workshop on Discrete Event Systems,
WODES’04, September 2004.

[10] B. Gaudin and H. Marchand, “Efficient computation of supervisors
for loosely synchronous discrete event systems: A state-based ap-
proach,” in 6th IFAC World Congress, Prague, Czech Republic, 2005.

[11] A. Abdelwahed and W. Wonham, “Blocking detection in discrete
event systems,” in Proc. of 2003 American Control Conference,
Denvers, Colorado USA, June 2003.

[12] T. Ushio, “On controllable predicates and languages in discrete-event
systems,” in Proc. of the 28th Conference on Decision and Control,
Tampa, Floride, December 1989, pp. 123–124.

2768

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

