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Abstract. Symbolic model checking provides partially effective verification pro-
cedures that can handle systems with an infinite state space. So-called “acceleration
techniques” enhance the convergence of fixpoint computations by computing the
transitive closure of some transitions. In this paper we develop a new framework
for symbolic model checking with accelerations. We also propose and analyze
new symbolic algorithms using accelerations to compute reachability sets.

Keywords: verification of infinite-state systems, symbolic model checking, ac-
celeration.

1 Introduction

Context. The development of model checking techniques [19] for infinite-state sys-
tems is now an active field of research. These techniques allow considering models like
pushdown systems [13], channel systems [1,14], counter systems [8,31,38], and many
other versatile families of models. Such models are very expressive and often lead to
undecidable verification problems. This did not deter several research teams from de-
veloping powerful innovative model checkers for infinite-state systems. For example,
tools for checking reachability properties of counter systems are ALV [6], BRAIN [37],
LASH [33], TREX [3], and our own FAST [8]. For infinite-state systems, model check-
ing must be “symbolic” since one manipulates (symbolic representations of) potentially
infinite sets of configurations. The most popular symbolic representations are based
on regular languages: these are quite expressive and automata-theoretical data struc-
tures provide efficient algorithms performing set-theoretical operations as well as pre-
and post-image computations. With these ingredients, it becomes possible to launch a
fixpoint computation for forward or backward reachability sets, as exemplified in [32].

The problem of convergence. When dealing with infinite-state systems, a naive fixpoint
computation procedure for reachability sets, in the style of Procedure 1 (section 3.2),
has very little chance to terminate: convergence in a finite number of steps can only
occur if the system under study is uniformly bounded (see section 3.2). To make fixpoint
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computations converge more frequently, so-called “acceleration techniques” have been
developed. These techniques can compute subsets of the reachability set that are not uni-
formly bounded. This can be done, for example, by replacing a control loop “x:=x+1;
y:=y-1” by its transitive closure “k:=random int(); x:=x+k; y:=y-k”. Cur-
rently, many different acceleration techniques for different families of systems ex-
ist [1,2,12,14,26,38]. Some of them have been implemented [3,8,33] and promising
case-studies have been reported [1,2,3,8,9]. Acceleration shares some similarities with
the widening techniques used in abstract interpretation [22] but also exhibits some
clear differences: acceleration aims at exact computation for some given control struc-
tures, while widening mostly ignores control structures and usually trades exactness
for termination.

A field in need of foundations. The existing acceleration results usually amount to
a (sometimes difficult) theorem stating that the transitive closure of an action, or of a
sequence of actions, can be effectively computed. The difficulty of these results usually
lies in finding the precise conditions on the action and on the set of initial states that
yield effectiveness. How to use acceleration results is not really known: the theorems
and algorithms for computing reachability sets with acceleration methods do not exist in
general! With some tools, e.g., LASH, the user has to choose which loops to accelerate and
how to mix the outcomes with more standard symbolic computation; in other cases, e.g.,
with TREX, some default strategy is implemented outside of any theoretical framework
and without discussions about its efficiency or completeness.

Our contributions. (1) We propose the first theoretical framework for symbolic model
checking with acceleration. We distinguish three natural levels for accelerations ( “loop”,
“flat”, and “global”), depending on which sequences of transitions can be computed:
transitive closure of cycles (resp. of length 1) for flat (resp. loop) acceleration; or any
regular set of sequences for global acceleration. These levels can account for most
acceleration results on specific systems (pushdown systems, channel systems, counter
systems, . . . ). For each level we give a symbolic algorithm with acceleration computing
reachability sets and we characterize the conditions necessary for its termination.

Flat acceleration is the most interesting level. As a matter of fact, loop acceleration
is not sufficient for many of the example systems we have analyzed with our tool FAST.
Furthermore, the majority of existing acceleration results stated at the loop acceleration
level may be extended to the level of flat acceleration. At the other end of the spectrum,
global acceleration is always sufficient but it occurs very rarely in practice and is es-
sentially restricted to particular subclasses (e.g., pushdown systems, reversal-bounded
counter systems [31] or particular subclasses of Petri nets).

(2) We develop new concepts for the algorithmic study of flat acceleration. The
notions of flattenings and of flattable systems provide the required bridge between flat
acceleration and the effective computation of the reachability set.

We propose new symbolic procedures and analyze them rigorously. We show Proce-
dure REACH2 terminates iff it is applied to a flattable (rather than flat) system, which is
the first completeness result on symbolic model checking with acceleration. We remark
that most of the case studies we analyzed in earlier works with FAST are flattable but
not flat, underlining the relevance of this concept.
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(3) Procedure REACH2 is schematic and it can be specialized in several ways. We
propose one such specialization, REACH3, geared towards the efficient search of all
flattenings of a nonflat system, without compromising completeness.

It appears that a key issue with REACH3 is the reduction of the number of circuits the
procedure has to consider. FAST implements specific algorithms for counter systems that
reduce exponentially the number of considered circuits and we show how to generalize
these ideas to other families of systems. It is these algorithms that make FAST succeed
in verifying several examples (see section 6) for which tools like LASH and ALV, based
on similar technology but restricted heuristics, do not terminate. More generally, the
comparisons in section 6 suggest that flat acceleration greatly enhances termination of
symbolic reachability set computation, and is fully justified in practice.

Outline. We define the systems under study in section 2, and the symbolic frameworks
in section 3. Section 4 introduces the three levels of accelerations and defines flattable
systems. Section 5 provides our procedure for flattable systems, and gives several algo-
rithmic and/or heuristic refinements. Section 6 compares several existing tools through
the new framework. All omitted proofs can be found in the full version of this paper.

2 Systems and Interpretations

Notations. A (binary) relation r on some set X is any subset of X ×X . We write x r x′

when (x, x′) ∈ r and denote by r(x) the set {x′ ∈ X | x r x′}. For Y ⊆ X , r(Y ) is⋃
x∈Y r(x). Given r1, r2 ⊆ X × X , the compound relation r1 • r2 contains all pairs

(x, z) s.t. x r1 y and y r2 z for some y ∈ X . Note that, in r1 • r2, relation r1 is applied
first. For i ∈ N, ri is defined inductively by r0 = IdX and ri+1 = r • ri, where IdX is
the identity on X . r∗ =

⋃
i∈N

ri is the reflexive and transitive closure of r.

Here, a system is a finite state control graph extended with a finite number of variables
that range over arbitrary domains and are modified by actions when a transition is fired.
Specific families of systems have been widely studied (see section 2.1). Formally:

Definition 2.1 (Uninterpreted system). An uninterpreted system S is a tuple S =
(Q, Σ, T ), where Q is a finite set of locations, Σ is a (possibly infinite) set of formulae
called actions, T ⊆ Q × Σ × Q is a finite set of transitions.

Given a uninterpreted system S = (Q, Σ, T ), the source, target and action mappings
α : T → Q, β : T → Q and l : T → Σ are defined as follows: for any transition
t = (q, σ, q′) ∈ T , α(t) = q, β(t) = q′, l(t) = σ.

Definition 2.2 (Interpretation). Given a (possibly infinite) set of formulae Σ and a set
D, an interpretation I of Σ, shortly an interpretation, is a tuple I = (Σ, D, �·�) such
that �·� : Σ → 2D×D maps formulae to relations on D.

Definition 2.3 (System). An interpreted system S (shortly a system) is a pair (S, I) of
an uninterpreted system S = (Q, Σ, T ) and an interpretation I = (Σ, D, �·�) of Σ,
shortly written S = (Q, Σ, T, D, �·�).

Fig. 1 displays S0, a simple uninterpreted system, in graphical notation.
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q1 q2

x:=x + 1 /∗ a1 ∗/

x �= y? y:=y + x /∗ a2∗/

y:=y + 2;
x:=x − 1
/∗ a3 ∗/

Fig. 1. S0, a simple uninterpreted system

In this example the actions may
be assignments that can be guarded
by Boolean expressions, but we will
not specify it more precisely. A pos-
sible interpretation for a1 ,a2 and a3
(the actions appearing in S0) assumes
that the domain D is Z

{x,y}, or equiv-
alently Z

2, i.e., we decide that x and
y range over integers. We then interpret the actions in the obvious way. For example
�a2� = {((x, y), (x′, y′)) | x �= y ∧ y′ = y + x ∧ x′ = x}. This turns S0 into an
interpreted system S0.

Behaviour. The set of configurations CS of S is Q × D, and each transition t ∈ T is

interpreted as a relation
t−→⊆ CS × CS defined by: (q, x) t−→ (q′, x′) if q = α(t), q′ =

β(t) and (x, x′) ∈ �l(t)�. This definition extends to sequences π ∈ T ∗ of transitions. Let

ε denote the empty word. Then
ε−→= IdCS and

t·π−→= t−→ • π−→. We also define
L−→ for any

language L ⊆ T ∗ by
L−→=

⋃
π∈L

π−→. Similarly �·� is extended to any language L ⊆ Σ∗.
In the following we omit the S subscript whenever this causes no ambiguities.

Reachability problems. We are interested in checking safety properties, which can be
expressed in terms of reachability using standard techniques. For any X ⊆ CS and

any L ⊆ T ∗, we define postS(L, X) = {x′ ∈ CS | ∃x ∈ X ; (x, x′) ∈ L−→}. The set
post(T, X) of all configurations reachable in one step from X is denoted by post(X).
The set post(T ∗, X) of all configurations reachable from X is the reachability set of X ,
denoted by post∗(X).

In practice, we usually ask whether post∗(X0) ⊆ P , for X0 a set of initial con-
figurations, and P a set of “safe” configurations. We focus here on the reachability set
computation which is the key issue. Since post∗(X0) is not recursive in general, the best
we can hope for are partially correct procedures, with no guarantees of termination, but
that are efficient on interesting subclasses of systems, and in practical case-studies.

Backward computation. One may also rely on backward reachability and check if, for
a set P of “bad” configurations, pre∗(P ) ∩ X0 is empty (with obvious definition for
pre). Since, for our level of abstraction, adaptation to backward computation is straight-
forward, we consider only forward computation. However it is worth remembering that,
depending on the case at hand, one of the approaches may be more adapted than the
other. Along the paper specific results for backward computation are pointed out.

Transition relation computation. A third approach is to compute the reachability re-

lation
T ∗
−→ once and for all (e.g., [21,25]). Then post∗(X0) =T ∗

−→ (X0). Our framework
extends smoothly in this direction but, since it requires additional notations, we postpone
this until the full version of this work.
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2.1 Families of Systems

Definition 2.4 (Family of systems). Given an interpretation I = (Σ, D, �·�), the family
of systems built on I (shortly the family of systems) denoted by F(I) is the class of all
systems S = (Q, Σ, T, D, �·�) using I to interpret actions.

Well known models can be obtained by instantiating Definition 2.4:
Minsky machines: are obtained by defining D = N

Var where Var = {x1, x2, . . .} is
a set of variables, and Σ as the set of increments “xi:=xi + 1”, guarded decrements
“xi > 0? xi:=xi − 1” and 0-tests “xi = 0?“ with the obvious interpretation.
Counter systems [18,34]: are obtained by considering the same domain, or a variant
D = Z

Var , and all actions definable in Presburger arithmetic. Many restrictions exist,
e.g., linear systems where actions are linear transformations with guards expressed in
Presburger [26,38], reversal-counter systems [31], many extensions of VASS (or Petri
nets) and so on.
Pushdown systems: the domain is D = Γ ∗, the set of all words on some stack alphabet
Γ . Actions add or remove letters on or from the top of the stack.
Channel systems [17]: consider the domain is D = (Γ ∗)C where C is a set of fifo
channels, and Γ is some alphabet of messages. Actions add messages at one end of the
channels and consume them at the other end.
Timed automata [5]: consider the domain D = R

Var
+ . Here some actions are guarded

by simple linear (in)equalities and they can only reset clocks. Other actions, left implicit
in the standard presentation, account for time elapsing.
Hybrid systems [4]: extend timed automata in that the real-valued variables do not
increase uniformly when time elapses. Rather they each increase according to their own
rate (as given by the current location).

3 A Symbolic Framework for Symbolic Model Checking

In practice model checking procedures use symbolic representations (called here regions)
to manipulate sets of configurations. The definition below follows directly from ideas
expressed for example in [15,32,22].1

Definition 3.1 (Symbolic framework). A symbolic framework is a tuple SF = (Σ, D,
�·�1 , L, �·�2) where I = (Σ, D, �·�1) is an interpretation, L is a set of formulae called
regions, �·�2 : L → 2D is a region concretization, and such that there exists a decidable
relation 	 and recursive functions 
, POST satisfying:

1. there exists an element ⊥∈ L such that �⊥�2 = ∅,
2. 	 ⊆ L × L is such that for all x1, x2 ∈ L, x1 	 x2 iff �x1�2 ⊆ �x2�2,
3. 
 : L × L → L is such that ∀x1, x2 ∈ L, �x1 
 x2�2 = �x1�2 ∪ �x2�2,
4. POST : Σ × L → L is such that ∀a ∈ Σ, ∀x ∈ L, �POST(a, x)�2 = �a�1 (�x�2).

1 Some weakened versions of the symbolic framework are sometimes considered. A weak
inclusion ensures only that x1 � x2 implies �x1� ⊆ �x2� while a weak union satisfies
�x1� ∪ �x2� ⊆ �x1 � x2� (typical widening in abstract interpretation [22]). In the following,
we do not consider weakened framework.
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Notation. Usually given an interpretation I = (Σ, D, �·�1) and a set of regions L, �·�2
is understood. Thus in the following, we write �·� for both �·�1 and �·�2, and we denote
symbolic frameworks as SF = (I, L). In the rest of the paper, we fix an arbitrary sym-
bolic framework SF = (I, L). When referring to a system S, if nothing is specified we
assume that S ∈ F(I).

Well-known symbolic frameworks for some of the families listed in section 2.1 are:

Regular languages: have been used for representing sets of configurations of push-
down systems [13], distributed protocols over rings of arbitrary size [32], and chan-
nel systems [36]. Restricted sets of regular languages are sometimes used for better
algorithmic efficiency: languages closed by the subword relation [1] or closed by semi-
commutations [16].

(finite union of) Convex polyhedra [4]: are conjunctions of linear inequalities defining
subsets of R

Var
+ , relevant in the analysis of hybrid systems.

Number Decision Diagrams [18,26]: are automata recognizing subsets of Z
Var and

have been used in the analysis of counter systems.

Real Vector Automata [11]: are Büchi automata recognizing subsets of R
Var
+ and have

been used in the analysis of linear hybrid systems.
Difference Bounds Matrices [5]: are a canonical representations for convex subsets
of R

Var
+ defined by simple diagonal and orthogonal constraints that appear in timed

automata.
Covering Sharing Trees [24]: are a compact representation for upward-closed subsets
of N

Var . These sets appear naturally in the backward analysis of broadcast protocols [26]
and several monotonic extensions of Petri nets.

Given a system S with a set of locations Q, and X ⊆ CS , post∗(X) is of the form⋃
q∈Q{q} × Dq where the Dq are subsets of D. Assuming an implicit ordering on

locations q1, . . . , q|Q|, we work on tuples of regions in L|Q|. We extend �·� to L|Q| by
�
(x1, . . . , x|Q|)

�
=

⋃|Q|
i=1{qi} × �xi�. Extensions of 	 and 
 are component-based.

POST is extended into POST : T × L → L by: POST((qi, a, qj), (x1, . . . , x|Q|)) is
equal to (x′1, . . . , x′|Q|) such that x′p = ⊥ if p �= j, POST(a, xi) otherwise. POST is then

extended to sequence of transition in the obvious way. We define POST : L|Q| → L|Q|

by POST(x) =
⊔

t∈T POST(t, x).

3.1 Limits of the Symbolic Approach

A subset of configurations X ⊆ CS is L-definable if there exists x ∈ L|Q| such that
�x� = X . Obviously, computing post∗(X) using regions is feasible only if post∗(X) is
L-definable and the question “is post∗(�x�) L-definable?” is undecidable in general.

Furthermore, L-definability of post∗(X) is not a sufficient condition for its com-
putability. We say below that post∗ (or any other function) is effectively L-definable if
there exists a recursive function g : L|Q| → L|Q| such that ∀x ∈ L|Q|, post∗(�x�) =
�g(x)�. (We often abuse terminology and write that “post∗(�x�)”, instead of post∗, “is
effectively L-definable”). It can well be the case that post∗(�x�) is L-definable but not
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effectively so (e.g., the family of lossy channel systems and the framework defined by
simple regular expressions).

3.2 Standard Symbolic Model Checking Procedure

REACH1 (Procedure 1) is the standard symbolic procedure for reachability sets. It is only
guaranteed to terminate on L-uniformly bounded systems.

procedure REACH1(x0)
parameter: S
input: x0 ∈ L|Q|

1: x ← x0

2: while POST(x) �� x do
3: x ← POST(x) � x
4: end while
5: return x

Procedure 1: Standard symbolic model checking algorithm (forward version)

Definition 3.2 (L-uniformly bounded). A system S is L-uniformly bounded if for all
x ∈ L|Q|, there exists nx ∈ N such that, for all c1 ∈ Q × �x� and c2 ∈ Q × D, if
c2 ∈ post∗({c1}) then c2 ∈

⋃
i≤nx

posti({c1}).

Theorem 3.3. Given a symbolic framework SF = (I, L) and a system S ∈ F(I)
1. when REACH1 terminates, �REACH1(x0)� = post∗(�x0�) (partial correctness);
2. REACH1 terminates on any input iff S is L-uniformly bounded (termination).

Remark 3.4. Termination for L-uniformly bounded systems does not hold if 	 or 
 are
weak.

In practice systems are rarely L-uniformly bounded and Procedure 1 seldom termi-
nates. A notable exception are the well-structured transition systems with upward-closed
sets as regions [28,27]. They are L-backward uniformly bounded so that a backward
version of Procedure 1 always terminates.

4 Flat Acceleration for Flattable Systems

4.1 Acceleration Techniques

In order to improve the convergence of the previous procedure, acceleration techniques
consist in computing the transitive closure of some transitions.

Definition 4.1 (Acceleration). A symbolic framework SF = (I, L) supports

1. loop acceleration if there exists a recursive function POST STAR : Σ × L → L s.t.
∀a ∈ Σ, ∀x ∈ L, �POST STAR(a, x)� = �a∗� (�x�);
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2. flat acceleration if there exists a recursive function POST STAR : Σ∗ × L → L s.t.
∀π ∈ Σ∗, ∀x ∈ L, �POST STAR(π, x)� = �π∗� (�x�);

3. global acceleration if there exists a recursive function POST STAR : RegExp(Σ) ×
L → L s.t. for any regular expression e over Σ, for any x ∈ L , �POST STAR(e, x)�
= �e� (�x�).

We often write that “S”, rather than (I, L), “supports loop acceleration, or flat, . . . ”
Consider S0 from Fig. 1 and let A ⊆ D. Loop acceleration only concerns action a3,

and comes down to computing �a∗
3� (A) = {(x′, y′) ∈ Z

2|∃(x, y) ∈ A; ∃k ∈ N; x′ =
x − k ∧ y′ = y + 2 · k}. Flat acceleration requires computability of �(a1 · a2)∗� (A),
�(a1 · a3 · a2)∗� (A), �(a1 · a3 · a3 · a2)∗� (A), �(a3 · a2 · a1)∗� (A) and so on. Global
acceleration requires the computation of more complex interleaving of actions, like
�(a1 · a∗

3 · a2)∗� (A).

Definition 4.1 applies to symbolic frameworks and hence uses sequences of actions.
However, in practice, POST STAR is used with sequences of transitions. Let us illustrate
this in the case of flat acceleration: Consider a sequence π = (q1, a1, q2) · (q3, a2, q4) ·
(q5, a3, q6) of transitions. There are two cases. If the sequence is invalid (i.e., q2 �= q3
or q4 �= q5) then the associated relation is empty and POST STAR(π, (q, x)) is (q, x).
If the sequence is valid, then the sequence is equivalent to (q1, a1 · a2 · a3, q6). If the
sequence is not a cycle (q1 �= q6) it can be fired at most once and POST STAR(π, (q1, x))
is (q6, POST(a1 · a2 · a3, x)) + (q1, x). If the sequence is a cycle (i.e., q1 = q6) then
POST STAR(π, (q, x)) is (q1, POST STAR(a1 · a2 · a3, x)) if q = q1, and (q, x) other-
wise. Finally POST STAR is extended to L|Q| in the obvious way. The extension for
global acceleration considers the intersections of the regular language e with the regular
languages of transitions from a location q to another location q′.

Example 4.2. Loop acceleration. Minsky machines support loop acceleration in frame-
works where formulae in L define upward-closed sets or semi-linear sets. But upward-
closed sets (for example) are not expressive enough to support flat acceleration.
Flat acceleration. Counter systems (with finite monoid) equipped with Presburger for-
mulae supports flat acceleration [26, theorem 2]. Other examples are channel systems
with cqdd [14, theorem 5.1], non-counting channel systems with slre [27, theorem 5.2]
or qdd[12, theorem 6], lossy channel systems with sre [1, corollary 6.5]. Restricted
counter systems used by TREX equipped with arithmetics almost supports flat acceler-
ation [2, lemma 5.1]: their POST STAR is not recursive.
Global acceleration. Reversal-counter systems [31], 2-dim VASS [34], lossy VASS
and other subclasses of VASS with Presburger formulae [35], pushdown systems with
regular languages or semi-commutative rewriting systems with APC languages [16],
support global acceleration.

Obviously “global ⇒ flat ⇒ loop”. Loop acceleration is often easy to obtain, but rarely
sufficient in fixpoint computations. Flat acceleration is more flexible, but often requires
good compositional properties of Σ and more complex methods for POST STAR. Global
acceleration is a very strong property that ensures post∗ is effectively L-definable.
Clearly most interesting families of systems do not support global acceleration since
they are Turing powerful. Then for our purpose, flat acceleration is likely to be the best
compromise. The rest of the paper will focus on flat acceleration.
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4.2 Restricted Linear Regular Expressions

Flat acceleration allows to compute the effect of more general expressions than iterations
of sequences of actions. Given an alphabet A, a restricted linear regular expression (rlre)
over A is a regular expression ρ of the form u∗

1 . . . u∗
n where, for all i, ui ∈ A∗. This is

closely related to semi-linear regular expressions [27,30].

Proposition 4.3. Let S support flat acceleration. Then for any rlre ρ over T and for any
x0 ∈ L|Q|, post(ρ, �x0�) is effectively L-definable.

4.3 Flat Systems and Flattenings

q1 q2
t3

t1 t2In general, flat acceleration does not ensure computabil-
ity of the reachability set. However it does in some cases,
for example with “flat” systems, that have no nested
loops. Consider the system on the right: its reachability
set can be computed by iterating first t1, then firing t3, and finally iterating t2.

Definition 4.4 (Flat system [20,27,30]). An uninterpreted system S = (Σ, Q, T ) is flat
if for any location q, there exists at most one elementary cycle containing q. A system
S = (Σ, Q, T, D, �·�) is flat if S = (Σ, Q, T ) is flat.

In Fig. 1, S0 is not flat because its two elementary cycles both visit q2.

Proposition 4.5. If S is a flat system supporting flat acceleration, then post∗S(�x�) is
effectively L-definable.

Not all systems of interest are flat, and a possible method for dealing with a non-flat
system S is to find an equivalent flat system, called a flattening of S.

Definition 4.6 (Flattening). A systemS′ = (Q′, Σ, T ′, D, �·�) is a flattening of a system
S = (Q, Σ, T, D, �·�) if (1) S′ is flat, and (2) there exists a mapping z : Q′ → Q, called
folding, such that ∀(q′1, w, q′2) ∈ T ′, (z(q′1), w, z(q′2)) ∈ T .

Flattening is a form of partial unfolding. The following figure shows a system (left) and
one of its flattenings (right).

q1 q2

t3

t4

t2t1
q′1 q′2 q′′1

q′′2q′′′1q′′′2

t3 t4

t3

t4t3

t4t1

t1

t2

Assume S′ is a flattening of some S. The z folding extends to configurations of S′ by
z((q′, x)) = (z(q′), x). Extension of z to X ⊆ CS′ is defined by:

z
( ⋃

q′∈Q′

{q′} × Dq′

)
=

⋃

q∈Q

{q} ×
( ⋃

q′∈z−1(q)

Dq′

)
.

This gives an effective extension of z to L-definable subsets of CS′ . Given X ′ ⊆ CS′ ,
Definition 4.6 ensures that z(post∗S′(X ′)) ⊆ post∗S(z(X ′)) and that for any language
L ⊆ T ∗, z(postS′(L, �x′�)) = postS(z(L), z(�x′�)).
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Definition 4.7 (L-flattable). A system S = (Q, Σ, T, D, �·�) is L-flattable iff for any
x ∈ L|Q|, there exists a flattening S′ = (Q′, Σ, T ′, D, �·�) of S and a x′ ∈ L|Q′| such
that z(�x′�) = �x� and z(post∗S′(�x′�)) = post∗S(z(�x′�)).

Prop. 4.5 extends to flattable systems:

Theorem 4.8. If S is a L-flattable system supporting flat acceleration, then post∗S(�x�)
is effectively L-definable.

A natural question is whether L-flattable systems are common or rare. It appears
that many systems with L-definable reachability sets are flattable. For example 2-dim
VASS [34], timed automata [21], k-reversal counter machines, lossy VASS and other sub-
classes of VASS [35] and all L-uniformly bounded systems (see section 3) are L-flattable.
Clearly, there is no equivalence in general: lossy channel systems haveL-definable reach-
ability sets but are not flattable. Interesting open questions are whether well-known
subclasses with L-definable reachability sets (like Presburger definable VASS) are L-
flattable or not.

We conclude by noting that L-flattability is undecidable in general, even when re-
stricting to 2-counter systems:

Theorem 4.9. Assuming the symbolic framework of 2-counter systems and Presburger
formulae, the question of whether a 2-counter system S is L-flattable is undecidable.

5 Computing Reachability Set Using Flat Acceleration

The previous characterization leads to a complete procedure for flattable systems: (1)
enumerate all flattenings S′ of S; (2) for each S′, compute its reachability set X ; (3)
check whether z(X) is closed by post in S.

However flattenings are not easy to handle and this motivates the following alternative
characterization based on rlre’s.

Theorem 5.1. A system S = (Q, Σ, T, D, �·�) is L-flattable iff for all x ∈ L|Q|, there
exists a rlre ρ over T such that post∗(�x�) = post(ρ, �x�).

Hence reachability set computation for flattable systems reduces to exploring the set of
rlre over T , which can be achieved by increasing a sequence of rlre: see Procedure 2.
Observe that REACH2 must choose “fairly”. Here this means that, in a nonterminating
execution of the procedure, each w ∈ T ∗ is selected infinitely often. Many simple
schemes ensuring such a fair choice are possible.

Theorem 5.2. Given a symbolic framework SF = (I, L) and a system S ∈ F(I)
1. when REACH2 terminates, �REACH2(x0)� = post∗(�x0�) (partial correctness);
2. REACH2 terminates on any input iff S is L-flattable (termination).

Remark 5.3. Termination for L-flattable systems does not hold if the symbolic frame-
work provides only a weak inclusion (or if POST STAR returns an over-approximation).
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procedure REACH2(x0)
parameter: S
input: x0 ∈ L|Q|

1: x ← x0

2: while POST(x) �� x do
3: Choose fairly w ∈ T ∗

4: x ← POST STAR(w, x)
5: end while
6: return x

Procedure 2: Computing reachability sets with flat acceleration

5.1 Faster Enumeration of Flattenings

A major practical issue with REACH2 is to implement Choose so that we converge
quickly to the fixpoint. For this purpose the following heuristic proved very efficient
in FAST: one picks a bound k ∈ N and restricts Choose to sequences w ∈ T≤k,
i.e., of length at most k. This method, called k-flattable, is eventually stopped by
a Watchdog if it does not terminate. Then k is incremented and k-flattable is
launched again.

This leads to Procedure REACH3 below. For “fairness” we require that Watchdog
fires infinitely often, but only after Choose picked each w ∈ T≤k at least once.

procedure REACH3(x0)
parameter: S
input: x0 ∈ L|Q|

1: x ← x0 ; k ← 0
2: k ← k + 1
3: start
4: while POST(x) �� x do /* k-flattable */
5: Choose fairly w ∈ T ≤k

6: x ← POST STAR(w, x)
7: end while /* end k-flattable */
8: with
9: when Watchdog stops goto 2

10: return x

Procedure 3: Flat acceleration and circuit length increasing

Theorem 5.4. Given a symbolic framework SF = (I, L) and a system S ∈ F(I)
1. when REACH3 terminates, �REACH3(x0)� = post∗(�x0�) (partial correctness);
2. REACH3 terminates for any input iff S is L-flattable (termination).

Technical issues. When implementing REACH3 one faces (at least) two practical prob-
lems. First the size 2 of the region x computed so far may be explosive. Then Watchdog

2 Each set of regions has its own natural measure for size, depending on data structures and
implementation.
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needs some criterion. Below we describe the implementation choices made in FAST on
these two issues, believing that these solutions may adapt to other domains. Let us point
out that these choices do not respect exactly the specification for REACH3 since fairness
is not ensured, and FAST should be improved in this way.
Choose: In general there is no direct relationship between the size of a region x and the
“size” of its concretization �x�. Intermediate regions may be much larger than the final
region for post∗(�x0�). To avoid such large regions, Choose selects a next w ∈ T≤k

such that |POST STAR(w, x)| < |x|. If there is no such w then the size of the current x
is allowed to increase and the next w is picked. In practice, this enumeration works well
(while a cyclic enumeration of T≤k almost always runs out of memory).
Watchdog: FAST’s criterion is simply a fixed (but user-modifiable) limit on the number
of iterations in k-flattable for any given value of k. This cannot be fair but it works
well in practice since, once a k large enough is considered, the fixpoint is usually found
within a few iterations.

5.2 Reduction of the Number of Cycles

A remaining issue in REACH3 is that the cardinal of T≤k grows exponentially with k.
We introduce the notion of reduction to compact the number of relevant transitions.

Definition 5.5 (k-Reduction). Given an interpretation I = (Σ, D, �·�), a k-reduction r
maps each system S = (Q, Σ, T, D, �·�) ∈ F(I) to a system S′ = (Q, Σ, T ′, D, �·�) ∈
F(I) such that: (1) ∀t′ ∈ T ′, t′

−→⊆T ∗
−→, (2) ∀w ∈ T≤k, ∃ρ ∈ rlre(T ′). w∗

−→⊆ ρ−→, (3)
|T ′| ≤ |T≤k|.

Hence a k-reduction replaces T by a new set T ′ that can stand for T≤k but is smaller. In
particular, if S is L-flattable, then r(S) is too, and they both have the same reachability
set. Obvious (and naive) k-reductions are the removals of identity loops. More useful
generic reductions are conjugation reduction: only keep one sequence of transitions
among each conjugacy class (e.g., keep t1 · t2 · t3 but remove t2 · t3 · t1 and t3 · t1 · t2) and

commuting reduction: if t1 and t2 commute, i.e., if
t1t2−→=t2t1−→, then remove both t1 · t2

and t2 · t1 (works since
(t1·t2)∗

−−−−→=
t∗
1t∗

2−→).

Proposition 5.6. Conjugation reduction and commuting reduction are k-reductions.

Conjugation reduction satisfies |T ′| = O( |T
k|

k ).

Beyond these generic reductions, it is worth developing reductions dedicated to a
specific interpretation. For linear counter systems with a finite monoid, [26] presents a
reduction where |T ′| remains polynomial in k (while |T≤k| is exponential). This appears
to be a key reason for FAST’s performances.

k |Vk| |T ′| |T ′′|
1 7 7 7
2 36 21 16
3 156 56 28
4 578 126 47
5 1890 252 86

Here are reduction results for the swimming pool protocol (a
VASS with 7 transitions and 6 variables studied in [29]). Computing
the reachability set requires considering cycles of length k = 4. In
the table Vk ⊆ T≤k is the set of valid sequences in T≤k. T ′ (resp.
T ′′) is from the system after the reduction of [26] (resp. further
combined with commuting reduction).
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6 Conclusion: Flat Acceleration in Practice

6.1 Tools Comparison

ALV FAST LASH TREX
system full linear restricted
regions Presburger formula arith.

undec. �
acceleration no flat loop ≈ flat
termination UB F 1F kF (oracle �)

Our framework is useful when compar-
ing ALV, FAST, LASH and TREX, four
symbolic model checkers that can per-
form reachability analysis on counter
systems (see section 2.1). We restrict
this comparison to the exact forward
computation of post∗(�x0�). ALV [6]
handles full counter systems. Regions are Presburger formulae. The heuristic used is
similar to REACH1. Both FAST [8] and LASH [33] handle linear counter systems with
Presburger formulae: flat acceleration is supported for functions whose monoid is finite,
but while FAST really takes advantage of full flat acceleration (Procedure REACH3), the
heuristics in LASH are restricted to loop acceleration (Procedure REACH2 where w is
chosen in T≤1 instead of T ∗). TREX [3] handles restricted counter systems. Regions
are arithmetic formulae (hence 	 is not recursive). A partially recursive flat acceleration
procedure is available. The heuristic is REACH2 restricted to T≤k for a user-defined
k. See [23] for an in-depth comparison of FAST and TREX. UB, F and kF stands for
L-uniformly bounded, L-flattable and L-flattable with length k (UB ⊆ 1F ⊆ kF ⊆ F).

System ALV LASH FAST k
TTP no yes yes 1
prod/cons (2) no yes yes 1
prod/cons (N) no no yes 2
lift control, N no no yes 2
train no no yes 2
consistency no no yes 3
CSM, N no no yes 2
swimming pool no no yes 4
PNCSA no no no ?
IncDec no no no ?
BigJAVA no no no ?

Procedure comparison on case studies. The following
table compares how ALV, FAST and LASH behave in
practice. “Yes” means termination within 1200 seconds
on a Pentium III 933 MHz with 512 Mb. k is the length of
cycles FAST considered in Procedure REACH3. All case
studies are infinite-state systems, taken from FAST’s web
site [8]. Experimental results show strong relationship
with the acceleration framework: flat acceleration (FAST)
has the better termination results, loop acceleration (k =
1) is not always sufficient, while simple iteration (ALV) is not sufficient on these complex
examples (results are consistent with [10]). These experiments clearly suggest that flat
acceleration greatly enhances termination and is fully justified in practice, at least
for counter systems.

6.2 Tool Design

The flat acceleration framework provides guidelines for designing new techniques and
tools. FAST supports completely this framework. Complex case studies have been con-
ducted [8,9]. The following table shows performances of FAST on a significant pool of
counter systems collected on the web sites of tools like ALV, BABYLON [7], BRAIN,
LASH and TREX, and ranging from tricky academic puzzles (swimming pool) to com-
plex industrial protocols (TTP). (More examples are given in the full version of this
paper.) They all are infinite-state and are thus beyond the scope of traditional model
checking techniques and tools. Furthermore, most of these systems also go beyond
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System var |T | sec. Mb k

CSM 13 13 45.57 6.31 2
FMS 22 20 157.48 8.02 2
Multipoll 17 20 22.96 5.13 1
Kanban 16 16 10.43 6.54 1
swimming pool 9 6 111 29.06 4
last i.-first s. 17 10 1.89 2.74 1
PC Java(2) 18 14 13.27 3.81 1
PC Java(N) 18 14 723.27 12.46 2
Central server 13 8 20.82 6.83 2
Consistency 12 8 275 7.35 3
M.E.S.I. 4 4 0.42 2.44 1
M.O.E.S.I. 4 5 0.56 2.49 1

System var |T | sec. Mb k

Synapse 3 3 0.30 2.23 1
Illinois 4 6 0.97 2.64 1
Berkeley 4 3 0.49 2.75 1
Firefly 4 8 0.86 2.59 1
Dragon 5 8 1.42 2.72 1
Futurebus+ 9 10 2.19 3.38 1
lift - N 4 5 4.56 2.90 3
barber m4 8 12 1.92 2.68 1
ticket 2i 6 6 0.88 2.54 1
ticket 3i 8 9 3.77 3.08 1
TTP 10 17 1186.24 73.24 1

VASS or Petri nets, so that methods like covering trees or backward computation do not
apply. The results are for forward computation of the reachability set, on an Intel Pen-
tium 933 Mhz with 512 Mb. Comparing them with other complex case studies analyzed
with ALV, LASH, and TREX [3,6,10,33] confirms that flat acceleration is a powerful
technique for handling infinite-state systems.
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