
MODULAR SUPERVISORY CONTROL OF A CLASS
OF CONCURRENT DISCRETE EVENT SYSTEMS

B. Gaudin ∗ H. Marchand ∗

∗ Irisa, Campus universitaire de Beaulieu, Rennes.

Abstract: In this paper, we are interested in the control of a particular class of Concurrent
Discrete Event Systems defined by a collection of components that interact with each
other. We investigate the computation of the supremal controllable language contained
in the one of the specification. We do not adopt the decentralized approach. Instead,
we have chosen to perform the control on some approximations of the plant derived
from the behavior of each component. The behavior of these approximations is restricted
so that they respect a new language property for discrete event systems called partial
controllability condition that depends on the specification. It is shown that, under some
assumptions, the intersection of these “controlled approximations” corresponds to the
supremal controllable language contained in the specification with respect to the plant.
This computation is performed without having to build the whole plant, hence avoiding
the state space explosion induced by the concurrent nature of the plant.

Keywords: Discrete Event Systems, Supervision and control, Concurrent Systems,
Partial controllability.

1. INTRODUCTION

In this paper, we are interested in the control of Con-
current Discrete Event Systems defined by a collection
of components that interact with each other. Superviso-
ry control [Ramadge and Wonham (1989)] consists in
modifying a system (plant) such that the modified (or
controlled) system satisfies a given property (or spec-
ification). Given a plant and a specification modeled
by languages, in the Ramadge & Wonham theory, one
important phase is the computation of the supremal con-
trollable sub-language contained in a language that rep-
resents the expected behavior. However, although this
computation is polynomial in the number of states of
the plant and of the specification, it is well known that
the plant size grows exponentially with the number of
components that compose the plant. This renders the
computation of the supervisors not practical because of
the size of the generated state space which is often too
important when dealing with large scale systems.

Several approaches have been recently investigated to
deal with the complexity issue of the control of Concur-
rent Discrete Event Systems. Given a Concurrent Dis-
crete Event System G = G1 ‖ · · · ‖ Gn and a specifica-
tion expressed by a language K, the problem is to com-
pute the supremal controllable sublanguage of K∩L(G)
w.r.t. L(G) without having to build L(G). In [deQueiroz
and Cury (2000); Akesson et al. (2002)], the authors
consider the control of a product plant (i.e. systems com-
posed of asynchronous subsystems, not sharing common

events) 1 . Given a specification, a local system is built
from the components that are coordinated by the speci-
fication (i.e. all the components that share some events
used to express it). It is then sufficient to compute the
local supervisor ensuring the specification with respect
to this local system in order to obtain the result on the w-
hole system. Closely related to the decentralized theory,
under the hypothesis that the specification is separable
and that the shared events are controllable, the authors
of [Willner and Heymann (1991)] provide a solution
allowing to compute local modular supervisors Si acting
upon Gi and to operate the individually controlled plant
Si/Gi concurrently in such a way that the behavior of
the controlled plant (i.e. L(‖i Si/Gi)) corresponds to
the supremal controllable sublanguage of K w.r.t. the
plant L(G). The same methodology has been used
in [Rohloff and Lafortune (2003)] for the control of
concurrent plant for which the various components have
an identical structure and under the constraints that the
local supervisors Si are only operating on a subset of
the local events. See also [Abdelwahed and Wonham
(2002); Jiang and Kumar (2000); Leduc et al. (2001)] for
other works relating to the control of concurrent plant.

In this paper, compared to [Willner and Heymann
(1991)], we adopt a dual approach. Instead of having
one local supervisor per component that enforces local
control actions with respect to the events of this com-
ponent, we have chosen to perform the control on some
approximations of the plant derived from the behavior of

1 they actually first transform a concurrent plant in a modular plant.

each component. The behavior of these approximations
is restricted so that they respect a new language property
for discrete event systems called partial controllability
condition that depends on K. Under some assumptions,
it is shown that a supervisor can be derived from these
“controlled approximations” such that the behavior of
the controlled plant corresponds to the supremal control-
lable language contained in K w.r.t. the plant G. More
details (and missing proofs) are available in [Gaudin and
Marchand (2004)].

2. PRELIMINARIES

Model and Supervisory Control overview. The basic
structures from which the plant is built are Finite State
Machines (FSM), that are defined by a 4-tuple G =
〈Σ,X , xo, δ〉, where Σ is the finite alphabet of G. X
is the finite set of states, xo ∈ X is the initial state,
whereas δ is the partial transition function defined over
Σ ×X −→ X . The notation δ(σ, x)! means that δ(σ, x)
is defined, i.e., there is a transition labeled by an event
σ out of state x in machine G. Likewise, for x ∈ X
and s ∈ Σ∗, δ(s, x) denotes the state reached by taking
the sequence of events defined by trace s from state x
in machine G. The behavior of the system is described
by the language L(G) ⊆ Σ∗ generated by G. (i.e.
L(G) = {s ∈ Σ∗ | δ(s, xo)!}.

Given s, s′ ∈ Σ∗, we say that s′ ≤ s whenever s′ is
a prefix of s (i.e. it exists t ∈ Σ∗ s.t. s = s′t). We
denote by L the prefix-closure of a language L ⊆ Σ∗

(L = {s ∈ Σ∗ | ∃s′ ∈ L, s ≤ s′}). Note that L(G),
as defined above, is prefix-closed (i.e. L(G) = L(G)).
For L ⊆ Σ∗ and Σ′ ⊆ Σ, we use L(s, Σ′) to denote
the set of suffixes of L after s that belongs to Σ′∗, i.e.
L(s, Σ′) = {t ∈ Σ′∗ | st ∈ L}.

Given a plant to be controlled, some of its events in Σ
are said to be uncontrollable (Σuc), i.e., their occurrence
cannot be prevented by the supervisor, while the others
are controllable (Σc). First, we recall the definition of a
controllable language [Ramadge and Wonham (1989)].

Definition 1. Let G be an FSM modeling the plant and
K ⊆ L(G) the prefix-closed specification. Then K is
controllable with respect to Σuc and G (or L(G)) if
KΣuc ∩ L(G) ⊆ K •

We denote by K↑L,c or SupC(K, L, Σuc) the supremal
controllable sub-language of K w.r.t. Σuc and L(G) =
L (see [Ramadge and Wonham (1989)]).

In some situations, it is also of interest to compute K↓L,c

the infimal prefix-closed and controllable superlanguage
of K w.r.t. L(G) and Σuc, which basically corresponds
to the smallest prefix-closed language that contains K
and that is controllable w.r.t. Σuc and L(G) = L. It can
be shown (see e.g. [Cassandras and Lafortune (1999)])
that K↓L,c = KΣ∗

uc ∩ L.

Concurrent DES. In this paper, a plant is composed
of several components, sharing common events, i.e. a
plant G is modeled as a collection of FSM Gi =
〈Σi,Xi, xoi, δi〉. The global behavior of the plant is
given by G = G1 ‖ · · · ‖ Gn, where the operation

‖ is the classical parallel composition (i.e. G1 ‖ G2

represents the concurrent behavior of G1 and G2 with
synchronization on the shared events). Now, given the
set of FSM (Gi)i≤n modeling G, we denote by Σs the
set of shared events of G, i.e

Σs = {σ ∈ Σ| ∃i 6= j, σ ∈ Σi ∩ Σj}. (1)

Let Σ′ ⊆ Σ, then PΣ′ : Σ∗ → Σ′∗ is the natural
projection from Σ∗ to Σ′∗ that erases in a sequence of Σ∗

all the events that do not belong to Σ′.This definition is
easily extended to the projection of regular languages as
follows: PΣ′ (L) = {s′ ∈ Σ′∗ | ∃s ∈ L, s′ = PΣ′(s)}.
Given L ⊆ Σ′∗ ⊆ Σ∗, the inverse projection is defined
by P−1

Σ′ (L) = {s ∈ Σ∗ | PΣ′(s) ∈ L}. From an
implementation point of view, if H denotes the FSM
such that L(H) = L, then the FSM modeling the inverse
projection of L, noted H−1, can be obtained from H by
simply adding self-loops labeled by events in Σ \ Σ′ to
each state of H .

Given a discrete event system G = G1 ‖ · · · ‖ Gn,
with L(Gi) ⊆ Σ∗

i , we simply denote by Pi the projec-
tion from Σ∗ to Σ∗

i and by P−1

i the inverse projection
from Σ∗

i to Σ∗. Based on these operations, the language
resulting from the parallel composition of FSM is char-
acterized by:

L(G) = P−1
1 [L(G1)] ∩ · · · ∩ P−1

n [L(Gn)] (2)

The following technical lemmas will be useful.

Lemma 1. [Gaudin and Marchand (2004)] Let L ⊆ Σ′∗

and Σ′ ⊆ Σ, let s ∈ L and s′ ∈ Σ∗, then ss′ ∈
P−1

Σ′ (L) =⇒ sPΣ′(s′) ∈ P−1

Σ′ (L). �

Lemma 2. ((3.1) of [Willner and Heymann (1991)]) Let
G = G1 ‖ · · · ‖ Gn, s ∈ L(G), i ∈ {1, . . . , n} and
σ ∈ Σi \Σs. Then sσ ∈ L(G) ⇐⇒ sσ ∈ P−1

i (L(Gi)).

�

Control Problem formulation & Related Works Let
G = G1 ‖ · · · ‖ Gn be the plant to be controlled and
Li = L(Gi) be the language generated by the compo-
nent Gi for i ≤ n. The alphabet of Gi is partitioned into
the controllable event set Σi,c and the uncontrollable
event set Σi,uc, i.e. Σi = Σi,uc

.

∪ Σi,c. The alphabet
of the global plant G is given by:

Σ =
⋃

i

Σi, Σc =
⋃

i

Σi,c, and Σuc = Σ \ Σc.

Moreover, we assume that the following relation holds
between the control status of shared events:

∀i, j, Σi,uc ∩ Σj,c = ∅ (3)

which simply means that the components that share an
event agree on the control status of this event. Under this
hypothesis, we have that

Σuc = ∪iΣi,uc

Let K ⊆ Σ∗ be the expected behavior. The problem,
we are interested in, is the Basic Supervisory Control
Problem, i.e . the problem is to compute the supremal
controllable sublanguage (K ∩ L(G))↑c of K ∩ L(G)

w.r.t. L(G). However, knowing that the synthesis algo-
rithms are polynomial in the number of states of G and
that the size of the state space of G is exponential in the
number of components of G, it is important to design
algorithms that compute the controller by taking advan-
tage of the structure of G without building it. Hence,
the actual problem is to compute (K ∩L(G))↑c without
computing neither L(G) nor K ∩ L(G).

A Decentralized approach: The works of [Willner and
Heymann (1991)] is closely related to the decentralized
theory. The authors consider the control of Concurrent
DES G1 ‖ · · · ‖ Gn. Given a language-based spec-
ification K, they provide some solutions allowing to
compute local modular supervisors Si on Gi (based on
a notion of separable specification (See Definition 2))
and to operate the individually controlled system Si/Gi

concurrently in such a way that the controlled behavior
corresponds to the supremal controllable sublanguage of
K ∩ L(G) w.r.t. L(G).

Definition 2. L ⊆ Σ∗ is said to be separable w.r.t.
{Σi}i≤n with ∪i≤nΣi = Σ, whenever there exists a
set of languages {Li}i≤n (called generating set), s.t.
Li ⊆ Σ∗

i and L = L1 ‖ · · · ‖ Ln = ∩iP
−1
i (L1) .•

Based on this definition, [Willner and Heymann (1991)]
shown that

Theorem 1. Let G = G1 ‖ · · · ‖ Gn, with L(Gi) ⊆ Σ∗
i .

and K the expected specification. If Σs ⊆ Σc and K is
separable w.r.t. {Σi}i≤n, then

‖i≤n SupC(Pi(K) ∩ L(Gi),L(Gi), Σi,uc) =

SupC(K ∩ L(G),L(G), Σuc) �

Hence, given a Concurrent DES G and a separable
specification K, Theorem 1 shows that there exists a
set of supervisors Si acting upon Gi, such that ‖i≤n

L(Si/Gi) = (K ∩ L(G))↑c.

If K is separable w.r.t. {Σi}i≤n (which can be checked
in O(mn+1), where m is the size of the FSM that
generates K), then synthesizing the local supervisors
requires the computation of the projection of K over Σi.
In the worst case, the size of the FSM that generates
Pi(K) is in O(2m). Hence, solving the supervisory
control problem will require O(n.2m.N) space where
N is the size of each component.

Our approach: Our approach is different and is more
related to the modular approach of [Wonham and Ra-
madge (1988)]. Indeed, the plant G can be described by
the following parallel composition of FSM G =‖i≤n

G−1

i , where G−1

i is the FSM such that L(G−1

i) =
P−1

i (L(Gi)). In fact, each G−1

i can be seen as an ap-
proximation of the plant G to be controlled.

Compared to [Willner and Heymann (1991)], we adopt
a dual approach. Instead of controlling each component
Gi (i.e. L(Gi)) to enforce Pi(K), we have chosen to
control the approximations L(G−1

i) of the plant in order
to enforce K. However, it is not sufficient to compute a
supervisor Si acting upon G−1

i that restricts the behav-
ior L(G−1

i) to the supremal controllable sublanguage

of K ∩ L(G−1
i) and to operate the controlled systems

Si/G−1
i concurrently to obtain the supremal control-

lable sublanguage of K ∩ L(G) (the result may be not
supremal). So the idea of our method is to refine the
notion of controllability.
The property that we ensure on each G−1

i according to
K is called the partial controllability condition and is
defined in Section 3. As in the case of the controllabil-
ity concept, it will be shown that there exists a supre-
mal partially controllable sublanguage of K ∩ L(G−1

i)

w.r.t. K and G−1

i , called K↑pc
i . It is then shown that

∩i≤nK↑pc
i ⊆ (K∩L(G))↑c (Theorem 2) and that under

some conditions on K the equality holds (Theorem 3
and 4). A comparison with the results of [Willner and
Heymann (1991)] is then done.

3. PARTIAL CONTROLLABILITY PROPERTY

In this section, we introduce a new concept of control-
lability, named Partial Controllability, that will serve as
the bases of the modular computation of supervisors for
Concurrent discrete event systems.

3.1 Definition and useful properties

Definition 3. Let M ⊆ L ⊆ Σ∗ be prefix-closed lan-
guages. Let Σ′

uc ⊆ Σuc ⊆ Σ be two sub-alphabets of
Σ. Let M ′ ⊆ M be a prefix-closed language. M ′ is
partially controllable with respect to Σ′

uc, Σuc, M and
L if

(i) M ′ is controllable w.r.t Σ′
uc and L.

(ii) M ′ is controllable w.r.t Σuc and M . •

In general, M is not partially controllable with respect to
Σ′

uc, Σuc, M and L (e.g. if M is not controllable w.r.t.
Σ′

uc and L). However, it can be shown that there exists a
supremal sub-language of M that has this property.

Proposition 1. [Gaudin and Marchand (2004)]

Let M ⊆ L ⊆ Σ∗ be prefix-closed languages, Σ′
uc ⊆

Σuc. There exists a unique supremal language, denot-
ed by M↑pc, which is partially controllable w.r.t Σ′

uc,
Σuc,M and L. Moreover

M↑pc = M↑pc = SupC(SupC(M, Σ′
uc, L), Σuc, M) �

Prop. 1 offers a practical way to compute the supremal
partially controllable sub-language of M w.r.t. to Σ′

uc,
Σuc, and L. It can be shown that its computation is
in O(|Σ|N2

MNL), where NM is the size of the FSM
encoding M and NL the one of L.

4. CONTROL OF CONCURRENT DES

Given a Concurrent DES, G = G1 ‖ · · · ‖ Gn, and a
control objective K, we want to compute a controllable
sub-language of K∩L(G) w.r.t. L(G) and Σuc, without
having to build G itself.

4.1 Modular computation of a controllable sub-language
of K w.r.t. L(G)

Based on the concept of partial controllability applied on
K and on the approximations of the plant P−1

i (L(Gi))

derived from each of its components, the next theorem
provides a modular way to compute a sub-language of
K that is controllable with respect to the plant.

Theorem 2. Let G = G1 ‖ · · · ‖ Gn, with Gi acting
upon Σi = Σi,uc ∪ Σi,c and Li = L(Gi). Let K ⊆
Σ∗ be a prefix-closed language modeling the expected
behavior. For i ≤ n, we note

• Ki = K ∩ P−1

i (L(Gi)), and
• K↑pc

i the supremal sublanguage of Ki partially
controllable w.r.t. Σi,uc, Σuc, Ki and P−1

i (L(Gi)).

Then,
⋂

i≤n K↑pc
i is controllable w.r.t. Σuc and L(G).

Proof : First, as K, L(Gi) are prefix-closed, languages
P−1

i (L(Gi)) for i ≤ n are prefix-closed, and therefore
Ki and K↑pc

i are also prefix-closed. Now, according to
Definition 1, we have to show that

(
⋂

i≤n

K↑pc
i)Σuc ∩ L(G) ⊆

⋂

i≤n

K↑pc
i

Let s ∈
⋂

i≤n K↑pc
i and σ ∈ Σuc be such that s.σ ∈

L(G). We thus have to show that sσ ∈
⋂

i≤n K↑pc
i .

Without lost of generality we can assume that σ ∈ Σ1,uc.

Since sσ ∈ L(G), sσ ∈ P−1
1 (L(G1)). Hence we

have that sσ ∈ K↑pc
1 Σ1,uc ∩ P−1

1 (L(G1)). Moreover,
according to definition 3, K↑pc

1 is controllable w.r.t.
Σ1,uc and P−1

1 (L(G1)), from which we can conclude
that sσ ∈ K↑pc

1 .

As sσ ∈ K↑pc
1 , we have that sσ ∈ K. And as sσ ∈

L(G), then ∀i ≤ n, sσ ∈ P−1

i (L(Gi)), which entails
that ∀i ≤ n, sσ ∈ Ki = K ∩ P−1

i (L(Gi)). Hence,
∀i ≤ n, sσ ∈ Ki

↑pcΣuc ∩ Ki. Now, according to
definition 3, ∀i ≤ n, K↑pc

i is controllable w.r.t. Σuc

and Ki. Hence ∀i ≤ n, sσ ∈ K↑pc
i , which entails that

sσ ∈
⋂

i≤n K↑pc
i . �

4.2 Computation of SupC((K ∩ L(G),L(G), Σuc)

In the remainder of this paper we use (K ∩ L(G))↑c

to denote SupC((K ∩ L(G),L(G), Σuc). According to
Theorem 2, we have that

⋂
i≤n K↑pc

i ⊆ (K ∩ L(G))↑c.
But, the equality does not hold in general. In this section,
we present some conditions under which Theorem 2
gives access to the supremal solution.
Let us first introduce lemma 1. This lemma shows that
whenever the shared events Σs are controllable, then
(K ∩ L(G))

↑c verifies a part of the partial controllabili-
ty condition.

Lemma 1. Let G = G1 ‖ · · · ‖ Gn be the plant
and K ⊆ Σ∗ a prefix-closed language modeling the
expected behavior, then if Σs ⊆ Σc, then ∀i ≤ n,
(K ∩ L(G))↑c is controllable w.r.t Σi,uc, P−1

i (L(Gi)).

Proof : Let i ≤ n. Let us consider s ∈ (K ∩ L(G))
↑c

and σ ∈ Σi,uc such that sσ ∈ P−1
i (L(Gi)). We have

to show that sσ ∈ (K ∩ L(G))↑c. Since σ ∈ Σi,uc

and Σs ⊆ Σc, we have σ ∈ Σi \ Σs. Moreover,
s ∈ P−1

i (L(Gi)), s ∈ L(G) and sσ ∈ P−1

i (L(Gi)),
which entails that sσ ∈ L(G) (Lemma 2). Now, as
Σi,uc ⊆ Σuc, we have that sσ ∈ (K ∩ L(G))↑c.Σuc ∩
L(G). Since (K ∩L(G))↑c is controllable w.r.t Σuc and
L(G), this entails that sσ ∈ (K ∩ L(G))↑c. �

The next theorem states that whenever the shared event
are controllable and the language of the control objective
is included in the one of the plant then our methodology
gives access to the supremal controllable sub-language
of K w.r.t. L and Σuc.

Theorem 3. If Σs ⊆ Σc and K ⊆ L(G), then with the
notations of Theorem 2,

⋂
i≤n K↑pc

i = K↑c.

Proof : From Theorem 2,
⋂

i≤n K↑pc
i ⊆ (K ∩L(G))↑c.

As K ∩ L(G) = K it is then sufficient to show that
K↑c ⊆

⋂
i≤n K↑pc

i or, equivalently that ∀i ≤ n, K↑c ⊆

K↑pc
i . To do so, let us pick up a i ≤ n, and let us show

that K↑c is partially controllable w.r.t. Σi,uc, Σuc, Ki

and P−1

i (Li).

(i) First, according to lemma 1, K↑c is controllable
w.r.t Σi,uc and P−1

i (L(Gi)).
(ii) Let us now show that K↑c is controllable w.r.t. Σuc

and Ki. Let us consider s ∈ K↑c, σ ∈ Σuc such
that sσ ∈ Ki, we have to prove that sσ ∈ K↑c.
Since Ki ⊆ L(G), sσ ∈ L(G). We then have
s ∈ K↑c, σ ∈ Σuc and sσ ∈ L(G). Hence,
because K↑c is controllable w.r.t. Σuc and L(G),
sσ ∈ K↑c.

This proves that K↑c is partially controllable w.r.t. Σi,uc,
Σuc, Ki, P−1

i (L(Gi)). Now, as K↑pc
i is supremal and

partially controllable w.r.t. Σi,uc, Σuc, Ki, P−1

i (L(Gi),
we can deduce that ∀i ≤ n, K↑c ⊆ K↑pc

i . Finally,
K↑c ⊆

⋂
i≤n K↑pc

i . �

The interest of this method is that it avoids the building
of the entire plant; hence reducing the complexity of
the supervisory synthesis phase. Indeed, if G = G1 ‖
· · · ‖Gn is such that |XGi

| = N and H , with |XH | =
m, is the FSM modeling the language specification K,
then the FSM modeling the partial specification Ki are
in O(N.m). According to Section 3, the complexity
to compute the supremal partially controllable sublan-
guage of each Ki is in O(N2.m). Finally, the overall
complexity is in O(n.N2.m). This has to be opposed
to the space complexity O(Nn.m) of computing (K ∩
L(G))↑c on G, seen as a unique FSM.

Remark 1. To check that K ⊆ L(G) it is sufficient to
check that ∀1 ≤ i ≤ n, K ⊆ P−1

i (L(Gi)). Hence, it is
not necessary to compute L(G).

In some situations, modeling the expected behavior by
a language included in the one of the plant may lead to
a language that is too large to be efficiently represented.
Moreover, requiring the inclusion of languages makes
that the specification of K may be itself relatively d-
ifficult to identify insofar as the language L(G) is not
known. Theorem 4 gives another sufficient condition
under which Theorem 2 gives access to the supremal

solution. First, we need to introduce the notion of ob-
servable language.

Definition 4. Let K and M be two prefix-closed lan-
guages over Σ and Σ′, Σ′′ ⊆ Σ. K is said to be ob-
servable w.r.t. PΣ′ , Σ′′ and M if ∀s, s′ ∈ K, ∀σ ∈ Σ′′,
if PΣ′(s′) = PΣ′(s) and s′σ ∈ K, and sσ ∈ M , then
sσ ∈ K. •

It is shown in e.g. [Cassandras and Lafortune (1999),
Chap. 3.7] that the observability condition can be
checked in O(m2N), where m and N are the number
of states of the FSM that generate K and M .

Definition 5. Let K ⊆ Σ∗ be a prefix-closed lan-
guage and G = G1 ‖ · · · ‖ Gn a concurren-
t system, then K is said to be G-observable if ∀i ∈
{1, . . . , n}, ∀s ∈ Σ∗, Ki(s, Σuc) is observable w.r.t.
Pi, Σi,uc and P−1

i (L(Gi))(s, Σuc), where Ki = K ∩
L(Gi), ∀i ≤ n. •

The condition of G-observability states that after each
trace s admissible in Ki, if there exists two admissible
suffixes of s of uncontrollable events, say s1 and s2,
that have the same projection over the local one (i.e.
Pi(s1) = Pi(s2)), then if one can be extended by an
uncontrollable event in a trace of Ki and the other one
in a trace of the abstracted specification G−1

i , then the
two extended traces have to belong to the specification.
Finally, note that the G-observability condition can be
checked in O(nm3N4), where n is the number of com-
ponents in G, N the state size of Gi and m the size of
the FSM that generates K. Now, based on Definition 5,
we have that

Theorem 4. Assume that Σs ⊆ Σc and that K is G-
observable, then

⋂
i≤n K↑pc

i = (K ∩ L(G))↑c �

Proof : According to Theorem 2,
⋂

i≤n K↑pc
i ⊆ (K ∩

L(G))↑c Thus, we have to show that

∀i ≤ n, (K ∩ L(G))↑c ⊆ K↑pc
i

To do so, let us consider i ≤ n and ((K ∩ L(G))
↑c

)↓Ki,c

(the infimal prefix-closed and controllable superlan-
guage of (K ∩ L(G))↑c w.r.t. Σuc and Ki). We now
prove that ((K ∩ L(G))

↑c
)↓Ki,c is partially control-

lable w.r.t Σi,uc, Σuc, Ki and P−1

i (L(Gi)). Indeed,
if ((K ∩ L(G))

↑c
)↓Ki,c is partially controllable w.r.t

Σi,uc, Σuc, Ki and P−1

i (L(Gi)), then we will have
that ((K ∩ L(G))

↑c
)↓Ki,c ⊆ Ki

↑pc. Moreover, as
(K ∩ L(G))

↑c ⊆ ((K ∩ L(G))
↑c

)↓Ki,c, we will also
have that (K ∩ L(G))

↑c ⊆ Ki
↑pc and the proof will be

done.

Let us now show that ((K ∩ L(G))
↑c

)↓Ki,c is partial-
ly controllable w.r.t Σi,uc, Σuc, Ki and P−1

i (L(Gi)).
According to Definition 3, we have to show that
((K ∩ L(G))

↑c
)↓Ki,c is (i) controllable w.r.t. Σi,uc

and P−1

i (L(Gi)) and (ii) controllable w.r.t. Σuc and
Ki. Item (ii) is obvious since by the definition of
the infimal controllable language w.r.t. Σuc and Ki,
((K ∩ L(G))

↑c
)↓Ki,c is controllable w.r.t. Σuc and Ki.

Let us now prove the point (i)

Let us consider s ∈ ((K ∩ L(G))↑c)↓Ki,c and σ ∈ Σi,uc

such that sσ ∈ P−1
i (L(Gi)). We have

sσ ∈ ((K ∩ L(G))
↑c

)↓Ki,c.Σi,uc ∩ P−1

i (L(Gi))

Moreover, ((K ∩ L(G))
↑c

)↓Ki,c = (K ∩ L(G))
↑c

.Σ∗
uc∩

Ki. So s is of the form s = s′t with s′ ∈ (K ∩ L(G))
↑c

and t ∈ Σ∗
uc. Now as sσ = s′tσ ∈ P−1

i (L(Gi)), we
also have that s′Pi(tσ) ∈ P−1

i (L(Gi)) (Lemma 1).

We now have that s′ ∈ (K ∩ L(G))↑c, Pi(tσ) ∈
Σ∗

i,uc and s′Pi(tσ) ∈ P−1
i (L(Gi)). We then have that

s′Pi(tσ) ∈ (K ∩ L(G))
↑c as (K ∩ L(G))

↑c is control-
lable w.r.t. Σi,uc and P−1

i (L(Gi)) (Lemma 1). Finally,
as s′Pi(tσ) ∈ (K ∩ L(G))

↑c ⊆ Ki, we obtain Pi(tσ) =
Pi(t)σ ∈ Ki(s

′, Σuc).

Moreover, as by hypothesis sσ = s′tσ ∈ P−1

i (L(Gi)),
we also have that tσ ∈ P−1

i (L(Gi))(s
′, Σuc). By defi-

nition of the projection, Pi(tσ) = Pi(Pi(tσ)). Overall,
we have that Pi(t) ∈ Ki(s

′, Σuc), t ∈ Ki(s
′, Σuc), with

Pi(t) = Pi(Pi(t)), σ ∈ Σuc, Pi(t)σ ∈ Ki(s
′, Σuc)

and tσ ∈ P−1
i (L(Gi)). As Ki(s

′, Σuc) is observable
w.r.t. Pi, Σi,uc and P−1

i (L(Gi))(s
′, Σuc), we obtain that

tσ ∈ Ki(s
′, Σuc). Hence sσ (= s′tσ) ∈ Ki and it

entails that

sσ ∈ ((K ∩ L(G))
↑c

)↓Ki,c.Σuc ∩ Ki

As ((K ∩ L(G))
↑c

)↓Ki,c is (by definition) controllable
w.r.t. Σuc and Ki, sσ ∈ ((K ∩ L(G))

↑c
)↓Ki,c. Thus

((K ∩ L(G))
↑c

)↓Ki,c is controllable w.r.t. Σi,uc and
P−1

i (L(Gi)).

Finally, ((K ∩ L(G))
↑c

)↓Ki,c is partially controllable
w.r.t Σi,uc, Σuc, Ki and P−1

i (L(Gi)), which concludes
the proof. �

The complexity of checking the condition of G-observability
and computing (K ∩ L(G))↑c with our method is in
O(n.m2.N2(m.N2 + 1)), which has to be opposed to
O(Nn.m) (complexity with a monolithic approach).

The next proposition shows whenever K is separable
then it respects the conditions of Theorem 4.

Proposition 2. [Gaudin and Marchand (2004)] Let G =
G1 ‖ · · · ‖ Gn be the plant to be controlled s.t. L(Gi) ⊆
Σ∗

i . Let K ⊆ Σ∗ be the expected specification. If K is
separable w.r.t. {Σi}1≤i≤n then K is G-observable, i.e.
∀i ≤ n, ∀s ∈ Ki = K ∩ P−1

i (L(Gi)), Ki(s, Σuc) is
observable w.r.t. Pi, Σi,uc et P−1

i (L(Gi))(s, Σuc). �

The previous proposition states that whenever the spec-
ification is separable then our methodology offers an
alternative way to the one of [Willner and Heymann
(1991)] to compute (K ∩ L(G))↑c. Indeed, the solution
of [Willner and Heymann (1991)] gives access to a set
of decentralized supervisors acting upon each local com-
ponent of the plant whereas, in our case, the result is a
centralized supervisor (See Section 4.3 above).

A contrario, the next example shows that a language
that respects the G-observability condition, may be not
separable.

Example 1. Let G = G1 ‖ G2 with L(G1) =

{a1.uc1} and L(G2) = {a2.uc2}. We have Σ1,uc =

{uc1} and Σ2,uc = {uc2}. Let K = {a1.uc1, a2.uc2}
be a prefix-closed language over Σ = Σ1 ∪ Σ2. One
can check that K verifies the G-observability condition.
However, K is not separable w.r.t. {Σ1, Σ2}, since a1 ∈
P1(K) and a2 ∈ P2(K), thus a1a2 ∈ P1(K) ‖ P2(K)
but a1a2 /∈ K. �

4.3 The Supervisor acting upon G.
Let us now describe the way a supervisor can be extract-
ed from the previously computed languages and how it
can act upon G in order to achieve the control objective
K. With the notations of Theorem 2,

⋂
i≤n K↑pc

i is con-
trollable with respect to Σuc and L(G). However, it is
not of interest to perform the intersection between these
languages and to derive a supervisor from the result
(all the computational advantages of our method would
be lost). Following the concept of modularity described
in [Wonham and Ramadge (1988)], the supervisor S will
be seen as an oracle taking its decision according to the
history of the system and the so-called pc-supervisors
Spc

i derived from K↑pc
i . The supervisor architecture is

summarized in Figure 1. From each K↑pc
i , we derive a

“supervisor” Spc
i , which after a trace of G (which is also

a trace of P−1
i (L(Gi))), delivers the set of events that

extend s in a trace of K↑pc
i (each of these pc-supervisor

ensures on P−1

i (L(Gi)) the partial controllability prop-
erty w.r.t. K and P−1

i (L(Gi))). Further following the
modularity concept, the set of allowed events is given
by S(s) = Spc

1 (s) ∩ · · · ∩ Spc
n (s). Finally, the sub-set of

events that is allowed in Gi is given by S(s) ∩ Σi.

S(s) ∩ Σ1

S(s)

S(s) ∩ Σ2

G2G1

S

s

G

∧

S
pc

2
(s)S

pc

1
(s)

S
pc

1
S

pc

2

Fig. 1. Supervision Scheme

5. CONCLUSION

In this paper, we have investigated the Supervisory Con-
trol of Concurrent Discrete Event Systems. In particular,
we proposed a modular method allowing to compute
the supremal language of a specification K controllable
w.r.t. to the plant G. From the plant G and each of
its components Gi, we derive a set of approximations
L(G−1

i) and we ensure by control that each of these
approximations respects a new language property, called
partial controllability condition that depends on K. It
is then shown that whenever the original specification
respects some conditions (either K ⊆ L(G), or K
is G-observable) then a centralized supervisor can be
extracted from the controlled approximations in such a
way that the behavior of the controlled plant corresponds

to the supremal controllable language contained in the
one of the specification. Let us now emphasize some
points that we did not mention so far but that are easy
to deduce from the theorem (2,3,4). If the specification
is given in a modular way e.g. K ∩ K ′, then in the
case of prefix-closed languages, the modularity results
in [Wonham and Ramadge (1988)] together with the
results of Theorem 3, ensures that

⋂

i≤n

K↑pc
i ∩

⋂

i≤n

K ′
i

↑pc
= [(K ∩ K ′) ∩ L(G)]↑c

as far as the conditions of Theorems 3 or 4 are satisfied
by the two specifications.

If one want to change a component of G, e.g. replacing
Gi by G′

i, then as far as G′
i is expressed using the same

alphabet as the one of Gi with the same partitioning
between the controllable/uncontrollable event, then it is
sufficient to recompute K ′

i
↑pc = (K ∩ Pi

−1(L(G′
i))

↑pc

in order to obtain the new supervisor (note that only the
conditions referring to G′

i has to be (re)-checked). Hence
this methodology is suitable for reconfigurable plants.

So far we have been interested in the control of plant for
prefix-closed specification. We are currently looking for
results ensuring that the controlled plant is non-blocking
while still avoiding the computation of the whole state
space. Another point of interest would be to extend
these techniques to the hierarchical model described
in [Gaudin and Marchand (2003)].

REFERENCES

S. Abdelwahed and W. Wonham. Supervisory control of interacting
discrete event systems. In 41th IEEE Conference on Decision and
Control, pages 1175–1180, Las Vegas, USA, December 2002.

K. Akesson, H. Flordal, and M. Fabian. Exploiting modularity for
synthesis and verification of supervisors. In Proc. of the IFAC,
2002.

C. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Kluwer Academic Publishers, 1999.

M.H. deQueiroz and J.E.R. Cury. Modular supervisory control of large
scale discrete-event systems. In Discrete Event Systems: Analysis
and Control. Proc. WODES’00, pages 103–110, 2000.

B. Gaudin and H. Marchand. Modular supervisory control of asyn-
chronous and hierarchical finite state machines. In European Con-
trol Conference, ECC 2003, Cambridge, UK, September 2003.

B. Gaudin and H Marchand. Supervisory control of concurrent discrete
event systems. Research Report 1593, IRISA, February 2004.
available at http://www.irisa.fr/vertecs/Publis/Ps/1593.ps.

S. Jiang and R. Kumar. Decentralized control of discrete event systems
with specializations to local control and concurrent systems. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 30(5):653–
660, October 2000.

R.J. Leduc, B.A. Brandin, W.M. Wonham, and M. Lawford. Hierar-
chical interface-based supervisory control: Serial case. In Proc. of
40th Conf. Decision Contr., pages 4116–4121, December 2001.

P. J. Ramadge and W. M. Wonham. The control of discrete event
systems. Proceedings of the IEEE; Special issue on Dynamics of
Discrete Event Systems, 77(1):81–98, 1989.

K. Rohloff and S. Lafortune. The control and verification of similar
agents operating in a broadcast network environment. In 42nd IEEE
Conference on Decision and Control, Hawaii, USA, 2003.

Y. Willner and M. Heymann. Supervisory control of concurrent
discrete-event systems. International Journal of Control, 54(5):
1143–1169, 1991.

W. M. Wonham and P. J. Ramadge. Modular supervisory control
of discrete event systems. Mathematics of Control Signals and
Systems, 1:13–30, 1988.

