
From Safety Verification to Safety Testing

Vlad Rusu, Hervé Marchand, Valéry Tschaen, Thierry Jéron, and
Bertrand Jeannet

IRISA/INRIA Rennes, France
First.Last@irisa.fr

Abstract. A methodology that combines verification and conformance
testing for validating safety requirements of reactive systems is presented.
The requirements are first automatically verified on the system’s specifi-
cation. Then, test cases are automatically derived from the specification
and the requirements, and executed on a black-box implementation of
the system. The test cases attempt to push the implementation into vi-
olating a requirement. We show that an implementation conforms to its
specification if and only if it passes all the test cases generated in this
way.

Keywords: verification, conformance testing, safety properties.

1 Introduction

Formal verification and conformance testing are two well-established methods
for validating software systems. In verification [14], a formal specification of the
system is proved correct with respect to some higher-level requirements. In con-
formance testing [10] the external, observable traces of a black-box implemen-
tation of the system are compared to those of its formal specification, according
to a conformance relation. For validating reactive systems (such as communica-
tion protocols) the two methods play complementary roles: the former ensures
that the operational specification S meets its requirements R, while the latter
checks that the implementation I of the system conforms to its specification S.
Thus, through verification and testing, a connection between a system’s final
implementation and its initial requirements can be established:

1. first, satisfaction of the requirements by the specification is automatically
verified, e.g., by model checking;

2. then, the user (or a test coverage tool, e.g., the TestComposer module of
ObjectGeode [16]) produces test purposes, which are abstract scenarios to
be tested on the implementation I;

3. next, a test generation tool, e.g., Autolink [18], TorX [1] or TGV [11] uses
the test purposes to generate test cases from the specification;

4. finally, the test cases are executed on the implementation I, and verdicts are
issued regarding its conformance with the specification.

R. Groz and R.M. Hierons (Eds.): TestCom 2004, LNCS 2978, pp. 160–176, 2004.
c© IFIP 2004

From Safety Verification to Safety Testing 161

This validation process corresponds to the current state-of-the-art use of formal
methods in the telecom world [2]. The main problem with this process is that
it does not guarantee that what is being tested on the implementation of the
system (at Step 4) are the same requirements that have been verified to hold on
the specification (at Step 1).

This is because the test generation step (Step 3) uses test purposes, which
are a pragmatic means (actually, an essential one) to achieve test generation;
but test purposes are typically written (at Step 2) independently of the require-
ments, that is, there is no formal connection between the test purposes and the
requirements. If some crucial safety requirement is missed by all the test pur-
poses, the final implementation may violate that requirement, and this violation
remains undetected.

In this paper we propose a methodology to integrate verification and confor-
mance testing into a seamless, sound validation process between safety require-
ments, specification, and implementation. The above validation process is then
reformulated as follows: Step 1 is standard verification; Step 2 may be skipped
(there is no need here to write test purposes by hand, but, of course, this is
not forbidden either); Step 3 is a test generation algorithm that takes the spec-
ification and a safety requirement, and produces a test case for checking the
requirement on the implementation; and Step 4 is standard conformance test
execution.

Framework. The specification is given by IOLTS (Input-Output Labeled Tran-
sition Systems, i.e., finite, labeled transition systems with inputs, outputs, and
internal actions). The requirements express safety properties on observable be-
haviors of the specification and are described by means of a particular class of
IOLTS: observers, which enter a dedicated “Violate” location when the prop-
erty is violated. Finally, the conformance relation between a black-box imple-
mentation and a specification is ioco, a standard relation used in conformance
testing [19], which requires that after each visible trace of the specification, the
observed outputs and blockings of the implementation are among those allowed
by the specification.

Results. The meaning of requirement relevant for a specification is formally de-
fined in the paper. We prove that an implementation conforms to a specification
if and only if it satisfies all the relevant safety requirements that are also satisfied
by the specification. This result is interesting because it establishes a formal con-
nection between conformance and property satisfaction. However, it does not say
how to actually check the safety requirements on the implementation. Moreover,
the result is restricted to relevant requirements.

Hence, we propose a test generation algorithm, which takes a specification
and a safety requirement (relevant or not), and produces a test case that, when
executed on an implementation, attempts to push the implementation into vio-
lating the requirement. It is shown that an implementation conforms to a spec-
ification if and only if it passes all the test cases generated by the proposed
algorithm.

162 V. Rusu et al.

q2q1

q3

?a
?a

q0

!b
!c

τ
q6

!b

?a

!b
q5

q4

Fig. 1. Example of IOLTS S

The rest of the paper is organized as follows. In Section 2, the main concepts
from verification and conformance testing are recalled. In Section 3, the notion of
a safety property relevant to a specification is defined, and a result that connects
conformance testing and satisfaction of relevant safety properties is proved. In
Section 4, the previous result is extended to take into account arbitrary safety
properties. This directly induces a sound and complete test generation algorithm
for checking safety properties on the implementation. We conclude in Section 5.

2 Verification and Conformance Testing

Definition 1 (IOLTS). An IOLTS is a tuple M = (Q,A,→, q0) where Q is a
finite, non-empty set of states; q0 ∈ Q is the initial state; →⊆ Q×A×Q is the
transition relation; and A is a finite alphabet of actions, partitioned into three
sets A = A? ∪A! ∪ I, where A? is the set of input actions, A! is the set of output
actions, and I is the set of internal actions.

The actions in A?∪A! are also called visible actions. In the examples, a question
mark placed before the name of an action (as in “?a”) denotes the fact that a
is an input a ∈ A?. An exclamation mark (as in “!b”) denotes an output b ∈ A!.
Internal actions are generically denoted by τ .

Example 1. The IOLTS depicted in Figure 1 describes a simple nondeterministic
system. In the initial state q0, the system can either spontaneously emit !b and
block itself waiting in state q1 for an ?a; or directly wait for an ?a in q0 and
then, nondeterministically go to either q2 or q4. In q2, the system may only emit
!b and deadlock in q3, while in q4, !b then !c are emitted, followed by a loop of
internal actions (a livelock).

2.1 Notations and Basic Definitions

LetM = (Q,A,→, q0) be an IOLTS. The notation q a→ q′ stands for (q, a, q′) ∈→
and q a→ for ∃q′ : q a→ q′. An IOLTS is sometimes identified with its initial state,
i.e., we write M → for q0 →. Let µi ∈ A denote some actions, ai ∈ A \ I some
visible actions, τi ∈ I some internal actions, σ ∈ (A \ I)∗ a sequence of visible
actions, q, q′ ∈ Q some states.

From Safety Verification to Safety Testing 163

– We write q
µ1...µn→ q′ for ∃q0, . . . , qn : q = q0

µ1→ q1
µ2→ · · · µn→ qn = q′.

– The notation Γ (q) stands for {µ ∈ A | q µ→}, i.e., the set of fireable actions
in q. Similarly Γ−1(q) denotes the set {µ ∈ A|∃q′.q′ µ→ q}.

– Visible behaviors are described by the ⇒ relation, defined by q ε⇒ q′ � q =
q′ or q τ1.τ2···τn→ ∗

q′ and q a⇒ q′ � ∃q1, q2 : q ε⇒ q1
a→ q2

ε⇒ q′. We also write
q

a1···an⇒ q′ for ∃q0, . . . , qn : q = q0
a1⇒ q1 · · · an⇒ qn = q′

– Traces(q) � {σ ∈ (A \ I)∗ | q σ⇒} (resp. Traces(M) � Traces(q0)) denotes
the sequences of visible actions that are fireable from a state q (resp. from
the initial state of the IOLTS M).

– For q ∈ Q and a trace σ ∈ Traces(q), we denote by q after σ � {q′ ∈
Q | q σ⇒ q′} (resp. Pafter σ �

⋃
q∈P q after σ) the set of states that are

reachable from the state q (resp. from the set of states P) by sequences of
actions whose projection onto visible actions is σ.

– For q ∈ Q, Out(q) � Γ (q)∩A! is the set of fireable outputs in q. This notion
is naturally extended to sets of states: for P ⊆ Q, Out(P) �

⋃
q∈P Out(q).

Likewise, In(q) (resp. In(P)) denote the set of fireable inputs in q ∈ Q (resp.
in P ⊆ Q).

– Finally, an IOLTS M is input-complete whenever ∀q ∈ Q, In(q after ε) = A?,
that is, in each state, all inputs are accepted, possibly after a sequence of
internal actions (here, ε denotes the empty trace).

Based on the previous notations we introduce some common definitions.

Definition 2 (Deterministic IOLTS). An IOLTS M is deterministic if IM =
∅, and for all q, q′, q′′ ∈ QM and a ∈ AM, q a→ q′ and q a→ q′′ imply q′ = q′′.

Given an arbitrary IOLTS M , one can construct a deterministic IOLTS det(M)
with the same visible behavior, i.e., Traces(M) = Traces(det(M)).

Definition 3 (Determinization). The deterministic IOLTS of an IOLTS
M = (Q,A,→, q0) is det(M) = (2Q, A \ I,→d, q0 after ε), whose transition
relation →d is the smallest relation defined by: P a→d P

′ if P ′ = P after a.

The synchronous composition of two IOLTS performs synchronization on their
common visible actions and lets them evolve independently by internal actions:

Definition 4 (Synchronous composition). Let Mi = (Qi, A
i,→i, q

i
o), i =

1, 2 be two IOLTS, with Ii the internal actions of Mi. The synchronous compo-
sition M1 ‖ M2 of M1 and M2 is an IOLTS (Q,A,→, qo) such that:

– Q = Q1 ×Q2, qo = (q1o , q
2
o), A = A1 ∩A2 ∪ (I1 ∪ I2)

– → is the smallest relation in Q×A×Q satisfying

(q1, q2)
a→



(q′1, q

′
2) if a ∈ A \ (I1 ∪ I2) ∧ q1

a→1 q
′
1 ∧ q2

a→2 q
′
2

(q′1, q2) if a ∈ I1 ∧ q1
a→1 q

′
1

(q1, q′2) if a ∈ I2 ∧ q2
a→2 q

′
2

It is not hard to show that Traces(M1 ‖ M2) = Traces(M1) ∩ Traces(M2).

164 V. Rusu et al.

V iolate
!c?a

!b

l0 l1

∗ − {?a} ∗ − {!b, !c}

Fig. 2. Sample observer. For A ⊆ Aω, the notation ∗ − A is a shortcut for Aω \ A.

2.2 Verification of Safety Properties

The verification problem considered here is : given a reactive system M and a
property ψ, does M satisfy ψ (M |= ψ)? We model properties using observers,
which are a particular class of IOLTS.

Definition 5 (Observer). An observer for an IOLTS M is a deterministic
IOLTS ω = (Qω, Aω,→ω, q

ω
0) such that Aω = AM \ IM, and there exists a unique

state Violateω ∈ Qω \ {qω
0 } such that Γ−1(Violateω) ⊆ AM

! and Γ (Violateω) = ∅.
Its language is L(ω) = {σ ∈ (Aω)∗ | qω

0

σ→ω Violateω}.

An observer expresses the negation of a safety property on the visible behavior
of a system. The Violate state is entered when the system emits an undesired
output. We note that Definition 5 matches the class of Büchi automata ob-
tained from negations of LTL safety formulas [13], except for the self-loop on
the Violate accepting state, and for the propositions labelling transitions (rather
than states).

Example 2. Consider the property: between each ?a and !c, there must be at
least one !b. The negation of this property is expressed by the observer depicted
in Figure 2. Here, an action ?a followed by a !c goes to the Violate location,
meaning that the property was violated as there has been no !b between ?a
and !c. However, if !b occurs after ?a, the property cannot be violated unless
another ?a occurs, hence, the observer goes back to its initial location to wait
for another ?a.

Let Ω(M) denote the (infinite) set of observers for an IOLTS M . The following
definition formalizes the satisfaction of ω ∈ Ω(M) by M :

Definition 6 (Satisfaction relation). An IOLTS M satisfies an observer ω ∈
Ω(M), denoted S |= ω, if and only if Traces(M) ∩ L(ω) = ∅.

M |= ω holds whenever no state (q,Violateω) with q ∈ QM is reachable inM ‖ ω.

Example 3. The IOLTS S depicted in Figure 1 satisfies the observer ω depicted
in Figure 2. Indeed, there is no way that in S an ?a can be directly followed by
!c without !b occurring in between. As these are the only traces that may lead
to Violate in ω, we conclude that S |= ω.

From Safety Verification to Safety Testing 165

2.3 Conformance Testing

The goal of conformance testing is to establish whether a black-box implementa-
tion I conforms to its formal specification S. In our framework, the specification
is given by an IOLTS S = (QS , AS ,→S , q

S
0). The implementation I is not a for-

mal object (it is a physical system) but, in order to reason about conformance, it
is necessary to assume that the behavior of I can be modeled by a formal object
in the same class as the specification and having a compatible interface with it,
i.e., having the same set of visible actions. Moreover, the implementation can
never refuse an input from the environment (it is input-complete).

These assumptions are called test hypothesis in conformance testing [19].
Thus, the implementation is modeled by an input-complete IOLTS I =
(QI, AI,→I, q

I
0) with A

I = AI
? ∪AI

! ∪ II, AS
? = A

I
? , and A

S
! = A

I
! .

Quiescence: The tester observes not only responses of the implementation, but
also absence of response (i.e., in a given state, the implementation does not emit
any output for the tester to observe). This is called quiescence in conformance
testing. There are three possible reasons for quiescence:

– A deadlock state is a state where the system cannot evolve: Γ (q) = ∅.
– An output quiescent state is a state where the system is waiting only for an
input from the environment, i.e. Γ (q) ⊆ A?.

– A livelock state is a state from which the system diverges by an infinite se-
quence of internal actions. In the case of finite state systems that we consider,
a livelock is a loop of internal actions, i.e., ∃τ1, . . . τn, q τ1···τn→ q.

In practice, quiescence is observed using timers : a timer is reset whenever the
tester sends a stimulus to the implementation; when the timer expires, the tester
observes quiescence. It is assumed that the timer is set to a value large enough
such it only expires only when no response will ever occur.

At the model level, however, quiescence is materialized by adding a special
output action δ that manifests itself in quiescent states [19].

Definition 7 (Suspension IOLTS). The suspension IOLTS of an IOLTS S =
(Q,A,→, q0) is an IOLTS Sδ = (Qδ, Aδ,→δ, q

δ
0) with Qδ = Q, qδ0 = q0, Aδ =

A ∪ {δ} and δ ∈ Aδ
! (δ is an output of Sδ). The transition relation of Sδ is

→δ=→ ∪ {q δ→ q|q is quiescent}. The traces of Sδ are the suspension traces
of S.

Example 4. For S depicted in Fig. 1, q3 is a deadlock, q1 is an output-lock, and
q6 is a livelock. Sδ (cf. Fig. 3) is obtained by adding a δ-labeled self-loop to
them.

166 V. Rusu et al.

q2q1

?a
?a

q0

!b
!c

τ
q6

!b

?a

!b
q5

q4

!δ

q3!δ !δ

Fig. 3. The suspension IOLTS Sδ for the IOLTS S depicted in Figure 1

!δ
?a ?a ?a !c

?a?a

!δ

!δ

!b

?a

!b

Fig. 4. Suspension IOLTS of Implementations I1 and I2 from Example 5.

Conformance relation. A conformance relation formalizes the set of implemen-
tations that behave consistently with a specification. Here, we use the classical
ioco relation defined by Tretmans [19]. Intuitively, an implementation I ioco-
conforms to its specification S, if, after each suspension trace of S, the implemen-
tation only exhibits outputs and quiescences that are possible in S. Formally:

Definition 8 (Conformance). For IOLTS S, I such that I is interface com-
patible with S, I ioco S � ∀σ ∈ Traces(Sδ), Out(Iδafter σ) ⊆ Out(Sδafter σ).

Remember that the black-box implementation I is assumed to be input-
complete, but the specification S is not necessarily so. Hence, in this framework,
the specification is partial with respect to inputs, i.e., after an input that is not
described by the specification, the implementation may have any behavior, with-
out violating conformance to the specification. This corresponds to the intuition
that a specification models a minimal set of services that must be provided by
a system. A particular implementation of the system may include more services
than what is specified, but these services should not influence conformance to
the specification.

Example 5. First, consider the implementation I1 whose suspension IOLTS is
depicted in Figure 4 (left), which only accepts inputs ?a and emits no outputs
but quiescence. For S depicted in Figure 1, I1 ioco S does not hold, because
quiescence is not allowed initially in the suspension IOLTS Sδ (Figure 3). On
the other hand, the implementation I2 whose suspension IOLTS is depicted in

From Safety Verification to Safety Testing 167

Figure 4 (right) does conform to S: the first divergence between Iδ
2 and Sδ is on

the second input ?a in line, which does not violate conformance.

The mechanism for testing the conformance of an implementation with its spec-
ification consists in generating test cases from the specification, and running
them in parallel with the implementation to detect non-conformances between
the two representations of the system. Test cases are essentially deterministic,
input-complete IOLTS. In Section 4 we show how to generate test cases from
the specification using observers for safety properties, in order to test both the
satisfaction of the properties by the implementation and its conformance to the
specification.

Example 6. To see why it is important to extract test cases from the specifi-
cation, consider a tester that initially stimulates the implementation I1 from
Example 5 using two consecutive ?a actions. This behavior does not belong
to the specification S, which only allows one ?a initially (cf. Fig 1). Although
I1 ioco S does not hold, this particular tester cannot observe it, because it has
forced the implementation to diverge from the specification by the second ?a.
When this happens, the implementation is free to do anything without violating
the conformance.

3 Connecting Conformance and Property Satisfaction

In this section we establish a relation between conformance (I ioco S) and
the satisfaction of safety properties by the specification and the implementation
(S |= ω, I |= ω). Properties are expressed using observers ω ∈ Ω(S). Remember
that a specification S is a partial specification in the sense defined in Section 2.3:
the specification does not say what happens after an unspecified input. Hence,
an observer is relevant for a specification S if it may only diverge from S by
outputs:

Definition 9 (Relevant observer). An observer ω ∈ Ω(M) is relevant for M
if L(ω) ⊆ Traces(M) ·AM

! . The set of relevant observers for M is denoted "(M).

Example 7. The observer ω depicted in Figure 2 is not relevant for the specifi-
cation S depicted in Figure 1. This is because ω accepts arbitrarily many ?a’s
initially, while S accepts only one. Intuitively, ω is not relevant because it says
something about behaviors that diverge from S through an unspecified input.

Relevant observers play an essential role in Theorem 1 below, which establishes
a relation between conformance testing and property satisfaction.

To prove Theorem 1 the following technical lemma will be employed.

Lemma 1. For A, B, C arbitrary sets, ∀x ∈ A.(x /∈ B ⇒ x /∈ C) implies
(A ∩B = ∅ ⇒ A ∩ C = ∅).

168 V. Rusu et al.

Theorem 1. For all IOLTS I,S: I ioco S ⇔ ∀ω ∈ "(Sδ). Sδ |= ω ⇒ Iδ |= ω.

Proof : (⇒): I ioco S is ∀σ ∈ Traces(Sδ).Out(Iδafter σ) ⊆ Out(Sδafter σ)
(Definition 8). By definition of Out(Sδafter σ), Out(Iδafter σ) (cf. Section 2.1):

∀σ ∈ Traces(Sδ),∀a ∈ ASδ

! . σ · a ∈ Traces(Iδ) =⇒ σ · a ∈ Traces(Sδ)

which is clearly equivalent to

∀σ ∈ Traces(Sδ),∀a ∈ ASδ

! . σ · a /∈ Traces(Sδ) =⇒ σ · a /∈ Traces(Iδ) (1)

Now, consider an arbitrary relevant observer ω ∈ "(Sδ). By Definition 9, all the
sequences σ′ ∈ L(ω) are of the form σ′ = σ · a, where σ ∈ Traces(Sδ) and
a ∈ ASδ

! . Hence, the implication (1) can be rewritten equivalently as

∀ω ∈ "(Sδ).∀σ′ ∈ L(ω). σ′ /∈ Traces(Sδ) =⇒ σ′ /∈ Traces(Iδ) (2)

Using Lemma 1 with A = L(ω), B = Traces(Sδ), C = Traces(Iδ), we obtain

∀ω ∈ "(Sδ).L(ω) ∩ Traces(Sδ) = ∅ =⇒ L(ω) ∩ Traces(Iδ) = ∅ (3)

which, by Definition 6 is ∀ω ∈ "(Sδ). Sδ |= ω ⇒ Iδ |= ω: this direction is done.
(⇐) Assume ¬(Iioco S). We prove that there exists a relevant observer ω ∈
"(Sδ) such that Sδ |= ω but Iδ �|= ω. This leads to a contradiction and completes
the proof. To build ω, from ¬(I ioco S) we obtain that there exists a sequence
of the form σ · a with a ∈ ASδ

! such that σ ∈ Traces(Sδ), a ∈ Out(Iδ after σ)
but a �∈ Out(Sδ after σ). Let ω be an observer such that L(ω) = {σ · a}.

Then, clearly, ω is relevant for Sδ as L(ω) ⊆ Traces(Sδ)·ASδ

! . Also, Sδ |= ω as
a �∈ Out(Sδ after σ), therefore, σ · a /∈ Traces(Sδ), i.e., L(ω)∩Traces(Sδ) = ∅;
and Iδ �|= ω as a ∈ Out(Iδ after σ) and therefore σ ·a ∈ Traces(Iδ)∩L(ω) �= ∅.
Hence, the observer ω is relevant for Sδ, Sδ |= ω, and Iδ �|= ω: the proof is
done.✷

Interpretation. Theorem 1 can be interpreted as follows: an implementation I
ioco-conforms to its specification S if, whenever Sδ satisfies a relevant safety
property, Iδ satisfies it as well. Hence, in order to establish conformance, it is
enough to prove that all relevant safety properties satisfied by the specification
are also satisfied by the implementation. This is a completeness result, which is
impossible to achieve in practice because there may be infinitely many relevant
properties that hold on a specification.

On the other hand, Theorem 1 also says that, to detect conformance violation,
it is enough to exhibit one relevant property that is satisfied by the specification,
but violated by the implementation. This a soundness result and is achievable
in practice. However, it does not say how to actually check the violation of the
property by the implementation (the observer is not a test case, for example, it is
not necessarily input-complete) and, more importantly, it is limited to properties
expressed by observers that are relevant to the specification.

From Safety Verification to Safety Testing 169

These limitations are raised in Section 4. We conclude this section by an
example showing that the relevance hypothesis is essential for Theorem 1 to
hold.

Example 8. Consider the observer ω, which was shown in Example 7 to be irrel-
evant for S (Fig. 1). For the same reason, ω is irrelevant for Sδ (Fig.3). Consider
now implementation I2 whose suspension IOLTS is depicted in Figure 4. We
have shown in Example 5 that I2 ioco S, and in Example 1 that Sδ |= ω, but
clearly, Iδ

2 �|= ω because Iδ
2 admits a !c directly after an ?a. That is, except for

its irrelevance, the observer ω falsifies Theorem 1.

4 Test Generation from Safety Requirements

This section shows how to generate test cases from a specification using a safety
requirement as a guide. Intuitively, such a test case guides the implementation,
and attempts to “push” it into violating the requirement.

It should be clear from the previous examples that writing a relevant require-
ment for a given specification (in the sense of Definition 9) is not always easy.
For example, the requirement expressed by the observer ω from Examples 2 to 8
is a natural (and true) property of S, but it is nevertheless irrelevant for S.

However, when an observer as a whole is irrelevant for a given specification,
a subset the observer of it may still be relevant. For example, the sequence
?a·!c ∈ L(ω) is in Traces(Sδ) · ASδ

! , i.e., it is relevant for Sδ in the sense of
Definition 9.

Hence, we need a test generation algorithm that takes a specification S and
an arbitrary requirement ω ∈ Ω(S), and automatically sorts out from ω what is
relevant for S and what is not. This is done by the following operation.

Definition 10 (Forcing). LetM = (QM, AM,→M, q
M
0) be a deterministic IOLTS

and ω = (Qω, Aω,→ω, q
ω
0) an observer for M . The forcing of M by ω, denoted

M✄ω, is an IOLTS (Q✄, A✄,→✄, q
✄

o) such that

– the set of states Q✄ is (QM × Qω) ∪ {Violate,Fail}, where Violate,Fail /∈
QM ×Qω

– the initial state q✄

o is (qM
o , q

ω
o)

– the alphabet A✄ is AM (same partitioning between inputs and outputs)
– the transition relation →✄ of Q✄ is the smallest relation defined as follows.

For all states (p, q) ∈ Q✄ and action a ∈ A✄:

• if p a→M p
′, q a→ω q

′ then (p, q) a→✄ (p′, q′) [α]
• if a ∈ A!, p

a→M/ , q a→ω Violateω then (p, q) a→✄ Violate [β]
• if a ∈ A!, p

a→M/ , ¬(q a→ω Violateω), then (p, q) a→✄ Fail. [γ]

Example 9. For the IOLTS Sδ depicted in Figure 1 and ω depicted in Fig. 4, the
IOLTS det(Sδ)✄ω is depicted in Figure 4 (note that ω ∈ Ω(det(Sδ)). For better
readability, the Violate and Fail locations have been duplicated.

170 V. Rusu et al.

?a

q1

?a

q0

!b

!b

!δ

q3!δ

!δ

q2

!c

det(Sδ)

q4

ω ∈ Ω(det(Sδ))

(q1, l0)

!b

(q0, l1)
?a

(q2, l1)

!b

(q3, l0)

!c!δ

Violate

!δ

Fail

!δ

!c
!δ (q4, l0) Fail

!b, !c

Fail

!c

det(Sδ)✄ω

!δ, !c
(q0, l0)

!b, !c

!b
Violate

?a

l0

l1

!c

∗ − {?a}

!δ

Fail

V iolate

!b

?a
!b ∗ − {!b, !c}

Fig. 5. The ✄ operation between det(Sδ) and ω

Definition 10 deserves some comments. The forcing operation performs synchro-
nization on visible actions whenever it is possible (line [α]). However, for each
output a that is not allowed by the specification M , M✄ω performs this output
anyway. Intuitively, this is because the forcing operation is the first step towards
test case generation, and the test cases are executed in parallel with an imple-
mentation I of the system to detect property violation and/or non-conformance:

– If the output a is not allowed by the specificationM and leads the observer ω
into its Violateω state, then M✄ω goes into its Violate state as well - cf. line
[β]. If this happens when runningM✄ω in parallel with an implementation I,
this means that I violates both the conformance to M and the property
defined by ω. This is formalized by Theorem 2 below.

– if the output a is not allowed by M but does not lead the observer into its
Violateω state (line [γ]), then M✄ω goes into its Fail state. If this happens
when running M✄ω in parallel with an implementation I, then I violates
the conformance toM (but does not necessarily violate the property defined
by ω). This is formalized by Theorem 3.

Note that if M is a deterministic IOLTS and ω ∈ Ω(M), then M✄ω is an
observer for M as well, i.e., M✄ω satisfies all the conditions of Definition 5. In
particular, its language L(M✄ω) is defined. The following lemma characterizes
this language.

Lemma 2. For IOLTS M and ω ∈ Ω(M), L(M✄ω) = L(ω)∩[Traces(M)·AM
!].

Proof : We prove for an arbitrary sequence σ ∈ (AM)∗ that σ ∈ L(M✄ω) iff
σ ∈ L(ω) ∩ [Traces(M) ·AM

!].
First, by Definition 5, a sequence σ that belongs to either of these sets cannot

be empty, because Violate cannot be the initial state of an observer.
Then, σ = σ′ · a ∈ L(M✄ω) iff a is an output that has been forced to go to

Violate inM✄ω by rule [β] of Definition 10. But, by the same rule, this happens

From Safety Verification to Safety Testing 171

if and only if σ ∈ L(ω) and σ′ ∈ Traces(M), i.e., σ ∈ L(ω) ∩ [Traces(M) ·AM
!].
✷

Lemma 2 says thatM✄ω is a relevant observer forM (it actually says thatM✄ω
defines the strongest safety requirement weaker than ω and relevant for M).

Theorem 2 below is a refinement of Theorem 1, obtained by dropping the
relevance hypothesis for the observer. Its proof invokes Theorem 1 and Lemma 2.

Theorem 2. Let I and S be two IOLTS, then
I ioco S ⇔ ∀ω ∈ Ω(Sδ).Sδ |= ω ⇒ Iδ |= (det(Sδ)✄ω).

Proof :(⇒) Assume I ioco S and let ω be an arbitrary observer in Ω(S) such
that Sδ |= ω. Thus, Traces(Sδ) ∩ L(ω) = ∅, which implies Traces(Sδ) ∩ L(ω) ∩
[Traces(Sδ) ·ASδ

!] = ∅, which, by Lemma 2 is just Sδ |= (det(Sδ)✄ω).
Still by Lemma 2 we know that det(Sδ)✄ω is a relevant observer for Sδ.

Then, using Theorem 1 we obtain: Sδ |= (det(Sδ)✄ω) ⇒ Iδ |= (det(Sδ)✄ω).
By transitivity of ⇒ , we have Iδ |= (det(Sδ)✄ω), and this direction is done.

(⇐): Assume ∀ω ∈ Ω(Sδ).Sδ |= ω ⇒ Iδ |= (det(Sδ)✄ω). Then, in particu-
lar, we have that this implication is true for all relevant observers ω ∈ "(Sδ),
that is, ∀ω ∈ "(Sδ).Sδ |= ω ⇒ Iδ |= (det(Sδ)✄ω). However, by Lemma 2,
Iδ |= (det(Sδ)✄ω) implies Traces(Iδ) ∩ L(ω) ∩ [Traces(Sδ) · ASδ

!] = ∅, and, by
Definition 9, L(ω) ⊆ [Traces(Sδ) ·ASδ

!]. Hence, we have Traces(Iδ)∩ L(ω) = ∅,
which implies Iδ |= ω.

We have obtained that, for all relevant observers ω ∈ "(Sδ),
Sδ |= ω ⇒ Iδ |= ω holds. By Theorem 1, we obtain I ioco S, and the proof is
done. ✷

Interpretation. For observers ω that represent true safety properties of a specifi-
cation S, whenever det(Sδ)✄ω enters its Violate state when executed in parallel
with an implementation I, then I violates both the safety property defined by
ω (cf. Lemma 2) and the conformance to the specification (cf. Theorem 2).

Hence, det(Sδ)✄ω is the basis for a potentially interesting test case. When it
enters its Violate state, the implementation will be assigned theViolate verdict:

Violate: The implementation violates both the property and the conformance

We now consider the situation when det(Sδ)✄ω enters its Fail state.

Theorem 3. For IOLTS I, S and ω ∈ Ω(Sδ), if there exists σ ∈ Traces(Iδ)
∩Traces(det(Sδ)✄ω) such that Fail ∈ (det(Sδ)✄ω) after σ, then ¬(I ioco S).

Proof : By Definition 10 line [γ], Fail ∈ (det(Sδ)✄ω) after σ means that σ =
σ′a, where a is an output (a ∈ A!) which is not fireable in det(Sδ) after the
sequence σ′, i.e., a /∈ Out(Sδ after σ′). However, by σ ∈ Traces(Iδ) we have
that a ∈ Out(Iδ after σ′). Then, by Definition 8, ¬(I ioco S). ✷

172 V. Rusu et al.

Interpretation. Theorem 3 says that when det(Sδ)✄ω enters Fail when run on
an implementation, the latter violates conformance to the specification (but not
necessarily the property ω). In this case, the Fail verdict is given:

Fail: The implementation violates the conformance but not necessarily the property

What remains to do is to build from det(Sδ)✄ω an actual test case.

Mirror. The next step consists in transforming all inputs of det(Sδ)✄ω into
outputs and reciprocally. This is called the mirror operation. It is necessary
because, in the test execution process, the actions of the implementation and
those of the test case must complement each other.

Pruning. This operation consists in suppressing from det(Sδ)✄ω the subgraphs
that cannot lead to Violate. Here, the main goal of testing is to check the violation
of the requirement after a trace of the specification, and, if an implementation
leads a tester (extracted from the specification) into a subgraph that cannot lead
to Violate, the current test experiment will never be able to achieve this goal.

There are two situations, depending on whether the subgraph (from which
Violate is unreachable) was entered through an input or an output:

– the subgraph has been entered by an output of the tester. In this case, the
transition labeled by that output (together with the whole subgraph), are
removed. Intuitively, the tester has control over its outputs, thus, it may
decide not to stimulate the implementation with an output if it knows that
this will never lead to a Violate verdict.

– the subgraph has been entered by an input of the tester (that does not
directly lead to Fail). In this case, only the transition labeled by that input
is kept (the rest of the graph is removed). The destination of the transition
is set to a new state called Inconc, which means that no Violate verdict
can be given any more (but the conformance was not violated). Hence, for
completeness, in this situation the verdict will be Inconc (inconclusive).

Inconc: neither Fail nor Violate have occurred and Violate cannot occur any more

Let test(S, ω) = prune(mirror(det(Sδ)✄ω)) denote the IOLTS obtained after
these operations. test(S, ω) is the test case generated from specification S and
observer ω. It is not hard to see that by replacing det(Sδ)✄ω by test(S, ω)
in the statements of Theorems 2, 3 the proofs still hold. This is because
test(S, ω) satisfies Lemma 2 as well, i.e., L(test(S, ω)) = L(det(Sδ)✄ω) =
L(ω) ∩ [Traces(Sδ) · ASδ

!], as only subgraphs that cannot lead to Violate have
been suppressed by pruning.

The above property of the language of test(S, ω) is enough to establish Theo-
rem 2.

From Safety Verification to Safety Testing 173

?b

!a

?b
?b ?c

Violate

!a

Inconc

?δ

Violate?c

Fig. 6. Test case generated from S and ω (except the Fail location).

On the other hand, Theorem 3 is concerned with traces of det(Sδ)✄ω that lead
to Fail, and a trace that leads to Fail in test(S, ω) also leads to Fail in det(Sδ)✄ω.

This establishes that Theorem 3 still holds when det(Sδ)✄ω is replaced by
test(S, ω).
Example 10. The test case depicted in Figure 6 checks the property: “between
each ?a and !c, there is at least one !b” (cf. Example 2). The Fail location has not
been represented; there is an implicit transition to Fail from each state, labeled
by all the input actions that do not go anywhere else. Implementation I2 from
Example 5, which initially receives an ?a and then emits !b (cf. right of Figure 4)
violates neither the property nor conformance to S on this trace, and our test
case will never be able to detect violation of the requirement in the future, hence,
the Inconc verdict is assigned. An implementation that receives an ?a initially
and then directly emits !c violates both the property and the conformance, hence,
the verdict is Violate. Finally, an implementation that emits !δ initially, violates
the conformance to the specification (but not the property): the verdict is Fail.

5 Conclusion, Related Work, and Future Work

We now recall the framework proposed in the paper and the main results ob-
tained. A system is viewed at three different levels of abstraction: high-level re-
quirements R, operational specification S, and final, black-box implementation I.
In the proposed framework, all three views are modeled using Input-Output La-
beled transition systems, which are labeled transition systems whose actions are
partitioned into inputs, outputs, and internal actions.

The conformance relation ioco [19] links I and S, and the satisfaction re-
lation |= links S (or I) and requirements R. A notion of requirement that is
relevant for a specification is defined, which essentially means that the require-
ment does not refer to features that are not incorporated into the specification.

Our first result says intuitively that I ioco-conforms to S if and only if I
satisfies all relevant requirements that are satisfied by S. While it is interesting
from a theoretical point of view, because it gives an alternative definition of ioco-
conformance, this result is not practical as it is restricted to relevant requirements
(which are not always easy to come up with) and it does not say how to actually
check a requirement on a black-box implementation.

174 V. Rusu et al.

This can be done by testing, and therefore we propose a test generation
algorithm that takes an IOLTS specification S, and an arbitrary requirement ω
(relevant or not) expressed using specific IOLTS called observers, and produces
an IOLTS test case, denoted test(S, ω). The tester emits verdicts: Violate, Fail,
and Inconc, which express relations between I, S, and R.

Our second result says intuitively that I ioco S holds if and only if, for
all observers ω that express true properties of the specification S, by executing
test(S, ω) in parallel with the implementation I, the Violate verdict is not
obtained.

The “only if” part of this result is a theoretical completeness result: in order
to establish conformance, an infinite number of test cases should be executed,
and each execution is a potentially infinite process as well.

More interesting in practice is the “if” part of the result, which is a soundness
property. Going back to the validation approach proposed in Section 1, it implies
that every requirement that holds on the specification allows to automatically
generate a test case to check the requirement on the implementation as well.

A similar soundness result holds for the Fail verdict, which says that, if the
Fail verdict is obtained by executing test(S, ω) in parallel with the implementa-
tion I, then I ioco S does not hold. The Fail verdict plays the role of a warning
in the proposed validation process: when it is issued, the implementation has vi-
olated conformance to the specification, and the trace that led to this violation
can be examined to check whether this corresponds to a serious problem or not.

Finally, an Inconc (inconclusive) verdict means that the current test exper-
iment will never be able to detect the violation of a requirement in the future,
therefore, the user may stop the current test experiment and start another one.

Related Work. There exists a lot of interest in formal verification from re-
searchers and, recently, formal verification has started to penetrate the industry.
More recently, conformance testing (and other forms of testing) have become
a topic of interest to the verification community. This has resulted in new al-
gorithms and tools for testing based on verification technology (mainly model
checking) [1,4,11,18].

In [6] the authors describe an approach to generate tests from observers de-
scribing linear-time temporal logic requirements and to execute the tests directly
on the implementation. This is similar to what we do, except for the logic and
one more important point: [6] does not require verification of the property on the
specification prior to conformance testing, and the test cases do not check con-
formance, but only that the implementation does not violate the requirements.

The authors of [15] have ideas similar to ours. Given a specification S, and
an invariant P assumed to be satisfied by S, mutants S′ of S are built using
standard mutation operators. Then, a combined machine is generated, which
extends sequences of S with sequences of S′. Next, the SMV model-checker
is used to generate sequences that violate P , i.e., sequences that prove that
S′ is a mutant of S violating P . Finally, the sequences are interpreted as test
cases. The construction of the combined machine is quite similar to our forcing
operation (with S′ interpreted as ω). Several other papers, like [7,5], start from

From Safety Verification to Safety Testing 175

a specification S and a property P in a temporal logic (CTL or LTL) satisfied
by S, and use the counter-example facility of a model checker (SMV, SPIN) to
generate counter-examples of ¬P , thus, witnesses of P in S. Some papers like [8]
extend the idea to describe coverage criteria in temporal logic and generate test
cases using model-checking.

However, all these papers suffer from the same drawbacks. They do not take
nondeterminism into account, do not differentiate between inputs and outputs,
and do not formally define conformance testing. Moreover, except [15], they do
not relate satisfaction of properties to conformance testing.

In [17] another approach to combine test selection and verification is pre-
sented. The idea is to use symbolic test selection techniques to extract test cases
from a specification, which, under some sufficient conditions, can be used to
perform a compositional verification of the requirements. However, the test se-
lection mechanism is not related to the requirements in a formal way, as it is in
this paper.

Future work. In the near future we are planning to implement the test generation
method for safety properties presented here in the TGV tool [11]. TGV uses test
purposes as test selection mechanisms, which express reachability properties of
the specification; a test case is generated for every witness (trace) showing that
the specification satisfies a given reachability property [11]. Thus, to perform
test generation from safety properties, it is not enough to take the negation of a
safety property, and use TGV with the resulting reachability property as a test
purpose: if the specification satisfies the safety property (as assumed everywhere
in this paper), its negation has no witnesses, thus, TGV produces an empty test
case.

Our symbolic test generation tool STG [4], based on abstract interpretation
rather than enumeration, is another target for the new test generation algorithm.

We are also planning to extend this framework to LTL safety formulas [13] by
a translation of LTL formulas on observable events into observers, and connect
this work with that of [9,3]. The problem addressed by these papers is to check
whether temporal logic formulas expressing safety requirements have a sufficient
coverage of the specification. Here, coverage is defined by the ability of a formula
to distinguish mutants. Thus, if a set of requirements has a good coverage of the
specification, the test cases obtained by our method may have a good coverage
on implementations, thus, a good chance of finding bugs during test execution.

Finally, in this paper the situation where the specification does not satisfy
the requirements has not been considered. We are currently investigating an
approach based on previous work [12] for automatically computing the largest
specification contained in the original specification, which satisfies the require-
ments and does not change the set of implementations that conform to the
original specification.

176 V. Rusu et al.

References

1. A. Belinfante, J. Feenstra, R. de Vries, J. Tretmans, N. Goga, L. Feijs, and S.
Mauw. Formal test automation: a simple experiment. In International Workshop
on the Testing of Communicating Systems (IWTCS’99), pages 179-196, 1996

2. M. Bozga, J.-C. Fernandez, L. Ghirvu, C. Jard, T. Jéron, A. Kerbrat, P. Morel,
and L. Mounier. Verification and test generation for the SSCOP protocol. Science
of Computer Programming, 36(1):27–52, 2000.

3. H. Chockler, O. Kupferman, R.P. Kurshan, and M.Y. Vardi. A Practical Approach
to Coverage in Model Checking. In Computer-Aided Verification (CAV’01), number
2102 in LNCS, pages 66–78, 2001.

4. D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: a Symbolic Test Genera-
tion tool. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’02), number 2280 in LNCS, pages 470–475, 2002.

5. A. Engels, L.M.G. Feijs, and S. Mauw. Test Generation for Intelligent Networks
Using Model Checking. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’97), number 1217 in LNCS, pages 384–398, 1997.

6. J.C. Fernandez, L. Mounier, and C. Pachon. Property-oriented test generation. In
Formal Aspects of Software Testing Workshop (FATES’03), 2003.

7. A. Gargantini and C.L. Heitmeyer. Using Model Checking to Generate Tests from
Requirements Specifications. In ESEC / SIGSOFT FSE, pages 146–162, 1999.

8. H. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of test
coverage and generation. In Tools and Algorithms for Construction and Analysis
of Systems (TACAS’02), number 2280 in LNCS, pages 327–341, 2002.

9. Y.V. Hoskote, T. Kam, P.-H. Ho, and X. Zhao. Coverage Estimation for Symbolic
Model Checking. In Design Automation Conference, pages 300–305, 1999.

10. ISO/IEC. International Standard 9646, OSI-Open Systems Interconnection, Infor-
mation Technology – Conformance Testing Methodology and Framework, 1992.

11. T. Jéron and P. Morel. Test generation derived from model-checking. In Computer-
Aided Verification (CAV’99), number 1633 in LNCS, pages 108–122, 1999.

12. T. Jéron, H. Marchand, V. Rusu, and V. Tschaen. Synthèse de contrôleurs pour
une relation de conformité. In Modélisation des systèmes réactifs (MSR’03), 2003.

13. O. Kupferman and M.Y. Vardi. Model Checking of Safety Properties. Formal Meth-
ods in System Design, 19(3):291–314, 2001.

14. Z. Manna and A. Pnueli. Temporal verification of reactive systems. Vol. 1: Speci-
fication, Vol. 2: Safety. Springer-Verlag, 1991 and 1995.

15. P. Ammann, W. Ding and D. Xu. Using a Model Checker to Test Safety Prop-
erties. In International Conference on Engineering of Complex Computer Systems
(ICECCS’01). IEEE Computer Society, 2001.

16. Telelogic SDL products. http://www.telelogic.com/products/sdl.
17. V. Rusu. Combining Formal Verification and Conformance Testing for Validating

Reactive Systems. Software Testing, Verification, and Reliability, 13(3):157–180,
2003.

18. M. Schmitt, A. Ek, J. Grabowski, D. Hogrefe, and B. Koch. Autolink – putting
SDL-based test generation into practice. In International Workshop on the Testing
of Communicating Systems (IWTCS’97), pages 227–244, 1997.

19. J. Tretmans. Testing concurrent systems: A formal approach. In Concurrency The-
ory (CONCUR’99), number 1664 in LNCS, pages 46–65, 1999.

http://www.telelogic.com/products/sdl

	Introduction
	Verification and Conformance Testing
	Notations and Basic Definitions
	Verification of Safety Properties
	Conformance Testing

	Connecting Conformance and Property Satisfaction
	Test Generation from Safety Requirements
	Conclusion, Related Work, and Future Work

