
MODULAR SUPERVISORY CONTROL OF ASYNCHRONOUS
AND HIERARCHICAL FINITE STATE MACHINES

B. Gaudin, H. Marchand

VerTeCs Team, Irisa, Campus Universitaire de Beaulieu, 35042 Rennes, France
E-mail: {bgaudin,hmarchan}@irisa.fr, Fax: +33 2 99 84 71 71

Keywords: Supervisory Control Theory, structured FSM,
structured Supervisor, modularity and non-blocking.

Abstract
In this paper, modular supervisory control of a class of Discrete
Event Systems is investigated. Discrete event systems are mod-
eled by a Hierarchical Finite State Machine. The basic problem
of interest is to solve the State Avoidance Control Problem. We
provide algorithms that, based on a particular decomposition
of the set of forbidden configurations, locally solve the control
problem (i.e. on each component without computing the whole
system) and produce a global supervisor ensuring the desired
property. This kind of objectives may be useful to perform dy-
namic interactions between different parts of a system.

1 Introduction

In this paper, we are interested in the Supervisory Control Prob-
lem [9] for structured Discrete Event Systems (DES). The sys-
tem to be controlled is modeled as a collection of Finite State
Machines (FSM) that behave asynchronously or by Hierarchi-
cal Finite State Machines (by adding nested FSMs). In many
applications and control problems, FSMs are the starting point
to model fragments of a large scale system, which usually con-
sists of the composition and of the nesting of many different
sub-systems. Further, the standard way of applying the super-
visor synthesis methodology to such systems is by expanding
them to ordinary state machines and by using classical syn-
thesis tools on the resulting FSM. However, knowing that the
synthesis algorithms are polynomial in the number of states of
the systems and that the number of states of the global system-
s grows exponentially with the number of parallel and nested
sub-systems, it seems important to design algorithms that per-
form the controller synthesis phase by taking advantage of its
structure without expanding the system.

Several approaches have been considered in the literature.
In [11], the method consists in dividing the global control ob-
jectives into sub-objectives and to perform the controller syn-
thesis phase w.r.t. these sub-objectives. In [4], the authors take
advantage of the structure of the system in order to decompose
the objectives according to the sub-systems, that are assumed
to behave asynchronously. Further, it is sufficient to compute
supervisors separately on each sub-system. However, when the
control objective is used to express (forbidden) interactions be-
tween asynchronous sub-systems, the method proposed in [4]
cannot be efficiently used. In order to take into account nested
behaviors, some techniques based on model aggregation meth-

ods [10, 2] have been proposed to deal with hierarchical control
problems. In this paper, we are interested in applying existing
techniques to a structured system. We consider here a multi-
level hierarchy model in the spirit of [1], who introduced Hier-
archical State Machines which constitute a simplified version
of STATECHARTS (see also [5, 7, 6] for other works dealing
with control and hierarchy. However, in these methods, even if
some computations are made locally, the structure of the super-
visor does not reflect the one of the plant).

The remainder of this paper is organized as follows. Section 2
consists of a presentation of the basic model on which con-
trol will be applied as well as a review of the classical con-
troller synthesis methodology [9]. In section 3, we propose
a modular methodology to solve the State Avoidance Control
Problem for a plant modeled as a collection of asynchronous
sub-plants. The supervisor described in Section 3.2 could be
blocking. Then, in section 3.4, we provide sufficient condition-
s under which the obtained controlled system is non-blocking.
Finally, in Section 4, after a brief presentation of the HFSM,
we extend the results of Section 3 to this new model1.

2 Preliminaries
In this section, the main concepts and notations are defined.
More definitions will be given in the following sections. the
reader is referred to [3] for any undefined concept.

2.1 The basic model.
The basic structures from which the plant will be built are Fi-
nite State Machines (FSMs) [3], that are defined by a 5-tuple
〈Σ,X ,Xo, Xf , δ〉, where Σ is the finite alphabet of G. X is the
finite set of states, Xo ⊆ X is the set of initial states, where-
as Xf is the set of final (marked) states of G, δ is the partial
transition function defined over Σ × X −→ X . The notation
δ(σ, x)! means that δ(σ, x) is defined, i.e., there is a transi-
tion labeled by an event σ out of state x in machine G. Like-
wise, δ(s, x) denotes the state reached by taking the sequence
of events defined by trace s from state x in machine G. δ(x)
denotes the active event set of x. Similarly, δ−1(x) denotes
the set of events that lead to x. The behavior of the system
is described by a pair of languages L(G) ⊆ Σ∗ and Lm(G).
L(G) is the language generated by G. Similarly, Lm(G) cor-
responds to the marked behavior of the FSM G, i.e., the set
of trajectories of the system ending in xf ∈ Xf . An FSM G

is said to be blocking if L(G) 6= Lm(G) and non-blocking if
L(G) = Lm(G), where K denotes the prefix closure of the

1Proofs can be found in an extended version available at
http://www.irisa.fr/vertecs/Publis/Ps/2003-ECC-Extended-version.pdf.



language K. It can be shown [3] that G is non-blocking when-
ever it is trim with respect to Xo and Xf (i.e., all the states of
G are reachable from Xo and co-reachable to Xf ). We now
introduce the notion of submachines of an FSM [3]. An FSM
H = 〈ΣH ,XH ,XoH

,XfH
, δH〉 is a submachine of G, denoted

H ⊆ G, if ΣH ⊆ Σ, XH ⊆ X , XoH
⊆ Xo, XfH

⊆ Xf , ∀σ ∈
ΣH , x ∈ XH δH(σ, x)! ⇒ (δH(σ, x) = δ(σ, x)).

2.2 Review of the Supervisory Control Problem

Supervisory control theory deals with control of Discrete Even-
t Systems. In practice, one of the main control problem is the
invariance problem (or dually the state avoidance control prob-
lem), i.e. the supervisor has to control the plant so that the
controlled plant remains in a safe set of states (or dually do not
reach a set of forbidden states). Throughout the remainder of
this paper, we will focus on the latter interpretation. Assume
a plant G is given and modeled as an FSM and a set of states
E, we recall how to synthesize a supervisor that will ensure
the avoidance of a given set of states E. Knowing that some
events are uncontrollable Σuc, as opposed to the set of control-
lable events (Σc), we first recall the definition of a controllable
submachine [9].

Definition 1 Let G be a FSM and H be a submachine of G,
then H is controllable w.r.t. G and Σuc, whenever

∀x ∈ XH ⊆ X , ∀σ ∈ Σuc, δ(σ, x)! ⇒ δH(σ, x)!.

A supervisorS = (S,X ′
o) is given by a function S : X → 2Σc ,

delivering the set of actions that are disabled in state x of G by
the control2, and the new set of valid initial states X ′

o ⊆ Xo

(it could be the case, that in order to ensure an objective, we
need to reduce Xo). Write S/G for the system, consisting of
the initial plant G controlled by the supervisor S.

The Basic Supervisory Control Problem (BSCP) is then the
following: given G and E a set of states, the problem is to
build a supervisor S such that (1) S/G is controllable (2) the
traversed states do not belong to E and (3) S/G is maximal(i.e
∀S′, L(S ′/G) ⊆ L(S/G)).

In order to compute such a supervisor, we classically introduce
two sets of states: the weak forbidden set of states and the bor-
der set that will be used in the remainder of this paper.

Definition 2 Given an FSM G = 〈Σ,X ,Xo, Xf , δ〉, and E ⊆
X , we denote by I(E) and F(E) the weak forbidden states
and the border set of E, that are formally defined by:

I(E) = {x ∈ X | ∃s ∈ Σ∗
uc, δ(s, x) ∈ E} (1)

F(E) = {x ∈ X \ I(E) | ∃σ ∈ Σ, s.t. δ(σ, x) ∈ I(E)} (2)

I(E) corresponds to the set of states from which it is possible
to evolve into E by a trace of uncontrollable events, where-
as F(E) corresponds to the set of states from which it is still
possible to perform a control on G before evolving into I(E).

2In a more general framework, S is a function from L(G) into 2Σ.

Proposition 1 Given an FSM G and E ⊆ X , a set of states
to be forbidden by control, the supervisor S of G given by the
pair (S,X ′

o), such that ∀x ∈ X

S(x) =

{

{σ ∈ Σc | δ(x, σ) ∈ I(E)} if x ∈ F(E)
∅ Otherwise

X ′
o = Xo \ I(E)

(3)

ensures the invariance of X \ E in G and is maximal.

If X ′
o = ∅, then it means that the BSCP has no solution. In

this case, the obtained Supervisor S = (S,X ′
o) will be called

the trivial supervisor. This notion will be useful in the next
section.

The Non-blocking Supervisory Control problem. In most
situations, it is of interest to avoid blocking in the resulting
controlled system. We then define the notion of non-blocking
supervisor as one which will allow the controlled closed-loop
system to properly terminate in one of its final states. In other
words, the Non-Blocking Supervisory Control Problem is now
the following:

Given G and E a set of states, the problem is to build a supervi-
sor S such that (1) S/G is controllable w.r.t. G and Σuc (2) all
the trajectories of S/G eventually lead to Xf (3) the traversed
configurations do not belong to E and (4) S/G is maximal.

The standard algorithm that computes the greatest non-
blocking controlled system is an iterative algorithm starting
with G. The iterative procedure consists of (i) removing the
weak forbidden states of E, i.e. I(E), and (ii) removing states
that are not reachable and co-reachable. Call G↑ ⊆ G the re-
sult. If G↑ is not reduced to the empty FSM, then G↑ is the
greatest controllable submachine of G that both ensures the in-
variance of X \ E and the reachability of Xf . In the sequel
we will refer as S↑ for the resulting supervisor and we will say
that S↑ is a non-blocking supervisor whenever, the close-loop
system is non-blocking.

3 Control of asynchronous FSMs

In this section, we are interested in a plant G modeled as a col-
lection of FSMs (Gi)i≤n, that behave asynchronously. After
a presentation of the model, we first present the (modular) s-
tate avoidance control problem for such plants, and then give
a sufficient condition under which the obtained supervisor is
non-blocking.

3.1 The Model

The plant G, we now consider is modeled as a collection of F-
SMs (Gi)i≤n, that behave asynchronously (i.e. Σi ∩ Σj = ∅,
i 6= j). Such plants are called product plants in [4]. The global
behavior of G is then given by the FSM G1 ‖ · · · ‖ Gn, where
the operation ‖ is the classical shuffle operation performing the
beahvioral interleaving. Throughout the remainder of this sec-
tion, the different components of the plant are designed to be
non-blocking (i.e. each FSM Gi is assumed to be trim). This
clearly entails that G = G1 ‖ · · · ‖ Gn is also non-blocking.



Remark that, as each component of G is assumed not to have
interaction with the other. However, as we will see in the nex-
t sections, interactions between the various components Gi of
the system will be made by means of a supervisor that will al-
low or not events to be triggered in the different components of
G. In other words, a supervisor will be used to coordinate the
evolution between the components.

Notations. Following the ‖ definition, states of the plant G
are of the form 〈x1, . . . , xn〉, where each xi ∈ Xi of Gi. For
convenience, we will call a state, any element xi ∈ Xi of a
particular FSM Gi, and a configuration a tuple of the form
〈x1, . . . , xn〉 of G, i.e. a “state” of the resulting FSM. More-
over we call XF the set of configurations of G. Note that, as
∀i ≤ n, Gi is assumed to be trim, we haveX F = X1×· · ·×Xn.

3.2 The Basic State Avoidance Control Problem (BSACP)

Let us now consider a plant modeled as a collection of asyn-
chronous FSMs (Gi)i≤n. Our aim is to solve the state avoid-
ance control problem for a set of forbidden configurations of
the form E = E1 × · · · × En, i.e. all the configurations of G
that belongs to the set {〈x1, . . . , xn〉 ∈ XF |∀i ≤ n, xi ∈ Ei}
are forbidden (in the sequel, such a set of configurations will be
called a cube). We provide a method that solves locally the con-
trol problem (i.e. on each component of G without computing
the whole system) but produces a global supervisor ensuring
the invariance of X F \ E.

Proposition 2 Assume given n FSMs Gi of the form
〈Σi,Xi,Xoi

,Xfi
, δi〉, i = 1, . . . , n and n subsets of states

(Ei)i≤n. Consider the sets F(Ei), I(Ei) as defined in Def-
inition 2 as well as the corresponding supervisors Si.

Let SE = (S,XoE
) be such that ∀x = 〈x1, . . . , xn〉,

SE(x) =
�

1≤i≤n

{Si(xi)| xi ∈ F(Ei) and ∀j 6= i, xj ∈ I(Ej)}

XoE = {〈xo1
, . . . , xon〉 ∈ Πi≤nXoi / ∃i, xoi ∈ X ′

oi
}

The supervisor S ensures the avoidance of E = E1× . . .×En.
in G = G1 ‖ · · · ‖ Gn and is maximal. Moreover, if there
exists at least one supervisor Si that is not trivial, then S is not
trivial.

let SE be a supervisor as in Proposition 2, one can see that at
most one supervisor is active at a time. It is the one for which
the sub-plant has evolved in its border set of states when the
other sub-plants are in a forbidden state.
The interest of such a method is that the supervisor SE is local-
ly computed according to the local supervisors Si. Therefore,
this method avoids the building of the whole system and the
computation of S on the resulting system. Hence, it reduces
the complexity of the algorithm (see the next section) as well
as the memory storage of the supervisor. Moreover, the super-
visor itself somehow keeps the structure of the plant as it is
represented as a collection of local supervisors. To our mind,
the way SE is built may improve the readability and the un-
derstanding of the control effect. Finally, note that this kind of

control objectives cannot be solved using the method presented
in [4] (the whole system has to be computed).

3.3 Modular BSACP

So far, the considered configuration sets to be forbidden were
particular, in the sense that each subset of X F can not be rep-
resented as it. We now consider a more general set of configu-
rations E of the form

⋃

1≤i≤m Ei where for 1 ≤ i ≤ m, Ei is
a cube of the form Ei = Ei

1 × · · · × Ei
n

3.

Proposition 3 Let G = G1 ‖ · · · ‖ Gn be the plant to
be controlled and a set E =

⋃

1≤i≤m Ei where ∀1 ≤ i ≤

m, Ei = Ei
1 × · · · × Ei

n and Ei
j ⊆ Xj for 1 ≤ j ≤ n. Let

SEi = (SEi ,Xo
Ei

) be the supervisors computed w.r.t. G and
Ei, then SE = (S,XoE

), where ∀x = 〈x1, . . . , xn〉 ∈ XF ,

{

S(x) = SE1(x) ∪ · · · ∪ SEm(x)
XoE

= Xo
E1

∩ · · · ∩ XoEm

(4)

ensures the invariance of X \ E in G and is maximal.

Let us now discuss about complexity of the control synthesis
phase. Given an FSM with N states and a set of states to be
avoided by control, assume that the complexity of this con-
troller synthesis phase is in O(f(N)). Let us now consider a
system G of the form G1 ‖ · · · ‖ Gn where each Gj contains
N states. Due to the asynchronous and the trim assumptions,
the number of states of G is Nn. Hence, using classical tech-
niques, the state avoidance control problem is in O(f(Nn)). In
our case, given a set of forbidden configurations E composed
of m cubes, then the offline supervisor computation complex-
ity is in O(m.n.f(N)). However one have also to take into
account the computations that have to be done on-line when
controlling the plant. Indeed, deciding which supervisor have
to be activated given one configuration, is done at execution
time. This can be done in O(m.n.N).

3.4 Non-Blocking Supervisory Control Problem

In the previous section, it may happen that the resulting con-
trolled system be blocking. Assume given a plant G of the
form G1 ‖ · · · ‖ Gn and a forbidden cube E = E1 ×· · ·×En,
we now give a sufficient condition for the controlled system
obtained using the methodology of Section 3.2 to be non-
blocking.

Proposition 4 Let SE be the supervisor computed as in Propo-
sition 2 w.r.t. G and E. Then, if ∀1 ≤ i ≤ n,

(a) either ∀xi ∈ Xi \I(Ei), ∃xfi
∈ Xfi

\I(Ei) that is reach-
able from xi in SEi

/Gi

(b) or ∃j 6= i, ∀xj ∈ Xj , ∃xfj
∈ Xfj

\ I(Ej) that is reach-
able from xj in Gj

then SE is non blocking. Moreover, SE = S↑, where S↑ is
computed on G as in Section 2.2 w.r.t.E.

3Note that any subset of XF can be represented as a union of cubes.



What the above property states is that the obtained supervisor
is blocking whenever there exists a state xi in an FSM Gi such
that the final states of Gi are not reachable from xi under the
control of the local controller SEi

and for all the other FSMs
all the final states belong to the weak forbidden set of states.
Obviously, SE is blocking only under strong hypothesis. N-
evertheless, if these conditions do not occur, then one has to
find a way to avoid the blocking configurations. This aspect is
currently under investigation.

4 The Hierarchical Finite State Machine
So far, we gave results dealing with the control of asynchronous
product of FSMs. We now extend these results to the case of
Hierarchical Finite State Machines (HFSM). A Hierarchical Fi-
nite State Machines is an FSM which includes new features like
the nesting of state machines (inducing the hierarchy) and the
re-usability of components. From now on, some states (called
super-states) of an FSM can be other FSMs. Informally, the
meaning of such a hierarchical definition is obtained by substi-
tuting each super-state by a set of asynchronous FSMs running
in parallel. Such a model is called Hierarchical Finite State
Machine (HFSM). We hereby focus on a two-level Finite State
Machine, knowing that the results presented in the next sec-
tion can be extended to a multi-level hierarchical finite state
machine (See [8] for a more complete review of the HFSMs).

4.1 Definition of an HFSM

To take into account the hierarchy, we need to introduce the no-
tion of structure which represents the upper level of the HFSM.

Definition 3 A structure K is a tuple 〈Σ,X ,B,Xo,Xf , δ〉,
where X is a set of atomic states, Xo ⊆ X is the set of ini-
tial states and Xf ⊆ X is the set of final states. B is the set
of super-states of K. δ is the partial transition function of K
defined over Σ × {X ∪ B} → {X ∪ B}. •

In the following we will denote by KA = 〈Σ,X∪B,Xo,Xf , δ〉
the structure K seen as an FSM (i.e. when the super-states are
considered as atomic states).

Definition 4 A Hierarchical Finite State Machine K is given
by a tuple (〈K, G1, . . . , Gn〉, Y, I), where K is a structure as
defined in Def 3 and ∀1 ≤ i ≤ n, Gi = 〈Σi,Xi,Xoi

, xfi
, δi〉

is an FSM, and Y, I are two functions that characterize the
hierarchy and the composition between the FSMs.

• Y : B −→ 2〈G1,...,Gn〉 is a function which maps each
super-state b ∈ B on a set of FSMs Gi, with i ≥ 1. We
use Jb as {j ≤ n| Gj ∈ Y (b)}. The structures of Y (b)
behave asynchronously.

• I is an Input function that gives access to the set of ini-
tial states that are reached when triggering an event that
makes the system evolve into a super-state b. ∀b ∈ B,
I(b) is a function defined over Πj∈Jb

Xoj
→ 2Σi . Given

a super-state b ∈ B, and xo = 〈xo1
, . . . , xo‖Jb‖

〉 a tuple
of initial states, I(b)(xo) corresponds to the events that
make the system go from its current state into xo. •

K will be called the root of K, whereas the FSMs Gi will be
called the leaves of K.

Assumptions. In order to be able to perform control on HFSM,
we need to make some assumptions on it:

1. ∀i, j, s.t. ∃b ∈ B, Gi, Gj ∈ Y (b), Σi ∩ Σj = ∅ (asyn-
chrony of parallel FSMs).

2. Let b ∈ B and let (Gj)j∈Jb
= Y (b) be the

corresponding FSMs attached to b. Then, the set
(I(b)(xo))xo∈Πj∈Jb

(Xoj
) is a partition of δ−1(b) (entering

a super-state is deterministic).

The behavior of K. Let K = (〈K, G1, . . . , Gn〉, Y, I) be an
HFSM. K is initialized in one of the initial states of K and
as long as no super-state is reached, the behavior of K cor-
responds to the one of the FSM KA. Assume now that the
HFSM is in a state x such that δ(σ, x) = b ∈ B and that σ is
triggered. Then all the structures of Y (b) are simultaneously
activated and entered in one of their initial states according to
I(b), i.e. K in the configuration xo = 〈xoj1

, . . . , xoj‖Jb‖
〉, such

that σ ∈ I(b)(xo). Further, the different structures evolve asyn-
chronously. However, in order to evolve out of a super-state b,
there is a synchronization between the different structures of
Y (b) = (Gi)i∈Jb

on their final state. Hence, an event σ ∈ δ(b)
can be triggered in a super-state b whenever each substructure
of Y (b) is in its corresponding final state (i.e., there is no pre-
emption); the output of a super-state is synchronized with the
end of each of the tasks associated with the different structures
involved in this super-state).

Given a HFSM K = (〈K, G1, . . . , Gn〉, Y, I), we can make
correspond an FSM which is obtained by replacing each super-
state b by its corresponding FSM KF

b obtained by performing
the asynchronous product between each FSM of Y (b) ( the ini-
tial states of KF

b are connected to the states of K according to
I (resp. for the final state). The result is an FSM, denoted by
KF . Such an FSM is called the expanded structure of K.

States and configurations. Due to the hierarchical description
of the system, the states of the obtained expanded structure KF

can have different forms. They are either atomic states or of the
form [b, 〈x1, . . . , xj‖Jb‖

〉], with {j1, . . . , j‖Jb‖} = Jb, which
intuitively correspond to particular configurations of the HFS-
M, i.e. the states in which the FSMs are simultaneously at a
given instant. In the sequel, we will denote by X F the set of
configurations of KF , i.e. the states of the expanded HFSM.

4.2 The BASCP

In this section, we consider the configuration avoidance prob-
lem, namely how to avoid the system to reach some particular
configurations during its evolution. The sets of configurations
we will consider are as follows:

Forbidden configurations: With the notations of Definition 4,
let K = (〈K, G1, . . . , Gn〉, Y, I) be an HFSM, such that K =
(Σ,X ,B,Xo,Xf , δ). Given b ∈ B, Eb =

⋃

1≤j≤mb
Eb,j with

Eb,j = Eb,j
j1

× · · · × Eb,j
j‖Jb‖

et Eb,j
ji

⊆ Xji
pour ji ∈ Jb. For



simplicity, the set of configurations [b, 〈xj1 , . . . , xj‖Jb‖
〉] such

that 〈xj1 , . . . , xj‖Jb‖
〉 ∈ Eb is denoted [b, Eb]. Now, one can

see that every set of configurations of KF can be represented
by a set E of K of the form

E = E0

⋃

(

⋃

b∈B

[b, Eb]

)

(5)

where E0 ⊆ X . This set represents the forbidden configura-
tions at the higher level of K, whereas [b, Eb] corresponds to
the forbidden configurations at the lower level (i.e. inside the
super state b). As in the case of asynchronous FSMs, the idea of
the control is to compute supervisors separately for each struc-
ture/FSMs (without expanding the system), and then to build a
global supervisor, which can be seen as an oracle.

Control of a structure First, we need to extend the definition
of weak forbidden set of states introduced in Definition 2 in
order to take into account the super-states. The idea is that
we do not want to remove a super-state by control as there
possibly exists a way to control the system inside this super-
state. A contrario, let b ∈ B a super-state of K, given a
control objective, it may happen that we need to restrict the
entering in a super-state. Hence, for A ⊆ δ−1(b), we intro-
duce b|A the “controlled super-state” b considering it is on-
ly reachable by triggering an event of A and we denote by
B|A = {b|A | b ∈ B and A ⊆ δ−1(b)}, the corresponding set
of controlled super-states. This kind of states are introduced
in order to partially forbid some super-states. Indeed, one can
only want some super states b to be reachable with respect to
a subset of I(b)(.). In fact, this is a way to avoid some initial
states of b to be reachable at the lower level of the hierarchy.

Based on these remarks and definitions, we extend the defini-
tion of weak forbidden set of states introduced in Definition 2:

Definition 5 Let K = 〈Σ,X ,B,Xo,Xf , δ〉 be the root of an
HFSM K and e ∈ X ∪ B|A.

• If e ∈ X , then

I(e) = {x ∈ X | ∃s ∈ Σ∗
uc, δ(s, x) = e and

∀s′ ≤ s, δ(s′, x) /∈ B}.

IB(e) = {b ∈ B| ∃σ ∈ Σuc, δ(σ, b) ∈ I(e)}

• If e = b|A ∈ B|A, then

I(b|A) = {x ∈ X | ∃s ∈ Σ∗
uc, ∃σ ∈ Σuc ∩ A,

δ(sσ, x) = b and ∀s′ ≤ s, δK(s′, x) /∈ B}

IB(b|A) = {b′ ∈ B| ∃σ ∈ Σuc, (δK(σ, b′) ∈ I(b|A))
or (σ ∈ Σuc ∩ A and δ(σ, b′) = b)}

Finally, given E ⊆ X ∪ B|A,

I(E) = ∪e∈EI(e), and IB(E) = ∪e∈EIB(e)

Intuitively speaking, given e ∈ E, if e ∈ X , I(e) (resp. IB(e))
represents the set of atomic states (resp. super-states) of K

from which e can be reached via an uncontrollable trajectory
that only traverses atomic states. if e = b|A ∈ B|A, the mean-
ing of I(e) and IB(e) is similar except that we ask the last
event of the uncontrollable trajectories to belong to A.

The next operator Φ will be useful to compute the set of weak
forbidden configurations by going-up/down in the hierarchy of
the plant. Indeed, if an initial state of a super-state has to be
forbidden by control, then at the higher level, a supervisor has
to avoid the system to enter the super-state via this initial state.
Conversely, the final state of a super-state that may lead to a for-
bidden configuration via an uncontrollable trajectory has also
to be forbidden by control. This is captured by the definition 6:

Definition 6 Let e ∈ XF ∪ B|A, , we denote by Xob
(resp.

xfb
) the set of initial states (resp. the final state) of the FSM

associated to b (i.e. ‖Gi∈Y (b)Gi). Now, we define Φ(e) as
follows:

1. If e ∈ X ∪B|A, then Φ(e) = I(e)∪{[b, xfb
] | b ∈ IB(e)}4

2. If e = [b, 〈xj1 , . . . , xj‖Jb‖
〉], then given the set

I = I(x1) × .. × I(xj‖Jb‖
)

Φ(e) =
⋃

x∈I

[b, x]cupb| �
xob

∈I∩Xob
{I(b)(xob

)}

Now, given a set E ⊆ X F ∪ B|A, Φ(E) =
⋃

e∈E

Φ(e).

Given e ∈ XF ∪ B|A, if e ∈ X ∪ B|A, then Φ(e) corresponds
to the set of weak forbidden configurations, to which we add
the final states of the super-states that can lead in an uncon-
trollable way into e. This way we are going down in the hi-
erarchy. (point 1.). Now, if e is a configuration of the form
[b, 〈xj1 , . . . , xjb

〉], then Φ(e) corresponds to the set of weak
forbidden configurations inside the super-state b, as well as the
restricted super-state itself if some initial states belong to the
weak forbidden set of states. Remark that in point 2. the com-
putations are made locally on each Gi that are involved in the
super-states b.

The Supervisor computation Assume given a set of forbid-
den configurations of the form E = E0

⋃
(
⋃

b∈B[b, Eb]
)

, as
defined by Equation 5, then the way the set of weak forbidden
configurations is computed by the following fix-point iteration:

{

Io = E
Ii+1 = Φ(Ii(E)) ∪ Ii

(6)

Let us call IH(E) the result of the previous fix-point computa-
tion. Now, one can see that the set of forbidden configurations
can be reorganized as follows:

IH (E) = X ′ ∪ B′
|A ∪

⋃

b∈B

[b, E′b], (7)

4I is the function defined in Def 5.



where E′b =
⋃

i E′b,i
j1

× · · · × E′b,i
j‖Jb‖

and X ′ ⊆ X and

B′
|A ⊆ B|A. For the super-states, what the above states, is that

it is forbidden to enter these super-states through the events that
belongs to a set of events A. Moreover, each super-state b can
be seen as a collection of asynchronous FSMs for which the set
of configurations E ′b has to be forbidden. Note that as E ′b is
given by a union of cubes, in order to control the behavior of K,
we will use the modular methodology explained in Section 3.3.

Based on the previous remarks, we then have the following
property that makes the link with the expanded HFSM. One
can shows that the following property holds.

Proposition 5 IH(E)\B′
|A = I(E), where I(E) is computed

with respect to KF as in Definition 2.

In other words, the set IH(E)5 corresponds to the weak for-
bidden set of states I(EF ) of the plant KF seen as a flat FSM.
However, compare to the classical methods, all the computa-
tions has been performed locally and not on the global plant.

Based on the previous decomposition (7) of IH(E), a supervi-
sor can be extracted. It is performed as follows:

1. ∀b ∈ B, we compute Sb the supervisor Sb = (Sb,Xob
)

that avoid the set of cubes E ′b to be reachable in ‖j∈Jb
Gj

using the methods developed in Section 3.3. Note that we
only need to compute the borders. If some initial states
are forbidden in the super-states, then this is taken into
account as the upper level, since in this case, this super-
state (restricted to the events that does not lead into these
initial states) belongs to B′

|A.

2. For K, we compute SK = (SK ,X ′
o) defined by

SK(e) = {σ ∈ Σc|δ(σ, e) ∈ X ′ ∨ δ(σ, e) = b s.t.
b|A ∈ B′

|A ∧ σ ∈ A}

X ′
o = Xo \ X ′

Note that as X ′ ∪ B′
|A = I(X ′ ∪ B′

|A), we only have to
compute the border of this set.

Proposition 6 With the preceding notations, let S =
〈SK , (Sb)b∈B〉, be such that

SE(e) =















SK(e) if e ∈ X
SK(b) ∪ Sb(xj1 , . . . , xj‖Jb‖

)

if e = [b, 〈xj1 , . . . , xj‖Jb‖
〉]

∅ Otherwise
XoE

= X ′
o

(8)

Then, the supervisor S ensures the invariance of X F \ E and
is maximal. �

To conclude this section, let us remark that as in Section 3, we
made the necessary efforts not to expand the HFSM in order to
compute the supervisor. In particular, the set of weak forbidden
configurations has been computed locally on each submachine
and on the upper level of the HFSM.

5to which we removed B′
|A

as, this set actually corresponds to the set of
initial states that are forbidden in a super-states. Hence, they are taken into
account by some 〈b, Eb〉.

5 Conclusion & Future Works

In this paper we have considered the control of structured plant
modeled as Asynchronous Finite States Machines and Hierar-
chical Finite State Machines. Based on this model, we pro-
posed an algorithm allowing the computation of a supervisor
solving the State avoidance control problem. The control ob-
jective is given as a collection of forbidden configurations that
we decompose according to the local FSMs. Based on this de-
composition, we locally solve the problem with respect to the
local FSMs and finally we provide a global supervisor ensur-
ing the global property. As all the computations are done on the
sub-plants according to the local specification, there is no need
to build global plant, hence reducing the complexity of the su-
pervisor computation. In the case of modular Plant, we gave a
sufficient condition under which the resulting controlled plan-
t is non-blocking. We are currently looking for an algorithm
that will force the plant to be non-blocking while still avoiding
the computation of the whole state space. Another point of in-
terest would be to extend the model by adding preemption and
synchronizations between the FSMs, which is obviously one of
the main limitation of the presented work. The generalization
of the control objectives is also under investigation.
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