
A Protocol
for Loosely Time-Triggered Architectures�

Albert Benveniste1, Paul Caspi2, Paul Le Guernic1, Hervé Marchand1,
Jean-Pierre Talpin1, and Stavros Tripakis2

1 Irisa/Inria, Campus de Beaulieu, 35042 Rennes cedex, France
firstname.lastname@irisa.fr, http://www.irisa.fr/sigma2/benveniste/

2 Verimag, Centre Equation, 2, rue de Vignate, F-38610 Gieres
firstname.lastname@imag.fr, http://www.imag.fr/VERIMAG/PEOPLE/Paul.Caspi

Abstract. A distributed real-time control system has a time-triggered
nature, just because the physical system for control is bound to physics.
Loosely Time-Triggered Architectures (ltta) are a weaker form of the
strictly synchronous Time-Triggered Architecture proposed by Kopetz,
in which the different periodic clocks are not synchronized, and thus may
suffer from relative offset or jitter.
We propose a protocol that ensures a coherent system of logical clocks
on the top of ltta, and we provide several proofs for it, both manual
and automatic, based on synchronous languages and associated model
checkers. We briefly discuss how this can be used for correct deployment
of synchronous designs on an ltta.

1 Loosely Time-Triggered Architectures (ltta)

A distributed real-time control system has a time-triggered nature, just because
the physical system for control is bound to physics. Loosely Time-Triggered
Architectures are a weaker (and cheaper) form of the strictly synchronous Time-
Triggered Architecture (tta) proposed by Kopetz [11].

An ltta is an architecture in which: 1/ access to the bus occurs quasi-
periodically, in a non-blocking way, 2/ writings and readings are performed in-
dependently at each extremity of the bus in synchrony with each associated local
clock, and 3/ the bus behaves like a shared memory, i.e., values are sustained
by the bus and are periodically refreshed, based on a local clock. The term
“quasi-periodically” indicates that the different clocks involved, for writing in,
reading from, and updating the bus, are not synchronized. Still, this architecture
is time-triggered in the sense that these clocks are bound to physical time, and
deviate from each other in a certain “limited” way. ltta are in use in several
major industries, they have been the subject of the Crisys project [6], where
they are called quasi-synchronous, and of several investigations, by Caspi and
co-workers, of the fundamental issues raised when deploying control applications
on such architectures.
� This work is or has been supported in part by the following projects: Esprit LTR-

syrf (Esprit EP 22703), and Esprit R&D crisys EP 25514.

A. Sangiovanni-Vincentelli and J. Sifakis (Eds.): EMSOFT 2002, LNCS 2491, pp. 252–265, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Protocol for Loosely Time-Triggered Architectures 253

Our main result is presented in section 2. It consists in showing that, by
adding some layer of protocol on the top of an ltta, one can offer a platform
ensuring a coherent distribution of logical clocks. We formally specify the pro-
tocol and prove that it satisfies the desired requirement. For the protocol to
be correct, the clocks must be quasi-periodic (periods can vary within certain
specified bounds), and must relate to each other within some specified bounds.

That one can offer, on the top of an ltta, a platform ensuring a coherent dis-
tribution of logical clocks, has actual interests. Distributed sensor-to-actuators
low level feedback control loops are in any case faced with the unavoidable uncer-
tainty of sampling, whatever the actual considered bus architecture is. Hence, in
any case, the robustness of the deployed application with respect to this type of
“asynchrony” must be considered. This is the subject of [7] and is not considered
here. However, complex distributed control applications also involve complex fi-
nite state machines, e.g., to govern modes of operation, and reconfigurate the
application against degraded modes. The possibility to offer a coherent system
of logical clocks is extremely useful to simplify the development and debugging
of such finite state machines. Section 3 sketches a methodology for deploying, on
an ltta equiped with the proposed protocol, a finite state machine developed
with any synchronous language.

Section 4 addresses the same problem as section 2, but using (nearly) auto-
matic proof techniques. To this end, the protocol is specified using synchronous
languages—we show the exercise with the languages Lustre and Signal [9]. It
is interesting to note that synchronous languages can be used to model asyn-
chronous systems—recall the three devices writer/bus/reader have independent
and non synchronized clocks. Then the desired property for the protocol is ex-
pressed as an invariant, and proved.

Now, the assumptions ensuring correctness of the protocol, as stated in sec-
tion 2, are quantitative in nature (tolerance bounds for the relative periods, and
time variations, of the different clocks). Handling such type of quantitative as-
sumption is beyond the scope of model checkers such as Lesar [10] or Sigali [14],
the model checkers associated with Lustre and Signal, respectively. Hence the
assumption is reformulated, by performing some abstraction and expressing it
using booleans. While the two assumptions, strictly speaking, are not equivalent,
they are good approximations to each other—but this claim cannot be proved
by model checking!

Our protocol is presented and analysed in the case of two users: one writer
and one reader. Section 5 discusses the case of multiple users. Then, a brief
comparison with Kopetz’tta is provided.

2 The Proposed Protocol and Its Robustness

2.1 Description of the protocol

See figure 1 for an illustration of this protocol (the three watches shown indicate
a different time, they are not synchronized). We consider three devices, the
writer, the bus, and the reader, indicated by the superscripts (.)w, (.)b, and

254 Albert Benveniste et al.

tw tr

tbsustain

periodic bus

yb

encode scan and decode

xw

yw = (xw, bw) (x, b)

xr = x (when validated)

Fig. 1. The protocol. The map y �→ yr is called a virtual channel.

(.)r, respectively. Each device is activated by its own, approximately periodic,
clock. The different clocks are not synchronized. In the following specification,
the different sequences written, fetched, or read, are indexed by the set N =
{1, 2, 3, . . . , n, . . .} of natural integers, and we reserve the index 0 for the initial
conditions, whenever needed.

The writer: At the time tw(n) of the nth tick of his clock, the writer generates
a new value xw(n) it wants to communicate and a new alternating flag bw(n)
with:

bw(n) =
{

false if n = 0
not bw(n− 1) otherwise

and stores both in its private output buffer.
Thus at any time t, the writer’s output buffer content yw is the last value that

was written into it, that is the one with the largest index whose tick occurred
before t:

yw(t) = (xw(n), bw(n)) , where n = sup{n′ | tw(n′) < t} (1)

The bus: At the time tb(n) of its nth clock tick, it fetches the value in the writer’s
output buffer and stores it, immediately after, in the reader’s input buffer. Thus,
at any time t, the reader’s input buffer content offered by the bus, denote it by
yb, is the last value that was written into it, i.e., the one written at the latest
bus clock tick preceding t:

yb(t) = yw(tb(n)) , where n = sup{n′ | tb(n′) < t} (2)

The reader: At the time tr(n) of its nth clock tick, it copies the value of its input
buffer into auxiliary variables x(n) and b(n):

(x(n), b(n)) = yb(tr(n))

Then the reader extracts from the x sequence only the values corresponding
to the indices for which b has alternated1. This can be modeled thanks to the
1 This is the classical technique used in the Alternating Bit Protocol, to avoid the

reader receiving the same message twice.

A Protocol for Loosely Time-Triggered Architectures 255

counter m, which counts the number of alternations that have taken place up
to the current cycle. Then the value of the extracted sequence at index k is the
value read at the earliest cycle when the counter m exceeded k:

m(0) = 0 , m(n) = inf{k > m(n− 1) | b(k) �= b(k − 1)}
xr(k) = x(l) , where l = inf{n′ | m(n′) > k} (3)

Problem statement: The protocol is correct if the two sequences xw, xr coincide,
i.e.,

∀n : xr(n) = xw(n) (4)

2.2 Main Theorem about Robustness

Theorem 1 (sampling theorem). Let the writing/bus/reading be systems
with physically periodic clocks of respective periods w/b/r. Then, the protocol
of subsection 2.1 satisfies the desired property:

∀n : xr
n = xw

n , (5)

whatever the written input sequence is, iff the following conditions hold:

w ≥ b , and
⌊w
b

⌋
≥ r

b
, (6)

where, for x a real, �x� denotes the largest integer ≤ x.

Condition (5) means that the bus provides a coherent system of logical clocks.
Note that, since w ≥ b, then w/2b < �w/b� follows. On the other hand, �w/b� ≤
w/b, and �w/b� ∼ w/b for w/b large. Hence, for a fast bus, i.e. b ∼ 0, the
conditions (6) of theorem 1 reduce to:

w � b , w > r. (7)

We illustrate the protocol on the figure 2, for two typical cases (shown in black
and white arrows on the top of the diagram, respectively), depending on the
relative position of the ticks of clocks tb, tw, tr. The two thick lines depict the
sustained values of the two components, (xw, bw), of yw. Collect these two sus-
tained values as the tuple yb. The dashed vertical lines depict the ticks of the
bus clock tb. The vertical arrows sitting at the bottom depict the ticks of the
writer clock. The vertical arrows sitting at the top depict the ticks of the reader
clock. Note the role of the boolean flag for validation: even if the value of xw

was unchanged at two successive emissions, these would have been validated,
thanks to the boolean flag. The role of this flag is also enlightened by the two
cases for the relative position of the clocks (black and white arrows). The case
of the black arrows is the “normal” one. Let us focus on the more tricky case
of the white arrows. In this case, when the first instant of clock tr (first white
arrow), then the clock tb has not yet seen the change in the sustained value of b,

256 Albert Benveniste et al.

xw

xr

xw

xr xr

xr

yb

Fig. 2. The sampling theorem.

therefore the corresponding sustained value for x is not validated by the reader
at this point. But a change in the sustained value of b is detected at the second
occurrence of tr, and, then, the corresponding sustained value for x is validated.
As seen from the diagram, changes in the boolean signals are detected at the
receiver with a nondeterministic, but bounded delay. On the other hand, perfect
physical synchrony is lost: reading occurs with a nondeterministic, but bounded,
delay according to physical real time.

Proof. In the following, let n,m, p ∈ {0, 1, 2, . . .} denote integers. By properly
renormalizing the three periods, we can assume, for the bus periodic clock, b = 1
and a zero phase. With this convention, let the writing/bus/reading sampling
instants be:

tw(n) = nw + ψw, 0 ≤ ψ < 1
tb(p) = p (8)
tr(m) = mr + ϕr, 0 ≤ ϕ < 1

where the writing/bus/reading periods are w/1/r, and ψ,ϕ denote the phases
of the writer’s and reader’s clocks.

We first search for conditions ensuring that the bus does not miss any writing.
Set:

τb(n) = min{tb(p) | tb(p) > tw(n)} , (9)

τb(n) is the first instant where the bus can fetch the nth writing, and we have:

τb(n) = �(n+ ψ)w� + 1,

whence:

δτb ∆= min
n≥0 , 0≤ψ<1

(
τb(n+ 1) − τb(n)

)
= �w� . (10)

A Protocol for Loosely Time-Triggered Architectures 257

To ensure that the bus does not miss any writing whatever the phases of the
different clocks are, it is necessary and sufficient that the map n
−→ τb(n) is
strictly increasing. Using (10), this holds iff:

�w� > 0 , i.e., w ≥ 1. (11)

Next, we investigate conditions ensuring that the reader does not miss a
writing, when the latter is fetched by the bus. Define:

τ r(n) = min{tr(m) | tr(m) > τb(n)}. (12)

Thanks to the mechanism of the boolean alternating flag b, τ r(n) is the first
instant where the reader sees the nth writing. Thus, using (10), our last duty is
not to miss a reading during any period of length δτb, equivalently:

�w� ≥ r . (13)

Combining (11) and (13) yields the theorem. �
We can generalize theorem 1 to time varying periods. Without loss of gener-

ality we can again assume that the bus clock is perfectly periodic, with period
1 and phase 0:

Theorem 2 (sampling theorem with quasi periodic clocks). Assume that
writing/bus/reading are only approximately periodic, i.e., they are related via the
following equations—compare with (8):

tw(n) = nw(1 + δw(n)) + ψw , 0 ≤ ψ < 1 , |δw(n)| ≤ δw

tb(p) = p

tr(m) = mr(1 + δr(m)) + ϕr , 0 ≤ ϕ < 1 , |δr(m)| ≤ δr,

(14)

where δw, δr are some given bounds. Then sufficient conditions, for the protocol
formalized in section 2.1 to ensure condition (5), are the following:

w(1 − 2δw) ≥ 1 , and �w(1 − 2δw)� ≥ r(1 + 2δr), (15)

compare with conditions (11) and (13).

The proof of this theorem is a straightforward adaptation of that of theorem 1,
and we leave it to the reader as an exercise. Of course, the interest of theorem 2
is that it guarantees a good degree of robustness of the protocol with respect to
imperfect sampling clocks, since the relative periods of the clocks can vary with
respect to each other, up to some maximal bound. Also, the jitter terms δw(n)
and δr(m) can incorporate variable propagation delay in the bus.

3 Application to the Deployment
of Synchronous Programs

Figure 3-left shows a synchronous design, with three components. In figure 3-
right, additional synchronous modules are shown, they are depicted using the

258 Albert Benveniste et al.

3
P

2
P

1P

: protocol to ensure delay−insensitivity

1P

2
P

3
P

Fig. 3. A synchronous design, securing delay-insensitivity.

: protocol to ensure delay−insensitivity

: protocol from theorem 1

1P

2
P

3
P

equivalent ‘‘virtual’’ channel

1P

2
P

3
P

Fig. 4. Encoding events as state changes. Introducing “virtual” channels.

light grey rectangles and can be regarded as “protocols”. Based on the theory
developed in [3][4][5], these protocols aim at securing delay-insensitivity of the
communications.

This means that the semantics of each individual synchronous component in
the system is not modified if the perfectly synchronous communication channels
are substituted with asynchronous channels of fifo type, with unknown and
unbounded delays, but no loss. This is formalized as the mathematical property
(4). Of course the global timing of the program is lost. The automatic synthesis
of such protocols is achieved by enforcing the so-called endo/isochrony of the
synchronous commmunication network, see [3]. At this stage delay-insensitivity
is achieved: each flow is individually preserved by the communication (but their
global synchronisation is not).

Now we show in figure 4-left how to adapt this design for the case of an ltta,
i.e., with loosely synchronised channels. Note that loosely synchronised channels,
if used directly, can duplicate data or can lose data. The idea is to include, on
each port, the protocol proposed in section 2. These additional protocols are
figured in figure 4-left by the dark rectangles. In figure 4-right, we have redrawn
the figure 4-left in a different way. We combine the dark rectangles together
with the “physical” channels, to obtain so-called “virtual” channels. The analysis

A Protocol for Loosely Time-Triggered Architectures 259

performed in section 2 shows that each virtual channel satisfies the property (4).
Therefore endo/isochrony guarantees a correct-by-construction deployment.

4 Automatic Proofs of the Protocol

In this section, we redo the section 2 by replacing human specifications and
proofs, by computer ones. Synchonous languages with associated proof tools are
used to this end. Some comments are in order.

The two theorems shown before involve both timing and logical aspects. The
timing aspects can be modeled using parametric timed automata, since we want
to prove the theorems using symbolic values for the periods and not instantiated
ones. Unfortunately, the verification problem for parametric timed automata is
undecidable [1], therefore, model checkers such as Kronos [8] or Uppaal [13],
cannot be used. Semi-algorithmic methods for parametric timed automata exist
(e.g., in Hytech), but they are not guaranteed to terminate. Instead we have
decided to use standard model checking, and therefore abstractions are needed.

Two kinds of abstractions will be considered.

1. We want to show identity (5) irrespectively of the actual values for the input
xr. Since we do not use theorem provers, we will actually prove (5) for finitely
enumerated types. The proof with Lustre/Lesar assumes an input which is
of type bit stream with a given concrete width.

2. Then, we need to propose boolean type of assumptions to replace the quanti-
tative assumptions (6) or (15), from section 2. We ask the reader to have the
proof of theorem 1 at hand. From (9,10,11), we get that the first condition,
w ≥ b, in (6) is abstracted as the following predicate:

(6) : w ≥ b ↔ never two tw between two successive tb. (16)

Finding an abstraction for the second condition, �w/b� ≥ r/b, in (6), is
slightly less obvious. We just reexpress it by requiring that the sequence
τ r(n) defined in (12) shall be strictly increasing, i.e., it shall never be the
case that two or more τb(n)’s occur between two successive tr(m)’s:

(6) :
⌊w
b

⌋
≥ r

b
↔ never two τb(.) between two successive tr. (17)

To complete the requirements, we must characterize τb(.), this is provided
by the formula (9).

Note that, since these abstractions have been performed manually, this is a
(minimally) assisted proof, not a fully automated one.

The Lustre/Lesar proof. With these abstractions, the Lustre/Lesar proof is
shown in Fig. 5 and Fig. 6. Note that these abstractions result in finite-state
systems, which could be checked in principle with any model checker. As for the
different delays involved in the reader/bus/writer (see formulas (1,2,3)), these
are emulated by simply making the three clocks tw, tb, tr pairwise exclusive: by
doing so, instantaneous transfer can occur, neither from writer to bus, nor from
bus to reader—this way is a bit of cheating, but it makes life a lot easier.

260 Albert Benveniste et al.

const n = 3; – the input is a bit stream of width 3

node writer(x : boolˆn) returns (xw: boolˆn; bw: bool);
let

bw = true → pre not bw;
xw = x;

tel

const init = falseˆn;

node reader(x: boolˆn; b: bool) returns (cro: bool; xr: boolˆn);
let

cro = not (b = (false → pre b));
xr = if cro then x

else (init → pre xr);
tel

node bus(xw: boolˆn; bw: bool) returns (xr: boolˆn; br: bool);
let

xr, br = (xw, bw);
tel

node faster(cb, cw: bool) returns (prop: bool);
var w before b: bool;
let

w before b = if cw then true
else if cb then false

else (false → pre w before b);
– tells that there is an unmatched cw
prop = not (cw and (false → pre w before b));

– this node implements (17)
tel

node firstafter(cb, cw: bool) returns (cbw: bool);
var waiting: bool;
let

cbw = cb and (false → pre waiting) ;
waiting = if cw then true

else if cbw then false
else (false → pre waiting);

– this node implements (9)
tel

Fig. 5. The Lustre/Lesar proof of theorem 1, part 1.

The Signal/Sigali proof. Signal has a small number of constructs, recalled in
Fig. 9. Using the same abstractions as for Lustre, the proof in Signal/Sigali is
shown in Fig. 7 and Fig. 8. There are some differences with the Lustre/Lesar
proof. Firstly, unknown but short delays at ingress/egress of the bus are included
(the shift processes). Also, the process fifo 2 is a cascade of 1-bounded fifos, so we

A Protocol for Loosely Time-Triggered Architectures 261

node vecteq(xw: boolˆn; xr: boolˆn) returns (prop: bool);
var aux: boolˆ(n+1);
let

aux[0] = true;
aux[1..n] = aux[0..n-1] and (xr = xw);
prop = aux[n];

tel

node compare(cw: bool; xw: boolˆn; xr: boolˆn) returns (prop: bool);
var equal: bool; last: boolˆn; unmatched: bool;
let

last = if equal then xw else (init → pre last);
– stores the value to be matched
equal = vecteq(xr, (init → pre last));
– tells whether the value to be matched is actually matched
unmatched = if cw and not (true → pre equal) then true

else if equal then false
else false → pre unmatched;

– tells that there are two values waiting for match
prop = not(cw and (false → pre unmatched));
– a new value should not arrive while two values are waiting for match

tel

node verif(cw, cb, cr: bool; (x: boolˆn) when cw)
returns (prop: bool; xw, xr, xro: boolˆn; bw, br: bool; cro: bool);
let

xw, bw = if cw then current writer(x)
else ((init, false) → pre(xw, bw));

xr, br = if cb then current bus((xw, bw) when cb)
else ((init, false) → pre(xr, br));

cro, xro =if cr then current reader((xr, br) when cr)
else ((false, init) → pre(cro, xro));

prop = compare(cw, xw, xro);

assert faster(cb, cw) and faster(cr, firstafter(cb, cw));
– these assertions implement (16) and (17)
assert #(cw, cb, cr);
– so as not to get bored by simultaneous clocks

tel

(*
moucherotte% lesar albert2.lus verif
–Pollux Version 2.0
TRUE PROPERTY
moucherotte%
)

Fig. 6. The Lustre/Lesar proof of theorem 1, part 2

262 Albert Benveniste et al.

process protocol = (? boolean xw; event cw, cb, cr ! boolean xr , inv)
(| (xb, bb, sbw) := bus (xw, writer(xw,cw), cb) % writer + bus %
| (xr, br, sbb) := reader (xb, bb, cr) % reader %
| cb =̂ sbw default cb % condition (16) %
| cr =̂ (when switched(sbb)) default cr % condition (17) %
| xok := fifo 2 (xw) % fifo 2 satisfies (4) %
| inv := equal (xok, xr) % tests if xok=xr %
|) where boolean bw, xb, bb, sbw, sbb, br, xok;

process writer = (? boolean xw; event cw ! boolean bw)
(| bw =̂ xw =̂ cw
| bw := not (bw$1 init true)
|); % bw: boolean flag %

process bus = (? boolean xw, bw; event cb ! boolean xb, bb, sbw)
(| (xb, bb, sbw) := buffer (xw, bw, cb) |);

process reader = (? boolean xb, bb; event cr ! boolean xr, br, sbb)
(| (yr, br, sbb) := buffer (xb, bb, cr) | xr := yr when switched (br) |)
where boolean yr; end; % switched(br) validates xr %

process switched = (? boolean b ! boolean c)
(| zb := b$1 init true | c := (b and not zb) or (not b and zb) |)
where boolean zb; end; % c=true when b alternates %

process buffer = (? boolean x, b ; event c ! boolean bx, bb, sb)
(| (sx, sb) := shift 2 (x, b) | (bx, bb) := current 2 (sx, sb, c) |)
where boolean sx; end; % delays, sustains, filters %

process shift 2 = (? boolean x, b ! boolean sx, sb) % see shift 1 %
(| (sx, sb) := current 2 (x, b, ŝb) | interleave (x, sx) |);

process current 2 = (? boolean wx, wb; event c ! boolean rx, rb)
(| rx := (wx cell c init false) when c
| rb := (wb cell c init true) when c |); % see current 1 %

process interleave = (? boolean x, sx !)
(| x =̂ when b | sx =̂ when not b | b := not (b$1 init false) |)
where boolean b; end; % x and sx interleave %

process equal = (? boolean y, z ! boolean inv)
(| i := (y and z) or (not y and not z) default inv
| inv := i $1 init true
|); where boolean i; end; % tests if y=z %

process fifo 2 = (? boolean x ! boolean xok)
(| xok := shift 1(shift 1(x)) |);

process shift 1 = (? boolean x ! boolean sx) % x,sx satisfy (4) %
(| sx := current 1 (x, ŝx) | interleave (x, sx) |);

process current 1 = (? boolean wx; event c ! boolean rx)
(| rx := (wx cell c init false) when c |); % current triggered by c %

end;
Fig. 7. The Signal/Sigali proof

A Protocol for Loosely Time-Triggered Architectures 263

Sigali:
———————————
set reorder(1);
read(”protocol.z3z”);
read(”Creat SDP.z3z”);
read(”Verif Determ.z3z”);
POSSIBLE(B False(S,inv)); → resultat False
Always(B True(S,inv)); → resultat True
———————————

Fig. 8. The Sigali script.

z := x op y zτ �= ⊥ ⇔ xτ �= ⊥ ⇔ yτ �= ⊥ , ∀k : zk = op(xk, yk)
y =̂x yτ �= ⊥ ⇔ xτ �= ⊥ (x and y possess identical clocks)
x̂ the clock of x : ˆx ∈ {t, ⊥},ˆxτ �= ⊥ ⇔ xτ �= ⊥
y := x$1 init x0 xτ �= ⊥ ⇔ yτ �= ⊥ , ∀k > 1 : yk = xk−1, y1 = x0 (delay)
x := u when b xτ = uτ when bτ = t , otherwise xτ = ⊥
x := u default v xτ = uτ when uτ �= ⊥ , otherwise xτ = v

(| P | Q |) parallel composition
y := x cell h init x0 (| y := x default (y$1 init x0) | ŷ := ˆx default h |)

Fig. 9. Signal operators (left), and their meaning (right). In this table, xτ denotes the
status (absence, or actual value) of signal x in an arbitrary reaction τ , {t, f} is the
boolean domain, and the special value ⊥ denotes absence in the considered reaction.

know that it satisfies the requirements of theorem 1. This fifo 2 has an unspecified
delay, hence we can synchronize it with the output of the protocol, xr, and check
whether they are both equal; this is performed in process equal. In fact, this
proof says that the cascade of two 1-bounded fifos is a correct abstraction of the
protocol, so the protocol satisfies the requirements of theorem 1. This style of
proof deeply uses the capability, for Signal, of handling nondeterministic systems,
and thus of emulating asynchrony.

5 Discussion

In this section, we discuss how our ltta protocol can be extended to multiple
users. Then we briefly compare ltta with tta.

Extension of the protocol to multiple users. Consider the case of several
pairs {writer, reader}, transmitting several message sequences over the ltta bus.
Assume, for instance, that the bus scans periodically the output buffers of all
writers.

Focus on one particular writer. For the analysis, we cluster together all read-
ers into an overall “all reader”. Call tb(n) the sequence of instants at which the
bus fetches messages from the output buffer of this writer, to the input buffer
of some reader. Equivalently, tb(n) is the sequence of instants at which the bus
fetches messages from the output buffer of this writer, to the (virtual) input
buffer of all reader.

264 Albert Benveniste et al.

Just apply Theorems 1 or 2, to the pair {this writer, all reader}. If the (quasi)
period b driving the tb(n)’s satisfies the assumptions of the theorems, then the
protocol is correct for this pair. This implies that the protocol is also correct
for {this writer, some reader}, where some reader denotes one particular reader.
Assume that there are J users, and each user writes with period w and reads
with period r, then it is enough that the actual bus period satisfies the conditions
(6) of theorem 1 with b/J substituted for b.

Clearly, the choice of periodic scanning is the default choice. It can be adapted
if the writing periods are different, for different users, in order to ensure proper
balancing. Such quantitative issues are beyond the scope of this paper. But
clearly, the theorem can be accomodated to such adaptation.

A brief comparison with Kopetz’tta. We warn the reader that this brief
discussion is by no means authoritative: closer investigations would be required
for firm assessment and comparisons.

This being said, the first remark is that ltta does not require implementing
a clock synchronization algorithm, and our protocol is cheap. On the other hand,
when designing the system based on ltta, the engineer must consider issues of
relative speed of writing/bus/reading. This difficulty does not appear with tta,
at a first glance. However, we think that the timing considerations when using
ltta, are quite natural for the designer. The bottom line is that, from the strict
point of view of synchronization, ltta seems an attractive approach.

The very question is that of fault tolerance. As extensively discussed by John
Rushby [16], Kopetz’tta takes advantage of the strict tta, in order to provide
fault tolerance and allow for a strict separation of different functions multiplexed
over the same bus. The corresponding issue is certainly carefully considered by
the industrial users of the ltta approach, but we must say that we did not study
it in detail.

6 Conclusion
We have presented a weakened form of time-triggered architecture, we called it
loosely time-triggered. In contrast to Kopetz’tta, clocks are periodic but are not
synchronized. Strict synchronization may not be useful for continuous control,
since modern control design is anyway robust against phase uncertainties—this
justifies considering ltta for real-time embedded control. We have proposed a
protocol that offers, on the top of ltta, a coherent system of logical clocks,
and we have sketched how this can be used for correct deployment of controller
designs based on synchronous languages. This protocol is of interest per se, as it
accepts clocks with offset and jitter. But the way we have analysed the protocol
is also of interest, it illustrates the use of synchronous languages for modeling
asynchronous architectures. Still, a complete automatic proof of our theorems
with their exact assumptions formulated in quantitative terms, is to be done.

This study was a first attempt toward designing distributed embedded sys-
tems that are robust against imperfect synchronization of the architecture. One
important remaining question is the following: can ltta offer lower cost fault-
tolerance, as compared to tta? This is not obvious, since Rushby [16], advocates
that strict compliance with time is the key to fault-tolerance in tta.

A Protocol for Loosely Time-Triggered Architectures 265

References

1. R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric Real-time Reasoning. In
Proc. of the 25th Annual Symposium on Theory of Computing (STOC), ACM
Press, 1993, pp. 592-601.

2. R. Bannatyne. Time Triggered Protocol: TTP/C, Embedded Systems Program-
ming, 9/98, pp. 52-54.

3. A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony. In
J.C.M. Baeten and S. Mauw, editors, CONCUR’99, Concurrency Theory, 10th In-
ternational Conference, volume 1664 of Lecture Notes in Computer Science, pages
162–177. Springer, August 1999.

4. A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in dataflow syn-
chronous languages: specification & distributed code generation. Information and
Computation, 163, 125-171 (2000).

5. A. Benveniste. Some synchronization issues when designing embedded systems
from components. In Proc. of 1st Int. Workshop on Embedded Software, EM-
SOFT’01, T.A. Henzinger and C.M. Kirsch Eds., LNCS 2211, 32–49, Springer
Verlag, 2001.

6. P. Caspi, C. Mazuet, R. Salem, and D. Weber. Formal design of distributed control
systems with lustre. In Proc. Safecomp’99, September 1999.

7. P. Caspi. Embedded control: from asynchrony to synchrony and back. In Proc.
of 1st Int. Workshop on Embedded Software, EMSOFT’01, T.A. Henzinger and
C.M. Kirsch Eds., LNCS 2211, 80–96, Springer Verlag, 2001.

8. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Proceedings of
”Hybrid Systems III, Verification and Control”, 1996. Lecture Notes in Computer
Science 1066, Springer-Verlag.

9. P. Le Guernic, T. Gautier, M. Le Borgne, C. Le Maire. Programming Real-Time
Applications with Signal. Proceedings of the IEEE, 79(9):1321-1336, September
1991.

10. N. Halbwachs, F. Lagnier and P. Raymond. Synchronous observers and the ver-
ification of reactive systems. In Third Int. Conf. on Algebraic Methodology and
Software Technology, AMAST’93, Twente, M. Nivat and C. Rattray and T. Rus
and G. Scollo, Eds., Workshops in Computing, Springer Verlag. Jun. 1993.

11. H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. Kluwer Academic Publishers. 1997. ISBN 0-7923-9894-7.

12. L. Lamport. Time, clocks and the ordering of events in a distributed system.
Communication of the ACM, 21:558–565, 1978.

13. Kim G. Larsen, P. Pettersson, and Wang Yi. UPPAAL in a Nutshell. In Springer
International Journal of Software Tools for Technology Transfer, 1(1-2), 134–152,
Dec. 1997.

14. H. Marchand, E. Rutten, M. Le Borgne, M. Samaan. Formal Verification of SIG-
NAL programs: Application to a Power Transformer Station Controller. Science of
Computer Programming, 41(1):85–104, Aug. 2001.

15. M. Pease, R.E. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228–237, 1980.

16. J. Rushby. Bus architectures for safety-critical embedded systems. In Proc. of
1st Int. Workshop on Embedded Software, EMSOFT’01, T.A. Henzinger and
C.M. Kirsch Eds., LNCS 2211, 306–323, Springer Verlag, 2001.

	1 Loosely Time-Triggered Architectures ({sc ltta})
	2 The Proposed Protocol and Its Robustness
	2.1 Description of the protocol
	2.2 Main Theorem about Robustness

	3 Application to the Deployment of Synchronous Programs
	4 Automatic Proofs of the Protocol
	5 Discussion
	6 Conclusion
	References

