Proceedings of the 40th IEEE
Conference on Decision and Control
Orlando, Florida USA, December 2001 Th M 12-2

The SIGNAL declarative synchronous language :
controller synthesis & systems/architecture design *

Albert Benveniste, Patricia Bournai, Thierry Gautier,
Michel Le Borgne, Paul Le Guernic, Herwlarchand

Abstract

Dynamical systems working have been recognized as essen-
tial in the area of computer science, under the namee-of
active systemBy David Harel.Synchronous languagésve
been proposed as a paradigm to deal with reactive systems
and develop tools for them. In this paper we introduce syn-
chronous programming paradigm via the notiomafiticlock
dynamical systemand illustrate it via the &NAL language.
We give an outline of controller synthesis inG8IAL, and
system/architecture design.

C(mi,xiil,...,miilﬁ,j=1,...,J) (2)

whereC denotes a set of relations or constraints, afd
denote the variables involved — we do not distinguish be-
tween input, state, and output variables. Sudiehavioral
approach has been advocated and extensively studied in the
linear system case in particular by Jan C. Willems [8]. Note
that a discrete event system can also be modeled in this way,
by resorting to discrete state variables to encode states.

Keywords: discrete event systems, reactive systems, dis-
tributed architectures, embedded code generation.

1 Introduction

Reactive systems and synchronous languageBynamical ~ When dealing with complex systems, however, it is not ac-
systems working on-line and in closed loop with their envi- CePtable to be bound to a single, global, time indk Dif-
ronment are the central concept of control science. More re-€rént subsystems or components of the system may have
cently, the same concept has been recognized as essential {i€i" OWn, local, natural pace. Sensors and actuators have
the area of computer science, under the nanteaxtive sys- Fhelr own sampling rates, .and' sampling is sometimes even
temsby David Harel [1]. Synchronous languagésve been irregular. System monlt9r|ng involves event detection and
proposed as a paradigm to deal with reactive systems and déa_vent based reconflguratlon: Thereforg softwe_lre components
velop tools for them [2, 3]. The french community has been " charge of the reconfiguration are typically triggered by the
active in this area [4] [5] [6], but other formalisms are also détected events.

considered synchronous [7]. In this paper we introduce syn-Based on this remark, we need to allow, in dynamical
chronous programming paradigm via the notiomaiticlock systems of the form (2), the use ofultiple time indices

dynamical systemand illustrate it via the &NAL language.  kq,..., k., and the numbel of these different “clocks”
Multiclock dynamical systems. Discrete time dynamical —may be very large indeed. Of course, some constraints may
systems of the generic form involve signals having different time indices, e.g., when
possibly event-based downsampling (i.e., filtering events)
. = f(@r—1,uk-1) 1) or upsampling (i.e., inserting new events) occurs. Handling
e = gk, ur) time indices explicitly becomes rapidly cumbersome, and

instead provision for manipulating multiple clocks easily

are familiar to control engineers. Modeling larger systems re-needs to be provided. A simple idea consists in introducing

guires combining systems of equations of the form (1). Whena special value, writteri. (pronounce “absent”) to refer to
regarded globally, the result is generally an implicit or de- absence. Therefore, for a sigrfak,) o in the usual sense,
scriptor dynamical system. Therefore, the generic form (1) WO successive occurrences and w;ﬂ can be separated
should be replaced by considering systems of equations o[)y an arbitrary but finite number af’s. TheseL's should

the generic implicit form: be regarded as wildcards to indicate that other signals may
I This work is or has been supported in part by the following projects : be present _at a g'Ven instant while the cor_|5|der_ed One_ IS
Eureka-SYNCHRON, Esprit R&D -SACRES (Esprit project EP 20897), Es- not. Domains of variables are extended with this special
priIQLT_R-SY_RF (Esprit project EP 22703). value, and so are relations involving variables. By doing so,
Irisa/Inria, Campus de Beaulieu, 35042 Rennes cedex, France; corya|ations involving signals with different clocks are easily
resp. author email: Albert.Benveniste@irisa.fr , etc. See . . . R X
http:/Awww.irisa. fr/sigma2/benveniste/home. html and considered. The following picture illustrates this concept.

http://www.irisa.fr/ep-atr/welcome.english.html

0-7803-7061-9/01/$10.00 © 2001 IEEE 3284



§ these functionalities are integrated in thesSAL environ-
ment, which is organized around the hierarchical synchro-
nized data-flow graph. In that sense, the whole design pro-
cess requires no manual transformation of models from one
tool to another. &NAL can then be seen as a fully integrated
environment. In this overview paper, we have decided to fo-
cus on two topics to which our group has contributed signifi-
cantly, namelycontroller synthesisandsystems/architecture
Each subsystem has its own activation clock (for instance, adesign and distributed code generation.

clock representing the greatest set of instants at which there is

at least one event in the subsystem), depicted by the different 2 The SIGNAL language

lightnings, and each different signal has its own clock. This The §eNAL language allows to specify multiclock dynam-
clearly requires mechanisms for data dependent up/downica| systems following a block-diagram style. Blocks rep-
sampling. Some branches of the graph are not directed, reresent dynamical systems, and can be connected together,
vealing the relational nature of the connections. system structg form higher blocks, and so on. Multiclock dynamical
ture applies inductively, in a hierarchical way. systems involvesignalsand relate them together via opera-
The essence of synchronous programmingBased on the  tors. Signals are typed sequences (boolean, integer..rgal,
above discussion, we feel the following features are indeedvhose domain is augmented with the special synibta de-

essential for characterizing this paradigm: note absence. INIENAL, symbol L is not handled explicitly
) o ) by the user, this prevents the user from manipulating explic-
1. Programs progress via an infinite sequenceattions itly time indices. $GNAL has a small number of primitive

P = R“,whereR denotes the family of possible reac- nstructs. listed below
tions, and superscript denotes infinite concatenation

of reactions. syntax description
2. Within a reaction, decisions can be taken on the basisof Z := X op Y Z: #1le X, F1Le Y, £ 1
theabsenc®f some events. Yk : Zj, = op(Xyg, Vi)
3. When it is defined, parallel composition is always | Y = X$1 (delay) | X:# L&V # 1
given by taking the conjunction of associated reactions: VE: Yy = X
Pi||P, = (Ry A Ry)“. X = U when B X, = U.T whenB, = true
otherwiseX, = L
The SIGNAL environment. Based on this paradigm, the [~ = gefault vV X, = U, whenU, £ L
SIGNAL language has been developed, with associated set of otherwiseX, = V.
tools: the academicIENAL/SIGALI toolset (graphical edi- aPIoD compose andQ
tor, compiler, code generator, model checker, simulator) [9],
and the commercial ISDEX tool [10]. Before giving for-  |nthis table, subscript, denotes the occurrence of sigrial
mally the semantics of IENAL let us just say that ai8-  atan arbitrary instant. Note that the first two statements are

NAL program describes relations between flows of data andsingle-clockedas all signals involved must have the same
events. The compiler transforms the program into a systemglock. In these first two statements, integemdexes the
of equations and then calculates the solutions of the sysinstants at which the above mentioned signalspesent,
tem. The compilation of &NAL code provides a depen- and “op” denotes a generic operatian x, . .. pointwisely
dence graph on which static correctness proofs can be deextended to sequences. Note that indeki& not mentioned
rived: it automatically checks the network of dependenciesexplicitly in the syntax but is rather handled implicitly. In
between data flows, and detects causal cycles, temporal inthe third statemenB is a boolean signal artclie denotes the
consistencies from the point of view of time indexesGS  value “true”. In the last statemer®,Q denote programs (i.e.,
NAL automatically synthesizes the scheduling of operationplocks, subsystems) afP|Q|) s their composition.

involved inside a control loop (note that this work is often an The first two statements set constraints on the clocks of the

error-prone task when done by hand in classical C-like lan-. . . . i )
. L involved signals. Using this feature, arbitrary constraints can
guage), and this scheduling is proved to be correct from the o .
. . : . "be expressed as follows: pick a boolean-valued expression
point of view of data dependencies. Further, the compiler

. . NS C(X,Y,Z2) involving three signals with identical clocks. Set
synthesizes automatical§jfobal optimization®f the depen- B = C(X.Y.Z) and write statemer® = B when B.

e O e coson,Th s st egresses n e one hand, and
graph, B when Bon the other hand, should be equal. But the latter

choose to generate eithEmbedded coder code dedicated
. ! . : selects those occurrencesBivhereB takes the valuérue.
to simulation, or performance evaluation. At the same time,

S_|GAL| , the model checker (also used fOI.’ controller §ynthe' 1 We list only primitive statements. The actual syntax involves derived
sis purposes) allows us to prove dynamical properties. All operators, in particular for handling constraints on clocks.

3285



Therefore the program

(| B :=C(X,Y,2) | B := B when B |)
states that eitheiX,Y,Z are all absent, or condition
C(X,Y,Z2) is satisfied.

3 Controller synthesis

3.1 Control synthesis problem

Given apDs S, as defined by (3) a controller is defined by a
system of two equation§(X,Y,U) = 0 andCy(X) = 0,
where the latter equatidaiyy (X') = 0 determines initial states
satisfying the control objectives and the former describes
how to choose the instantaneous controls; when the con-
trolled system is in state, and an evenj occurs, any value

Controller synthesis consists in automatically synthesizing aSUch thad(z,y, u) = 0 andC(z,y,u) = 0 can be chosen.

controller from a partial specification (the “plant”) together
with control objectives. Running the controller in parallel
with the plant yields the desired reactive system.

SIGNAL. We here restrict ourselves to multiclock dynamical
systems involving only boolean awtbcks(i.e., pure signals
with domain{true, L }). Such $GNAL programs are equiva-

lent to arbitrary finite state machines. Controller synthesis is

conveniently performed by embeddings8IAL into dynam-
ical systems over the finite field/37 = {<1,0,+1} with
special ruled + 1 = <1, andsl <1 = +1. The following
coding is usedrue — +1, false— <1, L — 0. Using
this coding, $GNAL primitives translate as follows:

= not A b = -—a
_ ¢ = ablab—a—-b-1)
C = Aand B a2 = b2
_ ¢ = ab(l—a—b—ab)
C = AoB 2 = B
¢ = a+(—-a)x
B := A $1 (init b b = a’z
ro = bo
[C = A when B | ¢ = a(-b-0b%) |
| C = A default B | ¢ = a+(1—-a’)b |

In this tablez, 2’ denote auxiliary current and next state vari-

In this
section we discuss controller synthesis in the framework of

The behavior of the systetsi composed with the controller
is then modeled by:

X = P(X,Y,U)
0 = Qo(X) = Co(X)

Using algebraic methods, avoiding state space enumeration,
we can compute controlle(§’, Cy) which ensure:

e theinvarianceof a set of statesY Invariance() ),
the reachability of a set of states from the initial
states of the systent5(Reachability() ), the at-
tractivity of a set of state from a set of stated”’

(S Attractivity() ) [12],

the minimally restrictive control(choice of a control
such that the system evolves, at the next instant, into
a state where the maximum number of uncontrollable
events is admissibles(Free _Max() )) [12], as well as
thestabilization of a systerf_Stab() )) [11].

3.2 Integration in the SIGNAL environment

We sketch how the controller synthesis methodology has
been integrated in thelGNAL environment. To simplify the
use of the tool, the same language is now used to specify the
physical model of the system and the control objectives (as
well as the verification objectives). We have developed a tool
allowing the controller synthesis as well as the visualization
of the result by interactive simulation of the controlled

ables, these are needed to encode the delay operator. Angystem, see next figure. In the first stage, the user specifies
SIGNAL specification can then be translated into a set ofthe physical model and the control objectives irGI$AL.

equations called polynomial dynamical systemn$) of the
form:

X' = P(X,Y,U)
S = 0 = QX,Y,U) 3
0 = Qo(X)

where X,Y,U, X' are vectors of variables iz /37 and
dim(X) = dim(X'") = n. The components of the vectors

X and X' represent the current and next states of the sys-

tem and are calledtate variables They originate from the
translation of the delay operatoY. is a vector of variables
in Z /37 , calleduncontrollable event variablesvheread’ is

a vector ofcontrollable event variablesThe first equation
is thestate transition equatigrthe second equation is called
the constraint equatiorand specifies which event may occur
in a given state; the last equation gives the initial states. Th
behavior of such @Dsis the following: at each instarit
given a state:; and an admissiblg,, we can choose some
which is admissible, i.e., such th@{z;, y:, u:) = 0. In this
case, the system evolves into staie; = P(x¢, yt, ut).

328

The second stage is performed by thesaL compiler
which translates the initial ISNAL program into DS and
the control objectives in terms of polynomial relations and
operations. The controller is then synthesized, usieps .

In the third stage, the obtained controller is included in the
original SGNAL program in order to perform simulation.

| : Second phase: Controller synthesis }
' erification |
ﬁ results !

I

Polynomial
dynamical
system
== SIGALI |
I

)
‘ Controller !
i
|

Signal file

(I system ”
I Sje%fled i

i
) Signa |

(| Control
and
verification !

| objectives

| Third phese: Simulation Ml—————
I E

(| System i
| Resolver
| Simulator

== -
Simulation !

SFirst phase: Specification of the model. The physical
model is first specified in the languages8AL. It describes
the global behavior of the system. In the same stage we spec-
ify a process, that describes all the properties that must be

6



enforced on the system. Properties to be checked as well agcution, we are faced with the following difficulties :
the control objectives to be synthesized, can be expressed di-
rectly in the SGNAL program. The syntax is shown below:

(I Sigali(Control_Objective(PROP)) |)
The keyword Sigali means that the subexpression
has to be evaluated byi&Li. The function Con-
trol _Objective  means that &ALl has to compute a
controller according to the boole®@RORwhich can be seen
as a set of states in the correspondimgn order to ensure
the control objective for the controlled system (it could be
one of the control objectives presented in section 3.1). The
overall SGNAL program is obtained by composing the two
processes.

1. Referring to the table of section 2, we see thaNa\L
handles implicit (or descriptor) type of systems. In-
deed, generating executable code from descriptor type
of specification is a difficult task. We shall outline our
approach for this problem. For details, the reader is re-
ferred to [13].

2. Theideal model of synchrony, as summarized at the end
of section 1, does not comply with the actual behavior
of distributed control systems, in which some kind of
asynchrony is expected. We shall outlingh&ory of
desynchronizatiomas a possible solution for this issue.

) The reader is referred to [13] for details.
Second phase: Controller Synthesis.To perform the com-

putation of the controller with regard to the different control 4-1 From implicit specifications to executable code:

objectives, the &NAL compiler produces a file which con-  causality analysis , _
tains thepDs resulting from the abstraction of the complete Unlike behavioral theory fainear dynamical systems as ex-

SIGNAL program and the algebraic control (as well as ver- t€nsively studied by Jan C. Willems, moving from implicit

ification) objectives. We thus obtain a file that can be read SPecifications to an executable equivalent form is undecid-
by SIGALI. Suppose that we must enforce, ini@SAL pro- able for multiclock dynamical systems in general. We shall
gram named “system.SIG"” the invariance of the set of statedherefore follow an approach akin to so-called “abstract in-

where the booleaRROFs true. The correspondingiSNAL terpretation”, in which arapproximatesolution is searched
for, that applies to all cases. The idea is that

program is:

(| (| system{} (physical specified in Signal) |) 1. we shall fully handle equations of multiclock dynamical
| PROP : definition of the boolean PROP in Signal systems involving booleans or clocks, whereas,

| Sigali(S_Invariance(True(PROP)) ) , 2. we shall replace statements of the f&&m= X op Y
The correspondingI8ALI file, obtained after the compila- by their following “approximation”

tion of the global $cNAL program, is the following :

read(“system.z3z"); => loading of the PDS “S” (I Z "= X "= Y %clocks must be equal

Set_States: True(PROP) => states where PROP is true | (X,Y) --> Z %causality constraint [)
S_c: S_Invariance(S,Set_States) => Synthesize the . o
controller ensuring the invariance of Set_States The first statement is just the &AL syntax to express

the equality of the clocks oX,Y,Z . The second state-
ment is a new &NAL primitive. Its general form is
(X,Y) --> Z when B  which states thatyvhenZ is

The file “system.z3z” is therDs that represents the ini-
tial system. ThePROP signal becomes a polynomial
Set States expressed by state variables and events, which . .
is equal to 0 whe®ROHSs true. The last line of the file con- pre_se“t and is true,Z cannot be produced prior to the
sists in synthesizing a controller which ensures the invari- pair X,y

ance of the set of states where the polynorBit _States This abstraction is systematically applied using the causality
takes the value 0. This file is then interpreted bg 8.1 that rules of table 1, until a fixpoint is reached (this requires at
checks the verification objective and computes the controller.most two steps).

The result of the controller synthesis is a polynomial which | statement: P causality: caus(P)

is represented by a BDD (Binary Decision Diagram) which | Z := X op Y xY) -> Z

is saved in a file and used to perform simulation. Y = X$n (n-delay)

Third phase: simulating the result. To obtain a simulation X := U when B (lﬁj >> Xx when B|)

that allows to visualize the new behavior of the controlled (U = X when ~U))
system, the controller is automatically integrated in the ini- X = U default V IV > X when "V " U |)
tial SIGNAL program through an algebraic equation resolver [ x = v when B B > Y

Writtgn bot.h in $GNAL andCt+ (_some generic processes [ ([P|QJ) (Icaus(P)|caus(Q)])

for simulation can be added at this stage). The reader is re- . _

ferred to [12] for examples and additional details on the im- Table 1: Causality analysis o5IGNAL programs
plementation. In this table, keyword “U denotes the clock df, i.e., the

pure signal which is present exactly wheis present’V"-

“U denotes the clock representing the instants at wkich
When moving from the &NAL specification based on the present andl is absent. Note that no causality results from
ideal model of synchrony, to the real embedded code for ex-the delay operator, since computing the next state is always

4 Systems/architecture design

3287



explicit, see (3). The causality rulX-->X is also applied SIGNAL statement analogous asynch. actor
for every signaX Using this technique, anyiSNAL program - X
. . . . . Z =X Y z
is abstracted into the following generic form, compare with op Y ﬂ ﬂ'
3): X' = P(X,V,U) Y = X$1 (1-delay) X +.|Z|_> % Y

Sabst = 0 = Qb(Xa Ya U) ; g(X7 Y7 U) (5) B

0 = Quo(¥), Go(X) it . I P

In (5), constraint = Q(X, Y, U) has been decomposed into | X = Y when B 5
its boolean, solvable, pait= Q;(X,Y, U), plus a system of u ?::D_, E:|:|_, X
causality constraint§ (X, Y, U) involving statements of the
formX --> Y when B . And There is a similar decom-
position for the initial condition. The key remark is that sys- \L} X
tem (5) is now offinite nature, and therefore it can be trans- | x = U default V
formed into an input/output form for execution. Note that
“solving” (5) is more involved than just handling finite state \L} X
machines, due to its hybrid nature, mixing together automata

and graphs labelled by predicates. Solving for the graph part
consists of constructing a partial order compatible with the  Table 2: From SIGNAL statements to dataflow actors.
set of causality constraints of the fodn --> Y when B .

A variation of this technique is implemented in thecS
NAL compiler. Note that, besides serving for causality analy-
sis, statemenX --> Y when B can serve for other pur-
poses. In particular, it can be used simply to enforce a
scheduling constraint betweetiand Y. Therefore,sched-
ulers can also be formally handled usiSgGNAL : they can

be specified, and further composed. This is a key advantag
in architecture modeling [13].

the U token passes the “gate”, whereas it is lost when the
boolean guard hasfalsetoken. This performs data depen-
dent downsampling. This actor it equivalent towhen
statement, however. Thehen statement does not set any
clock constraint on its inputs, while the shown actor requires
equality of its input clocks (there are as many tokens on both
?nput channels). This is why we name it an “analogous” ac-
tor, not an equivalent one. The same problem arises with the
4.2 From synchronous specification to asynchronous, default —statement.

distributed architectures However, we can emulate thehen statement by the follow-
Referring to the ideal model of synchrony, as summarizeding means, for the particular case where we know thest

at the end of section 1, we can use token based dataflovless frequent thaB, see figure 1.

networks to model asynchronous, distributed executions, see

[2]. In this model, no global clock is available, and ab- B C
sence cannot be sensed. Therefore it is tempting to substitute vy when X U W
SIGNAL primitive synchronous statements by corresponding V —

dataflow actors. This is shown in table 2.

The diagrams read as follows : the diagrams on the left show

the enabling condition, and the corresponding diagrams on H onen |2
and

the right depict the result of the firing. When several lines are c r[ — 1

shown for the same statement, they correspond to different

cases, depending on the enabling condition. The idea is that L] when

each $GNAL statement would be replaced by its associated 3 W — X
dataflow actor, and thus a@&\AL program would resultin a ]

token based dataflow network. This does not work properly default

as we discuss next. Figure 1: A correct translation of thevhen.

The first two statements translate exactly into the actorsHere we use four actors. Thhen anddefault  actors are
shown in the right column. Each actor consumes one tokerspecified in the above table. Tlsgnch actor receives one

on each input and produces one token on its outputs. The detoken at its inputd, and delivers one token at each of its two
lay is modeled by the presence of an initial token inside thepoolean output,C : this models thaB,C have the same
actor. clock. Theand actor is the boolean “and”. Bogynch and

For thewhen statement, we propose the corresponding ac-and actors are single-clocked and memoryless, i.e., they are
tor on the right column. For the boolean gu&@dhe black  of the type listed in the first row of table 2. Tkehen actor
patch indicates ttue value for the token, while a white patch requiresB,Wto have the same clock, and tthefault  actor
indicates dalse When the boolean guard hadrae token, requires that) is less frequent thaw This models thatl is

3288



less frequent thaB. Then it is easily verified thdll passes  projects (3\CRES, and currently 8FEAIR). Major coopera-
the network exactly when 1/ it is present (i.€.s true), and tions were with EdF (Electriotde France) and Snecma (an
2/ B is true. A similar but more complex solution can be aircraft engine manufacturer).

found for thewhen statement in the general case. The commercial SILDEX tool from TNI. The company
This work can be systematically performed, for eachs\L TNI, Brest, France, markets theLBEX tool [10] for reac-
primitive statement. Note that this translation requires intro- tive systems specification and validation, and sequential (C,
ducing additional signalling and operators. This overheadAda) and distributed code generationiL®EX has a pow-
is required to maintain the semantics when no global clockerful GUI allowing a mixed state-machine/dataflow style of
is available to define the successive reactions. Clearly, thisnmodelling.
naive method would result in an unacceptable overhead and is
not applicable. However, this method can be applied instead
to the overall program, using a powerful symbolic analysis of
the clocking of this program. This results in a minimum over-
B e 1 0 aherlors el . Bemnie, . Gy, ReskTine systans cesin and
. ’ programming”, Another look at real-time programmingProc. of
referred tp [13, 14]. Th'IS approach can be seen as a way FQhe IEEE,vol. 9 1f 9, September 1991, 1270-1282.
systematically synth_eSIZe the ne_edgd prot_ocols to ma!ntza_lrlg] N. Halbwachs,Synchronous programming of reactive sys-
the program semantics when a distributed implementation isiems,_ Kiuwer Academic Pub., 1993.

performed, using an asynchronous communication architeC14] . Berry, The Constructive Semantics of Pure Estedeft
ture. Itis implemented in thel8NAL Inria compiler [9] as  pook 3, July 2, 1999.

References

[1] D. Harel and A. Pnueli. On the development of reactive
systemsLogics and models of concurrent systeldsR. Apt Ed.,
NATO ASI series, vol F-13, 1985, 477-498.

well as in the commercialiSDEX tool [10]. [5] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
- synchronous dataflow programming language lus®Peoceedings
4.3 Code profiling of the IEEE 79(9):1305-1320, September 1991.

Finally, we briefly mention our approach to code profiling, [g]  p. Le Guernic, T. Gautier, M. Le Borgne, C. Le Maire, “Pro-

to evaluate, e.g., performance. Given an implementafion gramming real-time applications withi&AL”, Another look at

of a program and a model of time consumption for each of real-time programmingProc. of the IEEEyol. 9 i’ 9, September

the atomic actions irf), we automatically generate a pro- 1991, 1321-1336.

gram7'(Q) homomorphic taY; 7(Q) is the parallel compo-  [7]  D.Harel and M. PolitiModeling Reactive Systems with Stat-

sition of the imaged'(Q;) of the subcomponenég; (includ- echarts McGraw Hill, 1998.

ing communications) of). 7(Q;) are given by the user as [8] J. C. Willems. Paradigms and Puzzles in the Theory of Dy-

SIGNAL components whose interfaces are composed of inte-namical SystemdEEE Transactions on Automatic Contr@g(3),

ger flowsT () instead of the original flows. For example, ~ 258-294, 1991.

T(x) can be used to represent the sequence of the availabill9]  Inria/lrisa. SGNAL tool. Contacteguernic@irisa.fr for the

ity dates for the occurrences of the original flow 7'(Q) current version. &NALV4/SIGALI ftp available by Autumn 2001.

is thus a model of real time consumption of the application [10] TNI. SILDEX tool, http:/Avww.tni.fr/frame-sommaire.eng.html

(functional specification and architectural support), that can[11] H. Marchand and M. Samaan. On the Incremental Design

be simulated. This can give directly access to the maximumo,f a Power Transformer Station Qontroller using Contrpller Synthe-

time necessary to perform a computation cycle [15]. SomeSiS Methodology. IEEE Transaction on Software Engineering, Vol
. . . . 6(8), August 2000.

other real time properties to be satisfied can also be descnbe?

as predicates inISNAL. Then some of these properties can 12] H. Marchand, P. Bournai, M. Leborgne, and P. Le Guernic.
P . P prop Synthesis of Discrete-Event Controllers based on the Signal Envi-
be checked by using verification tools.

ronment Discrete Event Dynamical System: Theory and Applica-
5 Usage tions, Vol 10:325-346, 2000.

In this section we summarize the tools available and [13] A. Benveniste, B. Caillaud and P. Le Guernic. Composi-

their use. For further information, the reader is referred tionality in dataflow synchronous languages: specification & dis-

to http:/mww.irisa.frisigma2/benveniste/home.html and ~ tributed code generatiomformation and Computatior,63, 125-

. - ) . 171 (2000).
http.//WWW.II‘I-Sa.fl’/ep atr/welcome.?ngllsh.html. http://www.irisa.fr/sigma2/benveniste/pub/BCLg99a.html
The academiCSIGNAL/SIGALI environment. A new re-  [14] A. Benveniste, B. Caillaud and P. Le Guernic. From syn-
lease of the &NAL/SIGALI toolset, named ®LYCHRONY, chrony to asynchrony. In J.C.M. Baeten and S. Mauw, editors,

is to be ftp available by autumn 2001. For the current version,CONCUR’99, Concurrency Theory, 10th International Conference,
contactieguernic@irisa.fr. The SGNAL team has tight co-  vol. 1664 of LNCS, 162-177. Springer V., 1999. See also
operations with other french groups working on synchronoushttp://www.irisa.fr/'sigma2/benveniste/pub/BCLg99b.html
languages (ETEREL LUSTRE). It has a long ongoing coop- [15] A. Kountouris, P. Le Guernic. Profiling of SIGNAL Pro-
eration with the company TNI, Brest, France, which markets 9rams gnd its applicgtion in the timing evaluation of design imple‘-
the SLDEX tool. It has or had significant cooperations with mentations. Proceedings of the IEE Collog. on HW-SW Cosynthesis

industrials in the framework of direct contracts or european for Reconfigurable Systems, IEE, HP Labs, Bristol, UK, 1996.

3289



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	header1: 
	footer: 


