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Abstract

Dynamical systems working have been recognized as esse
tial in the area of computer science, under the name ofre-
active systemsby David Harel.Synchronous languageshave
been proposed as a paradigm to deal with reactive syste
and develop tools for them. In this paper we introduce syn
chronous programming paradigm via the notion ofmulticlock
dynamical systemsand illustrate it via the SIGNAL language.
We give an outline of controller synthesis in SIGNAL , and
system/architecture design.

Keywords : discrete event systems, reactive systems, di
tributed architectures, embedded code generation.

1 Introduction

Reactive systems and synchronous languages.Dynamical
systems working on-line and in closed loop with their envi
ronment are the central concept of control science. More r
cently, the same concept has been recognized as essentia
the area of computer science, under the name ofreactive sys-
temsby David Harel [1].Synchronous languageshave been
proposed as a paradigm to deal with reactive systems and
velop tools for them [2, 3]. The french community has bee
active in this area [4] [5] [6], but other formalisms are also
considered synchronous [7]. In this paper we introduce sy
chronous programming paradigm via the notion ofmulticlock
dynamical systemsand illustrate it via the SIGNAL language.
Multiclock dynamical systems. Discrete time dynamical
systems of the generic form

xk = f(xk�1; uk�1)
yk = g(xk; uk)

(1)

are familiar to control engineers. Modeling larger systems re
quires combining systems of equations of the form (1). Whe
regarded globally, the result is generally an implicit or de
scriptor dynamical system. Therefore, the generic form (1
should be replaced by considering systems of equations
the generic implicit form :

1This work is or has been supported in part by the following projects
Eureka-SYNCHRON, Esprit R&D -SACRES (Esprit project EP 20897), Es
prit LTR-SYRF (Esprit project EP 22703).

2Irisa/Inria, Campus de Beaulieu, 35042 Rennes cedex, France ; co
resp. author email : Albert.Benveniste@irisa.fr , etc. See
http://www.irisa.fr/sigma2/benveniste/home.html and
http://www.irisa.fr/ep-atr/welcome.english.html
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whereC denotes a set of relations or constraints, andxj

denote the variables involved — we do not distinguish be
tween input, state, and output variables. Such abehavioral
approach has been advocated and extensively studied in t
linear system case in particular by Jan C. Willems [8]. Note
that a discrete event system can also be modeled in this wa
by resorting to discrete state variables to encode states.

When dealing with complex systems, however, it is not ac
ceptable to be bound to a single, global, time index “k”. Dif-
ferent subsystems or components of the system may ha
their own, local, natural pace. Sensors and actuators ha
their own sampling rates, and sampling is sometimes eve
irregular. System monitoring involves event detection an
event based reconfiguration. Therefore software componen
in charge of the reconfiguration are typically triggered by the
detected events.

Based on this remark, we need to allow, in dynamica
systems of the form (2), the use ofmultiple time indices
k1; : : : ; kL, and the numberL of these different “clocks”
may be very large indeed. Of course, some constraints ma
involve signals having different time indices, e.g., when
possibly event-based downsampling (i.e., filtering events
or upsampling (i.e., inserting new events) occurs. Handlin
time indices explicitly becomes rapidly cumbersome, and
instead provision for manipulating multiple clocks easily
needs to be provided. A simple idea consists in introducin
a special value, written? (pronounce “absent”) to refer to
absence. Therefore, for a signal(xk)k�0 in the usual sense,
two successive occurrencesxk andxk+1 can be separated
by an arbitrary but finite number of?’s. These?’s should
be regarded as wildcards to indicate that other signals ma
be present at a given instant while the considered one
not. Domains of variables are extended with this specia
value, and so are relations involving variables. By doing so
relations involving signals with different clocks are easily
considered. The following picture illustrates this concept.
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Each subsystem has its own activation clock (for instance,
clock representing the greatest set of instants at which there
at least one event in the subsystem), depicted by the differe
lightnings, and each different signal has its own clock. Thi
clearly requires mechanisms for data dependent up/dow
sampling. Some branches of the graph are not directed,
vealing the relational nature of the connections. system stru
ture applies inductively, in a hierarchical way.

The essence of synchronous programming.Based on the
above discussion, we feel the following features are indee
essential for characterizing this paradigm:

1. Programs progress via an infinite sequence ofreactions:
P = R!, whereR denotes the family of possible reac-
tions, and superscript:! denotes infinite concatenation
of reactions.

2. Within a reaction, decisions can be taken on the basis
theabsenceof some events.

3. When it is defined, parallel composition is always
given by taking the conjunction of associated reactions
P1kP2 = (R1 ^ R2)

!.

The SIGNAL environment. Based on this paradigm, the
SIGNAL language has been developed, with associated set
tools : the academic SIGNAL /SIGALI toolset (graphical edi-
tor, compiler, code generator, model checker, simulator) [9
and the commercial SILDEX tool [10]. Before giving for-
mally the semantics of SIGNAL let us just say that a SIG-
NAL program describes relations between flows of data an
events. The compiler transforms the program into a syste
of equations and then calculates the solutions of the sy
tem. The compilation of SIGNAL code provides a depen-
dence graph on which static correctness proofs can be d
rived: it automatically checks the network of dependencie
between data flows, and detects causal cycles, temporal
consistencies from the point of view of time indexes. SIG-
NAL automatically synthesizes the scheduling of operatio
involved inside a control loop (note that this work is often an
error-prone task when done by hand in classical C-like lan
guage), and this scheduling is proved to be correct from th
point of view of data dependencies. Further, the compile
synthesizes automaticallyglobal optimizationsof the depen-
dence graph, following different criteria. Then, according
to some formal transformations of the graph, the user ca
choose to generate eitherEmbedded codeor code dedicated
to simulation, or performance evaluation. At the same time
SIGALI , the model checker (also used for controller synthe
sis purposes) allows us to prove dynamical properties. A
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these functionalities are integrated in the SIGNAL environ-
ment, which is organized around the hierarchical synchro
nized data-flow graph. In that sense, the whole design pro
cess requires no manual transformation of models from on
tool to another. SIGNAL can then be seen as a fully integrated
environment. In this overview paper, we have decided to fo
cus on two topics to which our group has contributed signifi
cantly, namelycontroller synthesis,andsystems/architecture
design and distributed code generation.

2 The SIGNAL language

The SIGNAL language allows to specify multiclock dynam-
ical systems following a block-diagram style. Blocks rep-
resent dynamical systems, and can be connected togeth
to form higher blocks, and so on. Multiclock dynamical
systems involvesignalsand relate them together via opera-
tors. Signals are typed sequences (boolean, integer, real,. . . )
whose domain is augmented with the special symbol? to de-
note absence. In SIGNAL , symbol? is not handled explicitly
by the user, this prevents the user from manipulating explic
itly time indices. SIGNAL has a small number of primitive
constructs, listed below1.

syntax description
Z := X op Y Z� 6= ? , X� 6= ? , Y� 6= ?

8k : Zk = op(Xk; Yk)

Y := X$1 (delay) X� 6= ?, Y� 6= ?
8k : Yk = Xk�1

X := U when B X� = U� whenB� = true
otherwiseX� = ?

X := U default V X� = U� whenU� 6= ?
otherwiseX� = V�

(|P|Q|) composeP andQ

In this table, subscriptX� denotes the occurrence of signalX

at an arbitrary instant� . Note that the first two statements are
single-clocked,as all signals involved must have the same
clock. In these first two statements, integerk indexes the
instants at which the above mentioned signals arepresent,
and “op” denotes a generic operation+;�; : : : pointwisely
extended to sequences. Note that index “k” is not mentioned
explicitly in the syntax but is rather handled implicitly. In
the third statement,B is a boolean signal andtruedenotes the
value “true”. In the last statement,P,Q denote programs (i.e.,
blocks, subsystems) and(|P|Q|) is their composition.

The first two statements set constraints on the clocks of th
involved signals. Using this feature, arbitrary constraints ca
be expressed as follows : pick a boolean-valued expressio
C(X,Y,Z) involving three signals with identical clocks. Set
B := C(X,Y,Z) and write statementB := B when B .
The last statement expresses thatB on the one hand, and
B when Bon the other hand, should be equal. But the latte
selects those occurrences ofB whereB takes the valuetrue.

1 We list only primitive statements. The actual syntax involves derived
operators, in particular for handling constraints on clocks.
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Therefore the program

(| B := C(X,Y,Z) | B := B when B |)

states that eitherX,Y,Z are all absent, or condition
C(X,Y,Z) is satisfied.

3 Controller synthesis

Controller synthesis consists in automatically synthesizing
controller from a partial specification (the “plant”) togethe
with control objectives. Running the controller in paralle
with the plant yields the desired reactive system. In th
section we discuss controller synthesis in the framework
SIGNAL . We here restrict ourselves to multiclock dynamica
systems involving only boolean andclocks(i.e., pure signals
with domainftrue;?g). Such SIGNAL programs are equiva-
lent to arbitrary finite state machines. Controller synthesis
conveniently performed by embedding SIGNAL into dynam-
ical systems over the finite fieldZ=3Z= f�1; 0;+1g with
special rules1 + 1 = �1, and�1� 1 = +1. The following
coding is usedtrue 7! +1 ; false 7! �1 ; ? 7! 0 : Using
this coding, SIGNAL primitives translate as follows :

B := not A b = �a

C := A and B
c = ab(ab� a� b� 1)
a2 = b2

C := A or B
c = ab(1� a� b� ab)
a2 = b2

B := A $1 (init b0)
x0 = a+ (1� a2)x
b = a2x
x0 = b0

C := A when B c = a(�b� b2)

C := A default B c = a+ (1� a2)b

In this table,x; x0 denote auxiliary current and next state vari
ables, these are needed to encode the delay operator.
SIGNAL specification can then be translated into a set
equations called polynomial dynamical system (PDS) of the
form :

S =

8<
:

X 0 = P (X;Y; U)
0 = Q(X;Y; U)
0 = Q0(X)

(3)

where X;Y; U;X 0 are vectors of variables inZ=3Zand
dim(X) = dim(X 0) = n. The components of the vectors
X andX 0 represent the current and next states of the sy
tem and are calledstate variables. They originate from the
translation of the delay operator.Y is a vector of variables
in Z=3Z, calleduncontrollable event variables, whereasU is
a vector ofcontrollable event variables.The first equation
is thestate transition equation; the second equation is called
theconstraint equationand specifies which event may occu
in a given state; the last equation gives the initial states. T
behavior of such aPDS is the following: at each instantt,
given a statext and an admissibleyt, we can choose someut
which is admissible, i.e., such thatQ(xt; yt; ut) = 0. In this
case, the system evolves into statext+1 = P (xt; yt; ut).
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3.1 Control synthesis problem
Given aPDSS, as defined by (3) a controller is defined by a
system of two equationsC(X;Y; U) = 0 andC0(X) = 0,
where the latter equationC0(X) = 0 determines initial states
satisfying the control objectives and the former describes
how to choose the instantaneous controls; when the con
trolled system is in statex, and an eventy occurs, any valueu
such thatQ(x; y; u) = 0 andC(x; y; u) = 0 can be chosen.
The behavior of the systemS composed with the controller
is then modeled by:

Sc =

8<
:

X 0 = P (X;Y; U)
0 = Q(X;Y; U) = C(X; Y;U)
0 = Q0(X) = C0(X)

(4)

Using algebraic methods, avoiding state space enumeratio
we can compute controllers(C;C0) which ensure:

� the invarianceof a set of states (S Invariance() ),
the reachability of a set of states from the initial
states of the system (S Reachability() ), the at-
tractivity of a set of statesE from a set of statesF
(S Attractivity() ) [12],

� the minimally restrictive control(choice of a control
such that the system evolves, at the next instant, into
a state where the maximum number of uncontrollable
events is admissible (S Free Max() )) [12], as well as
thestabilization of a system(S Stab() )) [11].

3.2 Integration in the SIGNAL environment
We sketch how the controller synthesis methodology has
been integrated in the SIGNAL environment. To simplify the
use of the tool, the same language is now used to specify th
physical model of the system and the control objectives (as
well as the verification objectives). We have developed a too
allowing the controller synthesis as well as the visualization
of the result by interactive simulation of the controlled
system, see next figure. In the first stage, the user specifie
the physical model and the control objectives in SIGNAL .
The second stage is performed by the SIGNAL compiler
which translates the initial SIGNAL program into aPDS and
the control objectives in terms of polynomial relations and
operations. The controller is then synthesized, using SIGALI .
In the third stage, the obtained controller is included in the
original SIGNAL program in order to perform simulation.
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First phase: Specification
Second phase: Controller synthesis 

Third phase: Simulation 

System

First phase: Specification of the model. The physical
model is first specified in the language SIGNAL . It describes
the global behavior of the system. In the same stage we spe
ify a process, that describes all the properties that must b
86
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enforced on the system. Properties to be checked as well
the control objectives to be synthesized, can be expressed
rectly in the SIGNAL program. The syntax is shown below :

(| Sigali(Control_Objective(PROP)) |)
The keyword Sigali means that the subexpression
has to be evaluated by SIGALI . The function Con-
trol Objective means that SIGALI has to compute a
controller according to the booleanPROP, which can be seen
as a set of states in the correspondingPDSin order to ensure
the control objective for the controlled system (it could b
one of the control objectives presented in section 3.1). Th
overall SIGNAL program is obtained by composing the two
processes.

Second phase: Controller Synthesis.To perform the com-
putation of the controller with regard to the different contro
objectives, the SIGNAL compiler produces a file which con-
tains thePDS resulting from the abstraction of the complete
SIGNAL program and the algebraic control (as well as ve
ification) objectives. We thus obtain a file that can be rea
by SIGALI . Suppose that we must enforce, in a SIGNAL pro-
gram named “system.SIG” the invariance of the set of stat
where the booleanPROPis true. The corresponding SIGNAL

program is :

(| (| system{} (physical specified in Signal) |)
| PROP : definition of the boolean PROP in Signal
| Sigali(S_Invariance(True(PROP)) |)

The corresponding SIGALI file, obtained after the compila-
tion of the global SIGNAL program, is the following :
read(‘‘system.z3z’’); => loading of the PDS ‘‘S’’
Set_States: True(PROP) => states where PROP is true
S_c: S_Invariance(S,Set_States) => Synthesize the
controller ensuring the invariance of Set_States

The file “system.z3z” is thePDS that represents the ini-
tial system. ThePROP signal becomes a polynomial
Set States expressed by state variables and events, whic
is equal to 0 whenPROPis true. The last line of the file con-
sists in synthesizing a controller which ensures the inva
ance of the set of states where the polynomialSet States
takes the value 0. This file is then interpreted by SIGALI that
checks the verification objective and computes the controlle
The result of the controller synthesis is a polynomial whic
is represented by a BDD (Binary Decision Diagram) whic
is saved in a file and used to perform simulation.

Third phase: simulating the result. To obtain a simulation
that allows to visualize the new behavior of the controlle
system, the controller is automatically integrated in the in
tial SIGNAL program through an algebraic equation resolve
written both in SIGNAL andC++ (some generic processes
for simulation can be added at this stage). The reader is
ferred to [12] for examples and additional details on the im
plementation.

4 Systems/architecture design

When moving from the SIGNAL specification based on the
ideal model of synchrony, to the real embedded code for e
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ecution, we are faced with the following difficulties :

1. Referring to the table of section 2, we see that SIGNAL

handles implicit (or descriptor) type of systems. In-
deed, generating executable code from descriptor typ
of specification is a difficult task. We shall outline our
approach for this problem. For details, the reader is re
ferred to [13].

2. The ideal model of synchrony, as summarized at the en
of section 1, does not comply with the actual behavior
of distributed control systems, in which some kind of
asynchrony is expected. We shall outline atheory of
desynchronizationas a possible solution for this issue.
The reader is referred to [13] for details.

4.1 From implicit specifications to executable code :
causality analysis
Unlike behavioral theory forlinear dynamical systems as ex-
tensively studied by Jan C. Willems, moving from implicit
specifications to an executable equivalent form is undecid
able for multiclock dynamical systems in general. We shal
therefore follow an approach akin to so-called “abstract in
terpretation”, in which anapproximatesolution is searched
for, that applies to all cases. The idea is that

1. we shall fully handle equations of multiclock dynamical
systems involving booleans or clocks, whereas,

2. we shall replace statements of the formZ := X op Y
by their following “approximation”

(| Z ˆ= X ˆ= Y %clocks must be equal
| (X,Y) --> Z %causality constraint |)

The first statement is just the SIGNAL syntax to express
the equality of the clocks ofX,Y,Z . The second state-
ment is a new SIGNAL primitive. Its general form is
(X,Y) --> Z when B which states that,whenZ is
present andB is true,Z cannot be produced prior to the
pair X,Y .

This abstraction is systematically applied using the causalit
rules of table 1, until a fixpoint is reached (this requires a
most two steps).

statement: P causality: caus(P)
Z := X op Y (X,Y) --> Z
Y := X$n (n-delay)

X := U when B
(|B --> X

|U --> X when B|)

X := U default V
(|U --> X when ˆU|)

|V --> X when ˆV ˆ- ˆU |)
X --> Y when B B --> Y
(|P|Q|) (|caus(P)|caus(Q)|)

Table 1: Causality analysis ofSIGNAL programs

In this table, keyword ˆU denotes the clock ofU, i.e., the
pure signal which is present exactly whenU is present.̂Vˆ-
ˆU denotes the clock representing the instants at whichV is
present andU is absent. Note that no causality results from
the delay operator, since computing the next state is alway
7
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explicit, see (3). The causality ruleˆX-->X is also applied
for every signalXUsing this technique, any SIGNAL program
is abstracted into the following generic form, compare wit
(3) :

Sabst =

8<
:

X 0 = P (X;Y; U)
0 = Qb(X;Y; U) ; G(X;Y; U)
0 = Qb;0(X) ; G0(X)

(5)

In (5), constraint0 = Q(X;Y; U) has been decomposed into
its boolean, solvable, part0 = Qb(X;Y; U), plus a system of
causality constraintsG(X;Y; U) involving statements of the
form X --> Y when B . And There is a similar decom-
position for the initial condition. The key remark is that sys
tem (5) is now offinite nature, and therefore it can be trans
formed into an input/output form for execution. Note tha
“solving” (5) is more involved than just handling finite state
machines, due to its hybrid nature, mixing together automa
and graphs labelled by predicates. Solving for the graph p
consists of constructing a partial order compatible with th
set of causality constraints of the formX --> Y when B .

A variation of this technique is implemented in the SIG-
NAL compiler. Note that, besides serving for causality anal
sis, statementX --> Y when B can serve for other pur-
poses. In particular, it can be used simply to enforce
scheduling constraint betweenX and Y. Therefore,sched-
ulers can also be formally handled usingSIGNAL : they can
be specified, and further composed. This is a key advanta
in architecture modeling [13].

4.2 From synchronous specification to asynchronous,
distributed architectures
Referring to the ideal model of synchrony, as summarize
at the end of section 1, we can use token based datafl
networks to model asynchronous, distributed executions, s
[2]. In this model, no global clock is available, and ab
sence cannot be sensed. Therefore it is tempting to substit
SIGNAL primitive synchronous statements by correspondin
dataflow actors. This is shown in table 2.
The diagrams read as follows : the diagrams on the left sho
the enabling condition, and the corresponding diagrams
the right depict the result of the firing. When several lines a
shown for the same statement, they correspond to differe
cases, depending on the enabling condition. The idea is t
each SIGNAL statement would be replaced by its associate
dataflow actor, and thus a SIGNAL program would result in a
token based dataflow network. This does not work proper
as we discuss next.

The first two statements translate exactly into the acto
shown in the right column. Each actor consumes one tok
on each input and produces one token on its outputs. The
lay is modeled by the presence of an initial token inside th
actor.
For thewhen statement, we propose the corresponding a
tor on the right column. For the boolean guardB, the black
patch indicates atruevalue for the token, while a white patch
indicates afalse. When the boolean guard has atrue token,
328
t

a,
rt

e

-

a

ge

d
w

ee

ute
g

w
n

e
nt
at
d

ly

rs
n
e-
e

-

SIGNAL statement analogous asynch. actor

Z := X op Y s
s

s

-

-
-

-

-
-X

Y Z

Y := X$1 (1-delay) ssss --- -X Y

X := U when B

ss
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-
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-
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X := U default V
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-

-

-
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-
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-
-

-
-
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*V

-
-

��
X

-

U
B

V
U
B

X

s

c

s

Table 2: From SIGNAL statements to dataflow actors.

the U token passes the “gate”, whereas it is lost when the
boolean guard has afalsetoken. This performs data depen-
dent downsampling. This actor isnot equivalent towhen
statement, however. Thewhen statement does not set any
clock constraint on its inputs, while the shown actor requires
equality of its input clocks (there are as many tokens on bot
input channels). This is why we name it an “analogous” ac
tor, not an equivalent one. The same problem arises with th
default statement.
However, we can emulate thewhen statement by the follow-
ing means, for the particular case where we know thatU is
less frequent thanB, see figure 1.

-

-

-

-

-

-

-

?

-

-

-

-

- -

-

-

-

-

when

synch
and

default

default

V
U

W

B

when
X

W
V
U
C

W
B

X

C

H

Figure 1: A correct translation of thewhen.

Here we use four actors. Thewhen anddefault actors are
specified in the above table. Thesynch actor receives one
token at its inputH, and delivers one token at each of its two
boolean outputsB,C : this models thatB,C have the same
clock. Theand actor is the boolean “and”. Bothsynch and
and actors are single-clocked and memoryless, i.e., they ar
of the type listed in the first row of table 2. Thewhen actor
requiresB,W to have the same clock, and thedefault actor
requires thatU is less frequent thanW. This models thatU is
8
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less frequent thanB. Then it is easily verified thatU passes
the network exactly when 1/ it is present (i.e.,C is true), and
2/ B is true. A similar but more complex solution can be
found for thewhen statement in the general case.

This work can be systematically performed, for each SIGNAL

primitive statement. Note that this translation requires intro
ducing additional signalling and operators. This overhea
is required to maintain the semantics when no global cloc
is available to define the successive reactions. Clearly, th
naive method would result in an unacceptable overhead and
not applicable. However, this method can be applied instea
to the overall program, using a powerful symbolic analysis o
the clocking of this program. This results in a minimum over-
head in terms of additional signalling and operators neede
For a formal theory supporting this technique, the reader i
referred to [13, 14]. This approach can be seen as a way
systematically synthesize the needed protocols to mainta
the program semantics when a distributed implementation
performed, using an asynchronous communication archite
ture. It is implemented in the SIGNAL Inria compiler [9] as
well as in the commercial SILDEX tool [10].

4.3 Code profiling
Finally, we briefly mention our approach to code profiling,
to evaluate, e.g., performance. Given an implementationQ

of a program and a model of time consumption for each o
the atomic actions inQ, we automatically generate a pro-
gramT (Q) homomorphic toQ; T (Q) is the parallel compo-
sition of the imagesT (Qi) of the subcomponentsQi (includ-
ing communications) ofQ. T (Qi) are given by the user as
SIGNAL components whose interfaces are composed of inte
ger flowsT (x) instead of the original flowsx. For example,
T (x) can be used to represent the sequence of the availab
ity dates for the occurrences of the original flowx. T (Q)
is thus a model of real time consumption of the application
(functional specification and architectural support), that ca
be simulated. This can give directly access to the maximum
time necessary to perform a computation cycle [15]. Som
other real time properties to be satisfied can also be describ
as predicates in SIGNAL . Then some of these properties can
be checked by using verification tools.

5 Usage
In this section we summarize the tools available and
their use. For further information, the reader is referred
to http://www.irisa.fr/sigma2/benveniste/home.html and
http://www.irisa.fr/ep-atr/welcome.english.html.

The academicSIGNAL /SIGALI environment. A new re-
lease of the SIGNAL /SIGALI toolset, named POLYCHRONY,
is to be ftp available by autumn 2001. For the current version
contactleguernic@irisa.fr. The SIGNAL team has tight co-
operations with other french groups working on synchronou
languages (ESTEREL, LUSTRE). It has a long ongoing coop-
eration with the company TNI, Brest, France, which market
the SILDEX tool. It has or had significant cooperations with
industrials in the framework of direct contracts or europea
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projects (SACRES, and currently SAFEAIR). Major coopera-
tions were with EdF (Electricit´e de France) and Snecma (an
aircraft engine manufacturer).

The commercial SILDEX tool from TNI. The company
TNI, Brest, France, markets the SILDEX tool [10] for reac-
tive systems specification and validation, and sequential (C
Ada) and distributed code generation. SILDEX has a pow-
erful GUI allowing a mixed state-machine/dataflow style of
modelling.
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