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Hervé Marchand
�
, Olivier Boivineau

���
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Abstract
We are interested in a new class of optimal control problems
for Discrete Event Systems (DES). We adopt the formalism
of supervisory control theory [7] and model the system as a
finite state machine (FSM). Our control problem is character-
ized by the presence of uncontrollable as well as unobserv-
able events, the notion of occurrence and control costs for
events and a worst-case objective function. We first derive an
observer for the partially unobservable FSM, which allows us
to construct an approximation of the unobservable trajectory
costs. We define the performance measure on this observer
rather than on the original FSM itself. Further, we use the
algorithm of [8] to synthesize an optimal submachine of the
observer. This submachine leads to the desired supervisor for
the system.

1 Introduction and Motivation

We are interested in a new class of optimal control problems
for Discrete Event Systems (DES) [7]. The system to be
controlled is modeled as a finite state machine (FSM). Our
control problem follows the theory in [8] and is character-
ized by the presence of uncontrollable events, the notion of
occurrence and control costs for events and a worst-case ob-
jective function. However, compared to the work in [8] and
compared to [3, 6], we wish to take into account partial ob-
servability. Several concepts and properties of the supervi-
sory control problem under partial observation were studied
in [1, 4] among others. However, they only propose a quali-
tative theory for the control of DESs.

The starting point of our solution is a FSM which represents
the global behavior of a given system, including its unobserv-
able dynamics. The first step is the derivation of an observer
for the partially unobservable FSM, called a C-observer. This
step is necessary since unobservable events alone cannot trig-
ger a specific behavior of a controller. We define the perfor-
mance measure on the C-observer rather than on the original
FSM itself. However, we will make the necessary efforts to
keep track of the information that has disappeared with the
initial structure. This observer allows us to remember an ap-
proximation of the unobservable costs between two observ-
able events. This approximation corresponds to the worst,
i.e., the highest, cost of the different unobservable trajecto-

ries than can occur between two observable events. In the
second step, we use the theory in [8] to synthesize an optimal
controller corresponding to the optimal restricted behavior,
insofar as it is achievable by an admissible (i.e., physically
constructible) supervisor. We use back-propagation from the
goal state to generate the supervisor, based on event cost
functions. The supervisor is synthesized in a manner that
gives them optimal sub-structure, consistent with the notion
of DP-Optimality of [8].

2 Preliminaries

The system to be controlled is modeled as a FSM defined
by a 5-tuple ���
	���
���
�����
�����
���� , where � is the set of
events, � is the (finite) set of states, ��� is the initial state,��� is the unique marked state, and � is the partial transition
function defined on ���! "� . The behavior of the system
is described by the prefix-closed language #%$&�(' [2], gener-
ated by � . Similarly, the language #)��$*�+' corresponds to
the marked behavior of the FSM � , i.e., the set of trajecto-
ries of the system ending in ��� . Some of the events in �
are uncontrollable, i.e., their occurrence cannot be prevented
by a controller, while the others are controllable. Likewise,
control will be applied on a plant that is partially observable,
i.e. the supervisor will observe only a subset of the events
generated by plant � . Hence some of the events in � are
observable whereas the others will be unobservable. In this
regard, � can be partitioned as �,�-��.�/0�213. with ��.�4� 13. �65 and �7�8�:9)/;� 1 9 with �:9<4=� 1 9>�65?
 where � . ,� 13. , ��9 and � 1 9 represent the set of controllable, uncon-
trollable, observable and unobservable events, respectively.
Moreover, unobservable events are assumed to be uncon-
trollable, i.e., � 1 9A@,� 13. . In the sequel, we will only be
interested in trim FSMs, i.e., FSMs for which all states of� are accessible from ��� and coaccessible to ��� [2]. We
say that FSM BC�D	��2E2
��FE2
�����E2
����(
���EG� is a submachine
of � , denoted BH@I� , if �:EJ@K��
��+EJ@I��
+LNMPO�:E2
� �"OQ�FEK��E�$* MN
� �R '� S�TU$*�� E:$* MN
� �R 'V�,�?$* MN
� �R '� '(The no-
tation ��E�$*MN
���'WS means that ��E�$*MN
���' is defined, i.e., there is
a transition labeled by event M out of state � in B ). We say
that B is a submachine of � at � whenever ����EX�Y��OV� andBQ@Y��Z For any �[O\� , we will use ]P$*��
��R'̂ �K_3Bà?B is
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a trim submachine of � with respect to ��� and �����	�
��� to
represent the set of trim submachines of � at � with respect
to � � . This set has a maximal element in the sense that the
maximal element contains all other elements as submachines.
It is denoted by 
���������� . In order to consider the control
problem under partial observation, we need to make sure that
the initial FSM � has no unobservable cycle. Otherwise it
would be impossible to alleviate the fact that it could make
the system run indefinitely in that cycle, without the super-
visor noticing. We then assume that � has no unobservable
cycles.

Finally, to take into account the numerical aspect of the op-
timal control problem, two cost values are associated to each
event of � . We introduce an occurrence cost function �����
����� � and a control cost function ��!"�#���$� �&%�' 0 ��()� .
Control costs are used to represent the fact that disabling a
transition possibly incurs a cost. The control cost function is
infinity for events in �+*,! . The cost functions are then used to
introduce a cost on the trajectories of a submachine of � .

3 The C-Observer with respect to �-*,.
The framework in which we develop our control theory is
that of partially observable FSMs. The supervisor that will
be generated should be able to take decisions based on the
states and/or events that it observes. Consequently, we base
our model upon a partially observed system, seen through
an observer. However, in order to take into account unob-
servable events in the optimality under which we apply our
control, we must keep track of their costs. The idea is to col-
lect an approximation of the costs between two observable
events in the states of the observer we want to build. For ex-
ample, consider two states / and � of � , connected by (at
least) a trace of the form 021435�+.6�"7*,. . As we only observe
the first event, it is not be possible to know which trajectory
has been taken between these two states. Hence, from an op-
timal control point of view, we have to consider that the plant
evolves through the trajectory with the highest cost (there is
no way to control the system in such a way that this trajectory
is not taken). In order to collect these costs, we build a deter-
ministic observer, named C-observer (Observer with Costs),
and define the notion of a macro-state, allowing both to mask
the underlying nondeterminism by abstracting away from the
nondeterministic submachine and to keep track of the unob-
servable event costs of trajectories between two states. The
C-observer constitutes the basic model on which the optimal
control will be applied.

Before giving formally the definition of the C-observer, de-
noted by �8! , we need to check the original FSM � in order
to account for unobservable events that may lead to ��� in � .
Indeed, if an unobservable event leads to ��� in � , it may be
impossible to determine whether or not the system has actu-
ally reached � � . We therefore update � by adding a self-loop
at ��� , labeled 9 with :;�<9+�����=�-�>��� . The 9 event is just an
(observable) indicator event (e.g. a sensor) that signals that

��� has been reached. Without loss of generality, we can as-
sume it is controllable and has zero occurrence and control
costs.

3.1 The C-Observer definition
The new structure that we define is called a C-observer. It
is denoted by �8!=�@?A�+.��CBD�FEG�H�CEG�I�KJML , where �+. is the set
of observable events, B is the set of macro-states, E � is the
initial macro-state, EN� is the marked macro-state, and J is
the partial transition function defined over � 7.=O B$PG�$B .

Starting from � , the set B of macro-states of �8! will be con-
stituted of pairs in Q O � � . More specifically, the admissible
states that are considered are states that can be reached by a
trace of events constituted by an observable first event fol-
lowed by a sequence of unobservable events. In language
formalism, the latter trace should be in �+.6�"7*,. . We present
more formally the way the states of the system �8! are built.
First, we introduce the set of triples R defined by :

RS�T'#�U/V�C�#��02�-3DQ O Q O �+.+WYX;183&� 7*,. �V:Z��021[�</\�]�^�[�#_ (1)

A triple �U /`���#��02� belongs to set R if there is a trace between
/ and � whose first event is 0 and whose following events
are all unobservable. Note that more than one trace 1 could
verify this condition. We now define the set of traces that
verify the above conditions, for a given triple �U/̀ ���#��02� :

a � /V���#��0M�+3bRb�4cd�U/̀ ���#��02�e�f',1=3D� 7*,. Wg:Z��021[��/N�]�̂ �[�#_ (2)

Using (2), we can easily deduce the following property:

Property 1
a �U/`���#��0M�-34Rb�;h6cd�U/`���#��02�ghji^( .

Finally, we do not want to lose the cost of the unobservable
events that have been projected. To this effect we introduce
the notion of locally computed cost associated with a triple
�U/V�C�Z�C02� of R . Formally, it is given by a function, denoted by
��. , over Rk��� � , and defined by:

a �U/`���#��02�-3bRb�l��.H�U/`���#��02�e� mon�pqCrHs\t u,v wKv x,y � � �z1{� (3)

This way, we keep track of the worst unobservable trace that
could lead from / to � . Using the previous notations, � ! is a
FSM, defined as follows:

Definition 1 Given an FSM � , the associated C-observer
�8! is given by a tuple ?A�".,�CBD�CE|���CEG�I��JML . It is an FSM whose
elements are defined as follows:

1. B is the set of macro-states. E}3~B is defined by a set
of pairs ���#�C���"3lQ O � � , called micro-states;

2. The final macro-state is defined by EG�T�f'#�����I�C���K� and
the initial macro-state E � as :

EG���f'#���#��� w ���$X;1=3D� 7*,. �C:Z�z1[�����,����� and
� w � mon,p� ��������{���[� � �A�����`��� � � �<�C�K�
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3. ������� and ���	��
���
 define

������
�����������
�����������! #"$�&%'
��(�)���*
+%'
��,�+��-.����
�%'
��,���0/21'3
������ �4� basically constitutes the set of states of 5 that
can be reached via a trace �,
768 � (from a micro-state
of x), together with the associated approximation of the
unobservable trace cost.

4. The transition function 9 is recursively defined by:

�����:�;�4�	�<
���
�9��&�4
+���! ="$�&%'
��(>(����?2@ ��A B&CEDGF � � �� �����H
�(>I KJ2L�MON F)P @ �QA >�A � D �ER��TSQ��1
Hence, if there exists different micro-states of the form
�&%'
E3 � in 9��&�4
+��� , then we only consider the pair with the
maximal cost.

5. We only build the accessible part of the system (i.e. the
states ���:� that are reachable from �VU by 9 ).

The way 5.B is built masks the nondeterministic nature of the
projected FSM. �WU is computed from the unobservable reach
of �&%(UX
�YZ� . �W[ is a single marked state, namely, "$�&%([\
�YZ��1 . Fi-
nally, 9 can be constructed recursively from the initial state.
Indeed, we can construct the set of states of 5 B using point
(2) and then point (3) and (4) of Definition 1 recursively.
Note that due to Property 1, the recursion terminates. The
structure that we obtain is another deterministic FSM, whose
events are taken in 
�� . States of 5.B are macro-states with re-
spect to 5 . However, we have computed and kept a local cost
to avoid losing track of the costs of the unobservable events
that have disappeared from the structure.

Lemma 1 [5] Let �K�]�_̂ "̀Q�W[.1 be a state of 5.B , and let
�&%'
��E>(���:� be a micro-state of � . We can state that

�baQ� either c$�d��
���
�c$%�e,��fg
�h$�&�4
�%��! i%�e and, in this case,
c'� e ���<
 s.t. 9��&�4
+���! K� e 
 and �&% e 
E3 �j�:� e

�TkZ� or c$�l�m
 8 � and c$% e �nf s.t. h$�&�4
�%��I o% e and, in this
case, c��&% e 
E3 ���:� .

Moreover, �p�&%'
+�E>(�j��� , cOSq��
 68 � 
���
�h$�TSZ
�%��Hr .
What the above lemma states is that whatever the state �
that can be reached during the execution of the plant, there
eventually exists a way out of this state (either directly via
an observable event or by an unobservable trajectory which
reaches a micro-state of � having the previous property.
Next, we state that the C-observer realized from 5 inherits
properties of 5 .

Proposition 1 [5] 5.B is non-blocking.

3.2 Extented notion of Controllability
In this section, we formalize the method used (by a supervi-
sor) to generate a submachine from a C-observer.
Submachines of a C-observer. We wish to apply some

control to the original system in order to verify a certain per-
formance criterion. In other words, we wish to reduce the
system 5.B , and therefore 5 , to a particular behavior. This

leads us to define the notion of a submachine of 5.B . In fact,
even if the worlds in which they are defined (for 5 and 5.B )
are different, the notion of submachine is the same as the one
given in Section 2 (i.e. a submachine of 5.B is any structure
that has its states in those of 5.B , the same initial state and
final state and its events and transitions in those of 5.B ).
Moreover, we are only interested in complete behavior, i.e.
we wish to obtain a controlled system that reaches the state
��[ and therefore the state %E[ . Hence, we wish to consider
the submachine of 5.B that have this property. Hence the no-
tion of 5 -live submachines.

Definition 2 Let 5.B! osG
���
+�<
b�WU)
+�W[\
�94t be the C-observer
associated with 5u vsG
�
�fg
�%HUZ
�%E[q
�h�t . A submachine wx 
sG
���
+�2y\
b�VUEA yq
+�W[z
�9�y{t of 5qB is said to be 5 -live if the fol-
lowing condition holds:

�4�Wy|���2yl}I"~�W[.1'
,���&%'
��(>H������y\
�c��&% e 
��E>��G�j�:��yKSZ3 �H3
"'� cOS.��
 68 � 
�h$�TSZ
�%��p �% e��X� � c$�d��9�yz���Wy��H
�h$�&�4
+% e �Hr � 1'3

A submachine w of 5.B is 5 -live whenever any micro-state of
� y has a transition that is either an observable transition for
the initial FSM 5 , or an unobservable transition that leads to
another micro-state of ��y from which there is a possibility of
exiting the macro-state (except for the marked state). Quite
naturally, using Lemma 1, we can state that :

Proposition 2 [5] If 5.B is the C-observer associated with 5 ,
then 5.B is 5 -live.

Controllability in this framework. The structure on
which control will be applied is FSM 5.B . We first have
to adapt the classical definition of controllability introduced
by [7]. Indeed, even if the control policy remains the same
(we do not want to disable uncontrollable events), we have
to take care of the fact that, by removing controllable transi-
tions, the obtained submachine of 5 inherits some properties
of the initial FSM  �5.B . Hence the new definition of con-
trollability:

Definition 3 Let 5 B  sG
 � 
+�<
+� U 
b� [ 
�9�t be the C-
observer associated with 5� �sG
�
�fg
�%HUZ
�%E[q
�h�t . w  
sG
���
+�2yq
+�VUEA yq
+�W[z
�9�y{t is said to be a controllable subma-
chine of 5.B if the following conditions hold:

1. ���Wy����gy that can be reached via a trace of �{��w	�H

�4�d��
 8 B*�:
���
<9��&�4
+�Wy��HrX��9�yz�&�4
b��y��Hr�


2. w is 5 -live.

Condition (1) imposes that any transition that needs to be dis-
abled in 5.B to generate w needs to be controllable. Condi-
tion (2) imposes that no submachine of a C-observer presents
any deadlocks or livelocks. This condition imposes that any
micro-state of a state �Wy must have an active outgoing trace
(in the original FSM from which 5.B was derived) that is ei-
ther unobservable (thereby leading to another micro-state of
� y and eventually leading to a state from which there is an
observable outgoing event) or observable (thereby leading to
another macro-state of w ).
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The supervisor. Now that we have the definition of a con-
trollable submachine of a C-observer, it is interesting to de-
termine how such a submachine can be obtained via a super-
visor acting upon ��� . However, control cannot be blindly
performed. Disabling an event that was admissible in a
state � of ��� can induce a deadlock in the initial FSM � .
Hence, we introduce the notion of Admissible Control Ac-
tions (ACA).
Definition 4 Let �������	��

���������
����������� be the C-observer
associated with �����	������� �!�"� �#��� $%� . We define the set of
Admissible Control Actions (ACA) at state �'&(� as a func-
tion :
)+* �-,/.'01���/��2435�6��798#:�&;�<�>=?35�A@B� 798�CB:D&E��F"G HIG
,KJ =LF�&'�NMO 
 �>$K3BF"� �%:P�1� @RQ6S J =LTU&'�V3W�X:+YP.V�+$L3WT�� � @ :!Z Q5[

More precisely,
)+*

gives, for a state � of ��� all the possible
sets of controllable events that can be disabled without risk
of deadlock. In other words, given a state � of ��� and a given
. in

)+*
, if T belongs to . , it means that T can be disabled be-

cause there actually exists at least one trajectory F\&'� MO 
 that
leads the system in another micro-state of � @ for which there
exists an observable event T @ that makes the system leave the
macro-state � and eventually reach a state � @ �]�V3^�<��T @ : of
��� .
Using Definition 4, a supervisor of �_� is defined by:
Definition 5 Let � � be the C-observer associated with �
and `a��3 )+* : *%b"c be the set of admissible control actions,
then a supervisor d is a function given by :

dfe%� g h
i�j
� kg .�& ) * (4)

In other words, a supervisor of ��� is obtained by choosing a
particular . in a state � . By definition, the control action will
always belongs to �N� , which ensures that d never disables an
uncontrollable event.

Conceptually, the supervisor controlling the plant � is placed
in feedback with � and � � . Only the observable events can
be seen by d . Therefore ��� plays the role of an observer that
will somehow rebuild a part of the state in which the system
has evolved. According to this information, the supervisor
determines whether the observation corresponds to a (con-
ditionally) controllable event and if it has to enable/disable
this event in order to keep the closed loop system behaving
“desirably”.

To conclude this section, let us remark that Definition 5 is
consistent with the definition of a controllable submachine
of the C-observer ��� . This is summarized by the following
proposition:
Proposition 3 l-0m��� is a controllable submachine of ���
if and only if there exists a supervisor d , such that 2���no&
�pn��>�Anq3W��n\:4�r�V3W��ns:>Y%dt3W��ns:!G

4 Optimal Supervisory Control Problem
The aim of optimal control is to study the behavioral proper-
ties of a system, to take advantage of a particular structure,

and to generate a controller which constrains the system to
a desired behavior according to quantitative and qualitative
aspects [3, 6, 8]. This is performed by the addition of quan-
titative measures in the form of occurrence and control cost
functions, to capture the fact that some legal behaviors are
better than others.

4.1 Transformation of ���
We first need to transform the C-observer, in order to exactly
fit within the framework developed by [8]. Indeed, unlike
in the case of total observability where costs are defined in
events only, we have incorporated cost information in the
macro-states of the ��� . These costs were attached to the
states in order to keep track of the unobservable cost of the
trajectory between two macro-states (see Section 3.1). Basi-
cally, the transformation we will perform on ��� , consists in
“shifting” the cost of the macro-state to the events that can
be executed in this macro-state. For a given � , and a given
T admissible in � , we consider the worst cost of the pairs
35�6� 798#:t&(� such that T belongs to the active event set of � in
� . The transformation is performed as follows: let �1&u�
and let �V3W�X: be the set of events that ��� can execute in � . For
each Tv&E�V3W�X: , we rename T as T * and we attach to this new
event the cost 7#w%35T * : defined by :

7#w%35T * :P� x�y%z{^|
}�~ �#�>���X}��"{^�L}�|/� � ,�798 [�� 79wA35T?: (5)

The controllability status of the event as well as the control
cost of the events do not change (namely, we have 79�935T * :D�
79�/35T?: ). Call � @ 
 the new set of event. The transition function
� remains the same (i.e. �V3W�+� T * : is defined and equal to � @
whenever � @ �r�V3W�+� T�: ).
The new C-observer � @ � we obtain is still a FSM. It is defined
by �	� @ 
 ���������"���X�_����� . Compared to ��� , the global struc-
ture of � @ � does not change. The only difference is that we
change the original alphabet of ��� in such a way that costs
are now defined on events only, as carried out in [8]. From
now on, � @ � is a deterministic and trim FSM. To each event
is attached two values, which respectively correspond to its
event and control costs. The only difference with [8] lies
in the notion of controllability that, in our framework, takes
into account the notion of liveness of the underlying system
� . However, this does not affect the use of the theory of [8]
to compute the optimal supervisor of ��� , and therefore the
optimal supervisor of � . Indeed, as in our case, the theory is
based on the notion of acceptable control actions that have to
be computed at first. In [8], a control action in a state � is ad-
missible whenever it does not disable uncontrollable events
and it does not produce local deadlock (i.e. no output event.)

4.2 Trajectory costs of a submachine of � @ �
In order to be able to discuss optimality, we now explain how
to compute the cost of a trajectory of � @ � .
Control cost function over the states. In order to model
this particular aspect, let us define the control cost of an event
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according to a state. We first introduce ���������
	���
������������������������ as the set of disabled events at state � for the system
to remain in submachine 	 of ��� . Whereas in [8] the control
cost function was defined on an event, in the case of partial
observation, it is defined on a state as follows: considering a
submachine 	 of ��� , we have

!  �� ���
	��"
 #%$
if �����&	'�(���*)+-,�./10 ��243�5768�:9 .<;4=  �&> � � otherwise (6)

The cost of a state � is equal to
$

whenever there does not
exist a particular control policy ? +@,�. that restricts the be-
havior of � �  to 	 (i.e. when an uncontrollable event has been
removed or when a controllable event has been removed, then
inducing a deadlock).

Cost of a trajectory and of a submachine of � �  . We are
now ready to define the cost of a trajectory A of a submachine	 as well as the objective cost function of a submachine 	
of � �  .
Definition 6 Let 	B
DCE�:�F��(GH�I�(�KJ�9 �L�(�NMO9 �L�P�Q�*R be a sub-
machine of �S� derived from � and TUMV�&	�� be the marked
language generated by 	 , then

1. for all W in 	 and trajectory AH
X> �Y<Z[Z8Z > �\ , ]�^P�7_H`a^*`b �
>��c + �:�F such that ���L��W��PA�� exists, the cost of A is
given by :

!:d ��W��(	'�PA���
 \e
c[f Y =7g �&> c ��h

\e
c[f J

!  �i���L��W��QjkAlj c �k�
	m�k� (7)

where j�Alj c denotes the prefix of A of length ^ ,
2. the objective cost function denoted by

!�n�o�p �&	�� is given
by:

!�n�o�p �&	m��
 q(rtsu 24vtw�68� ; � !:d ���KJ��
	'�
A��(� (8)

The cost of a trajectory is the sum of the occurrence costs of
the events composing it, to which is added the cost of con-
trolling events on the way to remain in machine 	 . If an
uncontrollable event is disabled, the cost of a trajectory be-
comes infinite because of the second term of (7). Finally,!�n�o�p �&	�� represents the worst case behavior that is possible
in submachine 	 . The next lemma characterizes the interac-
tion of event and control costs:

Lemma 2 [5] Let 	 Yyx 	Vz +|{ �&� �  <�}��� and A + T:M��&	 Y � ,
then

!:d �����
	 Y �PA���~ !:d �����
	�z4�PA�� Z
This lemma states that the cost associated with a trajectory
admissible in a machine is lower than the cost of the same
trajectory generated by one of its submachines. The purpose
of “contracting a submachine” is to remove trajectories with
high event costs. However this process is accompanied by
rising control costs, hence the optimization problem we now
define.

4.3 The optimization problem
We are only interested in machines that achieve a task (we
only consider plants having a behavior which terminates at a
marked state). Among all the trim and controllable subma-
chines of ��� , since we want to deal with optimal solutions,
we want to extract the submachines that have a minimal ob-
jective cost function.

The optimal submachines of ��� . Considering the trim
hypothesis, we denote { ��� �  �}��� as the set of trim subma-
chines of ��� starting at state � with respect to the unique
final state �NM and denote by ���&� � �(��� its maximal element
(see Section 2). We now define the optimization problem.

Definition 7 ]�� + Gm�(	 F +�{ �&��� 7�(��� is an optimal sub-
machine of the FSM ��� if!�n�o�p �&	 F ��
 �V�8���24��68����
9 .<; !�n�o�p �&	m��� $ Z
The cost

!�n�o�p �&	 F � of 	 F represents the minimum worst
case cost incurred to reach � M from � J when the behavior
of ��� is restricted to a submachine of it. As some events
in some states are not controllable (which induces an infinite
cost), optimality is met when there is no other control policy
with lower worst-case cost that allows to reach the marked
state �NM certainly. At a lower level (in the world of � ),
the control policy induced by submachine 	 F corresponds
to the one with lower worst-case cost, knowing that � could
evolve through unobservable trajectories with the worst pos-
sible cost. In general, there will exists several optimal sub-
machines for an FSM.

As in the case of total observation [8], the following lemma
is stated to note that optimal solutions lie within the class of
controllable submachines.

Lemma 3 [5] Let 	 +'{ �&�V�}��� . If
!�n�o�p �& 	���� $ then 	

is controllable.

From Lemma 3, uncontrollable submachines are not candi-
dates for optimality since the cost for restricting the system
to those submachines is infinite. The following theorem gives
necessary and sufficient conditions for the existence of opti-
mal submachines:

Theorem 1 [5] An optimal submachine of � �  exists if and
only if there exists a submachine 	 of ��� such that 	 is
trim, controllable, with no cycles.

Intuitively, this theorem states that an optimal solution ex-
ists when there are controllable submachines of ��� in which
there does not exist cycles. The controllability assump-
tion ensures that the cycles can be broken using controllable
events alone. The submachine that includes all the other op-
timal submachines will be called the maximal optimal sub-
machine and will be denoted by 	�� F .
The DP-optimal submachines of ��� . In general, the so-

lution to the Optimal Supervisory Control Problem is not
unique. Moreover, all the optimal solutions do not struc-
turally have optimal sub-solutions, which means that they do
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not satisfy the principle of Dynamic Programming. In fact,
in the previous section, optimality is obtained only regarding
the paths between the initial and final state and never the post-
fix paths between any state of the corresponding FSM and the
final state. In this section, we will show that whenever an op-
timal solution exists, a solution having optimal sub-structure
also exists. We call this latter type a DP-optimal solution (DP
stands for Dynamical Programming) and define it as follows :

Definition 8 A submachine ����� of ���� is DP-Optimal if it
is optimal and 	�
 �
��������� , ����� ����� 
 ��� is an optimal
submachine in ����� �� � 
 � � .
We have already seen that optimality actually exists when the
worst-case cost from the initial state 
� is to 
"! is finite once
minimized. DP-Optimality is obtained when any terminal
path from any state of a submachine to the goal state 
"! is
optimal in the previous sense.

If a particular DP-Optimal FSM includes all other DP-
Optimal FSMs as submachines of itself, then we call it
the maximal DP-Optimal submachine. The maximal DP-
Optimal submachine of a machine ���� at # w.r.t. 
 ! will
be denoted by �%$� ��� � �&� 
 �(' Note that all DP-Optimal subma-
chines are acyclic. The existence of a DP-Optimal subma-
chine of � � � is given by the following theorem (the proof can
be found in [8]).
Theorem 2 If an optimal submachine of � � � exists, then the
unique maximal DP-Optimal submachine �%$� ��� � � � 
" � of �
w.r.t. 
"! also exists.

The DP-Optimal algorithm. Consider a FSM � )*,+ �.-/� #0 � #&! �.132 with a unique initial state #0 , and a unique
marked state #&! and its corresponding transformed C-
observer � � � ) *,+ � $ �4�5� 
  � 
 ! �7682 . Then there exists an
algorithm [8], named DP-Opt, with a worst-case complex-
ity 9:�.; � ; <=; + $ ; >�?A@8�.; + $ ; �CB ; � ; DE; + $ ; � (Theorem 6.10 of [8]),
that constructs the desired maximal DP-Optimal submachine� $� ��� � � � 
� � of the FSM � � � w.r.t. 
� and 
"! . The algorithm
also returns the worst inevitable cost F(G HJI0K��L�%$� ��� � �&� 
  �4� . We
refer the reader to [8] for a complete description of DP-Opt.

4.4 The supervisor
The supervisor computation consists of different steps. Once
the C-observer � � derived from the initial FSM � is com-
puted, we first have to transform it into � � � by attaching the
cost induced by the unobservable trajectories to the events
in order to fit within the framework of [8] (see Section 4.1).
From this machine, using the algorithm of [8], we compute
(if it exists) the DP-Optimal solution �%$� ��� � �A� 
" � of � � � . At
this point, we disable in � � the corresponding sets of events
in
+ � $ and for all 
 �
� , we retrieve

+NM ��� � � 
 � , the set of dis-
abled event at state 
 for the system to remain in submachine� $� ��� � � 
  � of � � . Call 6 � the new transition function. It is
formally given by :6 �PO �RQ + $�S �
�T
 �.U8�WVS

X 6 �T
 �.UY� if it is defined and if U[Z� +NM ��� � � 
 �
undefined otherwise

Now, a supervisor \ of � � can be derived from �%$� ��� � � 
" �
by attaching to this FSM an output function ] that for a given
states 
 delivers the set of disabled events

+ M ��� � � 
 � . The su-
pervisor \^) *L+ $ �4�5� 
 $ � 
"! �.6 � � ] 2 will in fact be used for
two purposes. It first plays the role of an observer that is able
to rebuild part of the state in which the system has evolved.
Based on this information, \ sends back to the system the
set of events that have to be disabled in order to force the
closed loop system to eventually reach the marked state #&!
by minimizing the global cost of the trajectory.

5 Conclusion
In this paper, we have introduced a new type of optimal con-
trol for DESs by adding the notion of partial observation.
The system to be controlled is represented by an FSM �
with a unique marked state and some unobservable events.
The first step was the derivation of a C-observer � � from
the partially unobservable FSM, which allows us to remem-
ber an approximation of the unobservable trajectory costs.
We then presented a new definition of controllability derived
from the classical one introduced by [7], that allows us to
avoid the blocking of � without observing it. We then define
the performance measure on this observer rather than on the
FSM itself. In the second step, we first transform � � into� � � by shifting the cost of the macro-state to the events that
can be executed in this macro-state. We then use the algo-
rithm presented in [8] to synthesize an optimal submachine
of the C-observer, which leads to the desired supervisor for
the system. The behavior of the obtained controlled system
is optimal w.r.t.

+ $ , in the sense that � � carries on the best
approximation of the unobservable trajectories. Moreover it
is optimal for � � � and therefore for � � . This optimality status
is due to [8].
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