
DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL. PROC OF

WODES2000, PP 39-48, GHEN BELGIUM, AUGUST 2000.

SYMBOLIC ABSTRACTIONS OF
AUTOMATA

S. Pinchinat

H. Marchand
IRISA, INRIA Rennes, Campus univ. de Beaulieu F-35042 RENNES, France

pinchina@irisa.fr, hmarchan@irisa.fr

Keywords: Intensional transition systems, polynomials, symbolic bisimulations,
model reduction.

Abstract We describe the design of abstraction methods based on symbolic tech-
niques: classical abstraction by state fusion has been considered. We
present a general method to abstract automata on the basis of a state

fusion criterion, derived from e.g. equivalence relations (such as bisim-
ulation), partitions, ... We also introduce other kinds of abstraction,
falling into the category of abstraction by restriction: in particular,
we study the use of the controller synthesis methodology to achieve the
restriction synthesis.

1. INTRODUCTION

Although many algorithms offer a wide range of techniques to ana-
lyze behavioral properties of systems, the state explosion phenomenon
has caused their UN-usability of real systems. This observation has led
to many kinds of proposals, approaches called modular (Clarke et al.,
1989; Larsen, 1989; Clarke et al., 1994; Clarke and Kurshan, 1990), sym-
bolic (Burch et al., ; McMillan, 1993) ... on the one hand, and techniques
based on partial order reductions (Godefroid, 1990; Peled, 1994; Clarke
and Kurshan, 1990) or abstractions (Bensalem et al., 1998; Cousot and
Cousot, 2000) on the other hand. However, in many practical cases,
these methods are not sufficient enough to perform effective verification.
In this paper, we show that these techniques are not incompatible: we
consider a wide family of abstraction methods (those based on state
fusion) but in the symbolic philosophy, thus taking advantage of both
methodologies : given a symbolic system description and a state fusion
criterion (eg. an equivalence relation over states) also defined symboli-
cally, our algorithm delivers a symbolic description of the reduced sys-

1

2 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

tem. Moreover, we extend the approach for another kind of abstraction
relying on behavioral restriction for which symbolic controller synthesis
applies in a natural way.

2. INTENSIONAL LABELED TRANSITION SYSTEMS

Mathematical Framework: in the following, we write Z/pZ for the

finite field {0, 1, . . . , p−1}, with p prime. Let Z be a finite set of k distinct
variables Z1, ..., Zk . We denote by Z/pZ[Z] the set of polynomials over

variables Z1, ..., Zk which coefficients range over Z/pZ. We recall that

(Z/pZ[Z],+, ∗) is a ring. Given a polynomial P (Z) ∈ Z/pZ[Z], we

associate its set of solutions Sol(P) ⊆ (Z/pZ)k :

Sol(P)
def
= {(z1, ..., zk) ∈ (Z/pZ)k|P (z1, ..., zk) = 0} (1)

It is worthwhile noting that in Z/pZ[Z], Zp
1 − Z1, ..., Z

p
k
− Zk evaluate

to zero. Then for any P (Z) ∈ Z/pZ[Z], one for instance has Sol(P) =

Sol(P + (Zp
i − Zi)). We write P1 ≡ P2 whenever Sol(P1) = Sol(P2).

We then introduce the quotient ring of polynomial functions A[Z] =
Z/pZ[Z]/<Zp−Z>, where all polynomials Zp

i − Zi are identified to zero,

written for short Zp −Z. A[Z] can be regarded as the set of polynomial
functions with coefficients in Z/pZ for which the degree in each variable

is lower than (p − 1). It is also possible to define a representative of
Sol(P) (i.e. [P]≡), called the canonical generator. We now mention
some useful properties to manipulate polynomials, namely :

Property 1 For all polynomials P1, P2, P ∈ Z/pZ[Z], Sol(P1) ⊆

Sol(P2) whenever (1 − P p−1
1) ∗ P2 ≡ 0. Moreover, by defining P1 ⊕

P2
def
= (P p−1

1 + P p−1
2)p−1, we have, Sol(P1) ∩ Sol(P2) = Sol(P1 ⊕ P2),

Sol(P1)∪Sol(P2) = Sol(P1∗P2), and (Z/pZ)k \Sol(P) = Sol(1−P p−1).

In the following, we shall use P1 ⇒ P2 to denote the set {z ∈

Z/pZ
k|P1(z) = 0 ⇒ P2(z) = 0}. It is equal to (1 − P p−1

1) ∗ P2.

Finally, we introduce the existential/universal abstractions (or quan-
tifications) over polynomials w.r.t. some variables. Let P ∈ Z/pZ[Z],

we shall write ∃ZiP for the polynomial P |Zi=0 ∗ P |Zi=1 ∗ . . . ∗ P |Zi=p−1,
where P |Zi=v is P obtained by instantiating any occurrence of variable
Zi by value v. Similarly, we define a dual variable abstraction over
polynomials, based on universal quantification : ∀ZiP is computed as
P |Zi=0⊕P |Zi=1⊕. . .⊕P |Zi=p−1 whose solutions are elements of the form
(z1, ..., zi−1, zi+1, ..., zk) s.t. ∀zi, (z1, ..., zi−1, zi, zi+1, ..., zk) ∈ Sol(P).
Polynomial Implementation: it turns out that the best known imple-
mentation (for memory and computation performance) of polynomials

Symbolic abstractions of Automata 3

over Z/pZ is based on their decomposition according to the Lagrange

polynomials, leading to p-ary Decision Diagrams data structures (p-
DD). A classical instance of this approach is the well-known Shannon
decomposition for the case p = 2, with associated Binary Decision Dia-
grams (BDD) for boolean functions (Bryant, 1986). In our framework,
we fall under the case p = 3. Polynomials are then encoded by Ternary
Decision Diagrams (3-DD) (Marchand and Le Borgne, 1999) which are
the actual implementation of polynomial in our formal calculus system
Sigali (Pinchinat et al., 1999).
Intensional transition system model (Kouchnarenko and Pinchinat,
1998): An (n,m)-dimensional Intensional Labeled Transition System (or
(n,m)-ILTS) is a structure S = (X,X ′, Y, I, T) where X = {X1, ..., Xn}
and X ′ = {X ′

1, ..., X
′
n} are two sets of (source and target) states vari-

ables, Y = {Y1, ..., Ym} is a set of labels variables, I ∈ Z/pZ[X] char-

acterizes initial states and T (X,Y,X ′) ∈ Z/pZ[X,Y,X ′] describes the

legal transitions. Given some source state x ∈ (Z/pZ)n and some target

state x′ ∈ (Z/pZ)n, the set Sol(T (x, Y, x′)) denotes all the possible la-

bels of transitions from x to x′. We shall call Ext(T) the corresponding
“extensional” Labeled Transition System (LTS).

3. ABSTRACTION BY STATE FUSION

This section is devoted to the computation of a reduced system ac-
cording to a fusion state criterion. First, we assume that the criterion
is given by some symbolic canonical surjection. In this case, reducing
the system is straightforward. Next, we explore other means such as
equivalence relation between states, partitions, ...

3.1. SYSTEM REDUCTION W.R.T. A FUSION
CRITERION

Given a symbolic canonical surjection (see Definition 1), we explain
how one can define the associated quotient ILTS.

Definition 1 Assume given an (n,m)-ILTS S = (X,X ′, Y, I, T) where
X = {X1, ..., Xn}. We say that φ is a symbolic fusion criterion over S
w.r.t. a set of “l” fresh variables Z = {Z1, ..., Zl} whenever (1) l ≤ n,
(2) φ ∈ Z/pZ[X,Z], and (3) for all x ∈ (Z/pZ)n, φ(x,Z) = 0 has a
unique solution. •

By Definition 1, Sol(φ) ⊆ (Z/pZ
n)×(Z/pZ

l), and because of (3), Sol(φ)

defines a surjective mapping from (Z/pZ)n to (Z/pZ)l. Now, we define a
transition system whose states are obtained by gluing those x’s mapped

onto the same element of (Z/pZ)l. The reduction of S w.r.t. φ is Sφ
def
=

4 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

(Z,Z ′, Y, Tφ), defined by

Tφ(Z, Y, Z ′) = ∃X∃X ′(φ(X,Z) ⊕ T (X,Y,X ′) ⊕ φ(X ′, Z ′)) (2)

Informally, Tφ(z, y, z′) = 0 whenever there exists one x in the class en-
coded by its representative z and one x′ in the class encoded by its

representative z′ such that x
y
→ x′ holds in the original system S. Note

that when initial states are taken into account, defined by some poly-
nomial I(X), the corresponding initial predicate I ′(Z) in the reduced
model is obtained by I ′(Z) = ∃X{φ(X,Z) ⊕ I(X)}.

In general, Sφ has more behaviors than S, unless the state fusion
criterion φ is derived from a bisimulation equivalence, in which case
behavioral properties are faithfully preserved by the reduction.

3.2. REDUCTION MODULO AN EQUIVALENCE
RELATION

Assume given an (n,m)-ILTS S = (X,X ′, Y, I, T) and an equivalence
relation ρ over the states of Ext(S), which is symbolically represented
by some R ∈ Z/pZ[X,Xd]. Here Xd = {Xd1

, ..., Xdn
} is a copy of X.

We explain how to construct a corresponding state fusion criterion to
apply previous section techniques. Assuming the number of R-classes is
k, and pr−1 < k ≤ pr (for some r ≥ 1), we show how to compute a p-DD,
say Φ, over variables Z = {Z1, ..., Zr} and X = {X1, ..., Xn} denoting
the state fusion criterion φ associated to R. To do so, we directly work on
the data structures, namely the p-Decision Diagrams (p-DD). Intuitively,
we start from the p-DD of R(X,Xd) ⊆ (Z/pZ)n × (Z/pZ)n, with the
particular reorder of the variables Xi ≺ Xdj

, ∀i, j. Call θ this p-DD.

Property 2 At the end of every path x (over variables X’s) in θ, the
remaining sub-p-DD in variables Xd’denotes the R-class of x. �

Therefore, a traversal of all paths x in θ leads us to compute “on the fly”
the number of R-classes, namely k ; also, during this enumerative phase
(in the worse case we explore the whole state space), we incrementally
achieve the computation of Φ by introducing one by one the r variables
Zi when necessary. The idea of the algorithm (Pinchinat et al., 1999) is
the following: from the root of θ (variable X or the leaf 0 if R is trivial),
we recursively go down along a path until a variable Xdj

is reached.
Call θ′ the remaining sub-p-DD below Xdj

in θ. By Property 2, θ′ is an
R-class. Provided we know this R-class has not been encountered yet,
we attach θ′ to the structure Φ as follows: either an available hanging
branch in Φ is available. In this case θ ′ is plugged at this available place.
Otherwise, we introduce a fresh variable Zi at the top of Φ and wait
for the complete p-DD over variables {Z1, ..., Zi−1} containing θ′ to be
achieved, then plug it as a second son of Zi.

Symbolic abstractions of Automata 5

The reader can refer to Figure 3.2, for the case p = 3. In this example,
already built 3-DDs are drawn as triangles with solid bold lines, whereas
ones under construction are drawn in dashed bold lines. Assume we

Z3

Z2

Z1Z1 Z1

Z1

Z2

C1 C2 C3 C4 C5 C6 C7 C8 C9
Z1

Z1

C10 C11 C12

C13

C16

PSfrag replacements

Φ1
Φ2

Ψ1 Ψ2 Ψ3

Figure 1 Construction of φ(X,Z)

already have completed a 3-DD containing already treated classes, say
from C1 up-to C9 ; call Φ1 this structure. Suppose now that a new class
C10 is encountered. Then a new variable Z3 needs being introduced
at the top Φ1 and awaits for other sub-structures to be complete before
plugging them underneath. For example, after structures Ψ1 (containing
C10 but also C11 and C12), Ψ2 and Ψ3 have been achieved , Φ2 can be
completed and then plugged under Z3. The final stage of the algorithm
is to run a completion for the remaining non allocated branches (which
exist when the number of classes k is not of the form pr) by attaching
them to the leaf 1. In our example, suppose there is only 16 R-classes,
i.e. the last class is C16, then the remaining hanging branches of structure
Ψ3 will point to leaf 1.

3.3. PARTICULAR CASES OF EQUIVALENCES:
BISIMULATIONS

Bisimulation relations (Milner, 1989; Park, 1981; Van Glabbeek, 1993)
have been shown to capture a nice notion of “the same behavior” : a
bisimulation is an equivalence relation between states of a labeled transi-
tion system (LTS) which therefore enables to perform a particular state
fusion abstraction. The behavioral properties of the abstract system
coincide with the original one. We first recall that the classical strong
bisimulation can be handled symbolically.

Definition 2 (Park, 1981; Milner, 1989) Given two LTSs t1 =
(Q1,Σ, I1,→1) and t2 = (Q2,Σ, I2,→2), a strong bisimulation be-
tween t1 and t2 is a binary relation ρ ⊆ Q1 × Q2 s.t. (q1, q2) ∈ ρ when-

6 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

ever for all σ ∈ Σ, for all transition q1
σ
→1 q′1 there exists a state q′2 s.t.

q2
σ
→2 q′2 and (q′1, q

′
2) ∈ ρ. And vice-versa •

Since bisimulations are closed under arbitrary unions, there exist-
s a greatest bisimulation between t1 and t2, written � in the fol-
lowing. Assume given two ILTSs SU = (U,U ′, Y, IU , TU) and SV =
(V, V ′, Y, IV , TV). Algorithm 1 gives a symbolic computation of the
greatest bisimulation between SU and SV .
Algorithm 1:

1 Define the polynomial R0(U,V)
def
= 0.

2 Compute until stabilization (Rj(U, V))j defined by:

Rj+1(U, V) is the canonical generator of the ≡-class of�
Rj(U, V) ⊕ ∀U ′

∀Y [(TU (U, Y, U ′) ⇒ ∃V ′(TV (V, Y, V ′) ⊕Rj(U
′, V ′))]

⊕ ∀V ′
∀Y [TV (V, Y, V ′) ⇒ ∃U ′(TU (U,Y, U ′) ⊕Rj(U

′, V ′))]

3 Call R(U, V) the result.

Theorem 1 Algorithm 1 terminates and at the end, R(u, v) = 0 if and
only if u�v in the extensional worlds Ext(SU) and Ext(SV). �

Any other variant of bisimulation (eg. weak/delay/branching) can be
considered likewise (see (Pinchinat et al., 1999) for more details).

3.4. OTHER KINDS OF STATE FUSION CRITERION

In this section, we explore other means to express the state fusion
criterion. For instance, the fusion criterion can be specified by a state
partition, or characterized by a set of logical propositions attached to
states. In such cases, the abstract model computation can be simplified:
let {P1, ...Pk} be a set of polynomials in A[X1,Xn] such that: Sol(Pi)∩
Sol(Pj) = ∅ and

⋃
i∈{1..k} Sol(Pi) = (Z/pZ)n. This set of polynomials is

a symbolic representation of a state partition. Compared to Section 3.2,
we somehow already have done most of the work since each polynomial
denotes an equivalence class, as the Ci’s are handled Section 3.2. Also
because the number k of classes is known in advance, the construction
of P-DD φ is immediate.

From a practical point of view, the state partition is often derived
from a set of logical propositions over states (eg. state variable values).
Let Π = {Π1, ...Πl} denote propositions over states : Πi(x) = 0 iff. Πi is
true in state x. From Π, a partition can be derived so that techniques
above apply: for each Set I and J with I∪J = [1..l], I∩J = ∅, we define

a polynomial αIJ(X) =
⊕

i∈I Πi(X) ⊕
⊕

j∈J(1 − Πp−1
j (X)). Finally, as

2l corresponds to the maximal number of equivalent classes, we will need
at most dl ∗ logp(2)e state variables Zi to define the abstract model.

Symbolic abstractions of Automata 7

4. ABSTRACTION BY RESTRICTION

This abstraction aims to simplify the model by disallowing some be-
haviors. A naive approach would consist in modifying the structure of
the automata by removing either a set of events or a set of states.

Restriction methods are useful to prove ”incorrectness” of systems :
indeed, when a less general system is shown to violate some safety prop-
erty, so does the more general one.

A first and standard approach consists in modifying the structure of
the automata by removing either states or transitions that are labeled
by some fixed events. The symbolic counterpart of these techniques is
immediate : let O(X) (resp. A(Y)) denote the set of states (resp. events)
that are meant to be kept in the system, the symbolic restricted system
is then defined by T ′(X,Y,X ′) = O(X) ⊕ T (X,Y,X ′) ⊕ O(X ′) (resp.
T ′(X,Y,X ′) = T (X,Y,X ′) ⊕ A(Y)).

Also, more general restrictions can be considered : in particular on
the basis of an acceptance criterion for the remaining behaviors in the
restricted system, e.g. expressed in a temporal logic such as the propo-
sitional linear time temporal logic PLTL (Manna and Pnueli, 1992).

Here, we somehow overstep this approach by considering the general
framework of open synchronous systems : the events of the model are
composed of two subparts. One part denotes the stimulus from the
outside world and the other part the response of the system. According
to this framework, there is no meaning to restrict the possible stimuli,
whereas the response can be disallowed, in the same spirit of the pioneer
proposal of (Ramadge and Wonham, 1989), and developed by (Marchand
and Le Borgne, 1999) for the case of synchronous systems with symbolic
techniques. Following these lines, we obtain the acceptable behaviors
set computation, i.e. the restriction, by composing the original system
with additional equation constraints, called a controller.

4.1. THE FRAMEWORK

We consider an “open” ILTS to be a model of the form S =
(X,X ′, Y,K, T (X,Y,K,X ′), I) which meaning is a LTS as before but

with transitions like x
(y,k)
→ x′, but where events are split into a pair

(y, k) : component y, still called here the event is furnished by the envi-
ronment of the system, and k is the response of the system.

We shall say that k is an admissible response in situation (x, y), or
for short that k is admissible in (x, y) whenever (x, y, k) is a solution of

the polynomial Q(X,Y,K)
def
= ∃X ′T (X,Y,K,X ′).

8 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

Given an open ILTS S, we shall consider restriction specifications,
also called “control objectives” in (Marchand and Le Borgne, 1999) that
are of two following sorts :

1 the acceptable behaviors of the system are such that all encoun-
tered states belong to a given set E ; we call this restriction spec-
ification “the invariance of E”;

2 the acceptable behaviors of the system are such that along any
execution, it is always possible to reach a given set of states E ;
we call this restriction specification “the global reachability of E”.

Several possible formalisms can be proposed to rigorously express these
specifications, e.g. “Alternating Time Logic” of (Alur et al., 1998), “µ-
calculus” of (Kozen, 1983), ...but this is out of the scope of this paper.

4.2. THE RESTRICTION PRINCIPLE

The restriction consists in keeping suitable possible responses of the
system in a given situation (x, y) to select the “good” possible extensions
of the current behavior. The proposed method performs a static compu-
tation of the possible responses by delivering two constraints C0(X) and
C(X,Y,K) interpreted as follows : C0(X) is a polynomial which denotes
a set of suitable initial states, and C(X,Y,K) a set of suitable k’s for a
given situation (x, y). The restricted system is then simply obtained as
S′ = (X,X ′, Y,K, T (X,Y,K,X ′) ⊕ C(X,Y,K), I ⊕ C0(X)).

4.3. C0 AND C COMPUTATION ALGORITHMS

Assume given an open ITLS S ′ = (X,X ′, Y,K, T (X,Y,K,X ′), I) and
a set of states G, represented by a polynomial, say G(X). It is possible to
compute symbolically the set of state for which a response can be chosen
to reach G in one step (whatever the stimulus y is). Write PreK(G) this
set. Its polynomial representation can be computed by

PreK(G)
def
= ∀Y ((∃KQ)(X,Y,K) ⇒ ∃K∃X ′T (X,Y,K,X ′) ⊕ G(X ′))

Now the computation of C0 and C for “the invariance of E” case can be
obtained by

(1) computing the sequence of polynomials

Ei+1(X) = Ei(X) ⊕PreK(Ei)(X) init E(X),

until stabilization to get say Pre∗
K(E)(X). The stabilization is

inevitable since the sequence decreases and the set of states is
finite. Note that Sol(Pre∗K(E)(X)) ⊆ E.

(2) defining C0(X) = Pre∗K(E)(X) and C = ∀X ′(T (X,Y,K,X ′) ⇒
Pre∗K(E)(X))

Symbolic abstractions of Automata 9

(3) analyzing the result as follows : if C0(X)⊕ I(X) = 0 has a solution,
then (C0, C) composed with S achieves the restriction objectives,
otherwise any behavior of S eventually exits E.

An analogous procedure can apply for the case of the global reachability
E by changing step (1) into compute the sequence of polynomials

Ei+1(X) = Ei(X) ∗PreK(Ei)(X) init E(X)

5. CONCLUSION

This paper shows how abstraction techniques can be supported sym-
bolically, thus taking advantage of two well established approaches to the
state explosion problem. Abstraction by state fusion is fully detailed, t-
wo examples of abstraction by restriction are shown to be closely related
to controller synthesis issues, also other restriction specifications such as
attractivity, persistence, recurrence, ... can be dealt similarly. We refer
to (Marchand and Le Borgne, 1999) and to a forthcoming report.

The methods rely on intensional models for the systems, that for this
article are taken to be dynamical equational systems over a finite field.
Actually, results can be generalized to an enlarged class of models : the
class of first order representable ones.

References

Alur, R., Henzinger, T. A., and Kupferman, O. (1998). Alternating-time
temporal logic. Lecture Notes in Computer Science, 1536:23–60.

Bensalem, S., Lakhnech, Y., and Owre, S. (1998). Computing abstrac-
tions of infinite state systems compositionally and automatically. In
Conference on Computer Aided Verification CAV’98, LNCS 1427,
pages 319–331.

Bryant, R. (1986). Graph-based algorithms for boolean function manip-
ulations. IEEE Transaction on Computers, C-45(8):677–691.

Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L. Symbolic
model checking: 1020 states and beyond. Information and Computa-
tion, 98(2):142–170.

Clarke, E., Grumberg, O., and Long, D. (1994). Model checking and
abstraction. ACM Transactions on Programming Languages and Sys-
tems, 16(5):1512–1542.

Clarke, E. and Kurshan, R., editors (1990). Proc. of the 2nd Work. on
Computer-Aided Verification, LNCS 531. Springer-Verlag.

Clarke, E., Long, D., and Mc Millan, K. (1989). A language for composi-
tional specification and verification of finite state hardware controller-
s. In Proc. of the 9th Int. Symp. on Computer Hardware Description
Languages and Their Applications, pages 281–295.

10 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

Cousot, P. and Cousot, R. (2000). Temporal abstract interpretation.
In Conference Record of the 27th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Programming Languages, pages 12–25,
New York, U.S.A. ACM Press.

Godefroid, P. (1990). Using partial orders to improve automatic verifi-
cation methods. In Proc. of the 2nd Work. on Computer-Aided Veri-
fication, LNCS 531, pages 176–185. Springer-Verlag.

Kouchnarenko, O. and Pinchinat, S. (1998). Intensional ap-
proachs for symbolic methods. Electronic Notes in TCS, 18.
http://www.elsevier.nl/locate/entcs/volume18.html.

Kozen, D. (1983). Results on the propositional µ-calculus. Theoretical
Computer Science, 27(3):333–354.

Larsen, K. G. (1989). Modal specifications. In Proc. Workshop Auto-
matic Verification Methods for Finite State Systems, Grenoble, LNCS
407, pages 232–246. Springer-Verlag.

Manna, Z. and Pnueli, A. (1992). The Temporal Logic of Reactive and
Concurrent Systems, volume I: Specification. Springer-Verlag.

Marchand, H. and Le Borgne, M. (1999). The supervisory control prob-
lem of discrete event systems using polynomial methods. Research
Report 1271, Irisa.

McMillan, K. (1993). Symbolic Model Checking: An Approach to the state
explosion problem. Kluwer Academic.

Milner, R. (1989). A complete axiomatisation for observational congru-
ence of finite-state behaviours. SIAM J. Comput., 81(2):227–247.

Park, D. (1981). Concurrency and automata on infinite sequences. In
Proc. 5th GI Conf. on Th. Comp. Sci., LNCS 104, pages 167–183.
Springer-Verlag.

Peled, D. (1994). Combining partial order reductions with on-the-fly
model-checking. In Proc. of Worshop on Computer Aided Verification
CAV’94, LNCS 818, pages 377–390.

Pinchinat, S., Marchand, H., and Le Borgne, M. (1999). Symbolic ab-
stractions of automata and their application to the supervisory control
problem. Research Report 1279, IRISA.

Ramadge, P. J. and Wonham, W. M. (1989). The control of discrete
event systems. Proceedings of the IEEE; Special issue on Dynamics of
Discrete Event Systems, 77(1):81–98.

Van Glabbeek, R. J. (1993). The linear time–branching time spectrum I-
I: The semantics of sequential systems with silent moves (extend-
ed abstract). In CONCUR ’93, volume 715 of LNCS, pages 66–81,
Hildesheim, Germany. Springer-Verlag.

