
ON THE SYNTHESIS OF OPTIMAL SCHEDULERS IN DISCRETE

EVENT CONTROL PROBLEMS WITH MULTIPLE GOALS∗

HERVÉ MARCHAND† , OLIVIER BOIVINEAU‡ , AND STÉPHANE LAFORTUNE‡

SIAM J. CONTROL OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 39, No. 2, pp. 512–532

Abstract. This paper deals with a new type of optimal control for discrete event systems. Our
control problem extends the theory of [R. Sengupta and S. Lafortune, SIAM J. Control Optim., 36
(1998), pp. 488–541] that is characterized by the presence of uncontrollable events, the notion of
occurrence and control costs for events, and a worst-case objective function. A significant difference
with [R. Sengupta and S. Lafortune, SIAM J. Control Optim., 36 (1998), pp. 488–541] is that our aim
is to make the system evolve through a set of multiple goals, one by one, with no order necessarily
prespecified, whereas the previous theory only deals with a single goal. Our solution approach is
divided into two steps. In the first step, we use the optimal control theory in [R. Sengupta and S.
Lafortune, SIAM J. Control Optim., 36 (1998), pp. 488–541] to synthesize individual controllers for
each goal. In the second step, we develop the solution of another optimal control problem, namely,
how to modify if necessary and piece together, or schedule, all of the controllers built in the first
step in order to visit each of the goals with the least total cost. We solve this problem by defining
the notion of a scheduler and then by mapping the problem of finding an optimal scheduler to an
instance of the well-known traveling salesman problem (TSP) [E. L. Lawler, J. K. Lenstra, A. H. G.
Rinooy Kan, and D. B. Shmoys, The Traveling Salesman Problem, John Wiley, 1985]. We finally
suggest various strategies to reduce the complexity of the TSP resolution while still preserving global
optimality.

Key words. discrete event systems, optimal control, scheduler, traveling salesman problem

AMS subject classifications. 93A99, 49-XX, 90C27, 90B35

PII. S0363012998341964

1. Introduction and motivation. We are interested in a new class of optimal
control problems for discrete event systems (DES). We adopt the formalism of super-
visory control theory [16] and model the system as the regular language generated by
a finite state machine (FSM). Our control problem follows the theory in [19, 20, 21]
and is characterized by the presence of uncontrollable events, the notion of occurrence
and control costs for events, and a worst-case objective function. A significant differ-
ence with the work in [21] and with the other works dealing with optimal control of
DES [6, 11, 14, 24] is that we wish to make the system evolve through a set of marked
states (or multiple goals) one by one, with no order necessarily specified a priori; in
contrast, the previous theories only deal with a single marked state.

Our problem formulation is motivated by several application domains such as
test objective generation in verification and diagnostics, planning in environments
with uncertain results of actions, and routing in communication networks.

• In test objective generation, a given system has been designed to meet some
specific requirements. However, it may happen that some of these require-

∗Received by the editors July 10, 1998; accepted for publication (in revised form) May 11, 2000;
published electronically September 15, 2000. This research was supported in part by INRIA and
by the Department of Defense Research and Engineering (DDR&E) Multidisciplinary University
Research Initiative (MURI) on Low Energy Electronics Design for Mobile Platforms and managed
by the Army Research Office (ARO) under grant DAAH04-96-1-0377.

http://www.siam.org/journals/sicon/39-2/34196.html
†IRISA / INRIA - Rennes, F-35042 RENNES, France (hmarchan@irisa.fr). The work of this

author was carried out at the Department of Electrical Engineering and Computer Science, University
of Michigan.

‡Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal
Avenue, Ann Arbor, MI 48109-2122 (oboivine@eecs.umich.edu, stephane@eecs.umich.edu).

512

OPTIMAL SCHEDULERS IN DISCRETE EVENT CONTROL 513

ments have been overlooked or neglected. Failures can occur as a consequence
of negligence. Test objective generation is a way of (ideally exhaustively)
checking for inconsistencies in the behavior of the system [1, 3, 17]. The
marked states (the states of interest) would be some particular states in which
the behavior of the system to be tested is suspected to be flawed. The method
that we develop generates a behavior for the system that allows it to reach
all these states in an optimal way, with respect to the given occurrence and
control cost functions for the events. Each time a state of interest is reached,
a behavioral test can be performed on this particular state in order to check if
it meets the requirements and conforms to the designed or expected behavior.

• In artificial intelligence (AI), the behavior of an agent is often sought to
be optimized with respect to an optimality criterion [5]. Moreover, dealing
with multiple goals is an active area of research in AI [13]. The model and
the methods that we develop in this work can easily be applied to an agent
evolving in an environment where the results of its actions are not always the
ones expected. Under certain restrictions, there is a mapping between partial
controllability in DES and the notion of a nondeterministic environment1 in
AI [18]. The notion of an optimal scheduler that we define and construct can
be used to do planning with multiple goals.

• Broadcasting and multicasting in a communication network is an instance
of a multiagent system. Here, the marked states would represent the nodes
of the network to which we would want the information to be sent. The
uncontrollability of certain events would be interpreted as the uncertainty
regarding the actual route that the information would take, since the entire
route is not up to the decision of the single sending agent. The solution that
we generate can be used to determine the number of duplicated messages
that must be sent in parallel through the network in order for all the desired
recipients to receive the piece of information.

Our solution approach consists of two steps. The starting point is an FSM which
represents the desired behavior of a given system. From this FSM, we can generate
a controller that verifies any property that we would wish to associate to it, from
the set of acceptable controllers. The desirable property is often taken to minimize a
quantitative performance measure. In our case, we generate a controller which veri-
fies a range of properties. This is what has been called the DP-optimality property
of an FSM [21]. DP-optimality stands for dynamic programming optimality. This
comes from the fact that we use back-propagation from the goal state to generate the
controller, based on event cost functions. The controller is represented as an FSM
also. The theory of DP-optimal controllers has been developed in the restricted case
of one unique marked state [19, 20, 21]. We use the theory in [21] to synthesize a set
of optimal controllers corresponding to the different marked states, each treated indi-
vidually. This yields a set of FSMs that are generated independently from each other.
These controllers are synthesized in a manner that gives them an optimal substruc-
ture, consistent with the notion of DP-optimality of [21]. The objective function has
a worst-case form. The total worst-case computational complexity of the first step is

1The notion of a nondeterministic environment in AI is different from the notion of a nonde-
terministic FSM in control of DES. In AI, a nondeterministic environment is one where the actions
undertaken by the agent might not lead to the expected arrival state of the world, whereas in control
of DES, a nondeterministic FSM is one in which there are identically labeled transitions that lead
from one state to different states.

514 H. MARCHAND, O. BOIVINEAU, AND S. LAFORTUNE

cubic in the number of states in the systems. At this point, the notion of a DP-optimal
controller is replaced by the notion of a stepwise DP-optimal scheduler. By scheduler,
we mean a sequence of behaviors that are modeled by FSMs. We develop the solution
of a “higher-level” optimal control problem, where we use all the controllers built in
the first step in order to visit each of the marked states with least total cost; we call
this problem that of finding a “stepwise DP-optimal scheduler.” We solve this prob-
lem by defining the notion of a scheduler and then by mapping the problem of finding
a stepwise DP-optimal scheduler to an instance of the well-known traveling salesman
problem (TSP) [8]. We finally suggest different strategies to reduce the computational
complexity of this step while still preserving global optimality by taking advantage of
some particular properties of the structure of stepwise DP-optimal schedulers.

One of the differences between DP-optimality and stepwise DP-optimality resides
in the controller having an FSM structure, whereas the scheduler is a concatenation
of FSMs. All the states appear only once in a controller, whereas states can appear
several times in a scheduler, but under different circumstances, i.e., in different sub-
machines. Also, another difference between DP-optimal controllers and a stepwise
DP-optimal scheduler for an FSM is the existence of a unique maximal DP-optimal
controller which contains all the other DP-optimal controllers as submachines, whereas
there is no notion of a unique maximal stepwise DP-optimal scheduler.

This paper is organized as follows. In section 2, the necessary notations are
introduced. In section 3, we recall the basic definitions and properties of the optimal
control theory of DES of [19, 20, 21]. More precisely, we review the notion of a DP-
optimal submachine of an FSM G. This definition is used as a springboard to section
4, where we introduce the enlarged problem in the case of multiple marked states. In
section 5, we define the notion of an optimal scheduler; such a scheduler ensures that
the system will visit each state in a given set of states at least once while minimizing
a given cost function over the trajectories of the system. We then suggest possible
simplifications that can be made to reduce the overall complexity of the computation
of a stepwise DP-optimal scheduler. Section 6 illustrates this new notion of optimality
with an example. Section 7 presents some possible applications of the theory that is
developed throughout this paper. A conclusion and discussion on future works are
presented in section 8.

2. Preliminaries. In this section, the main concepts and notations are defined
(more definitions will be made when necessary in the following sections). The system
to be controlled is modeled as an FSM defined by a 5-tuple G = 〈Σ, Q, q0, Qm, δ〉,
where Σ is the set of events, Q is the (finite) set of states, q0 is the initial state,
Qm is the set of marked states, and δ is the partial transition function defined over
Σ∗ × Q → Q. The notation δG(σ, q)! means that δG(σ, q) is defined, i.e., there is a
transition labeled by event σ out of state q in machine G. Likewise, δG(s, q) denotes
the state reached by taking the sequence of events defined by trace s from state q in
machine G. The behavior of the system is described by the prefix-closed language
L(G) [2], generated by G. L(G) is a subset of Σ∗, where Σ∗ denotes the Kleene closure
of the set Σ [4]. Similarly, the language Lm(G) corresponds to the marked behavior
of the FSM G, i.e., the set of trajectories of the system ending in one of the marked
states of G.

Some of the events in Σ are uncontrollable, i.e., their occurrence cannot be pre-
vented by a controller, while the others are controllable. In this regard, Σ is parti-
tioned as Σ = Σc ∪ Σuc, where Σc represents the set of controllable events and Σuc

represents the set of uncontrollable events. In what follows, we will only be interested

OPTIMAL SCHEDULERS IN DISCRETE EVENT CONTROL 515

in trim FSMs (i.e., FSMs whose states are all accessible from q0 and coaccessible
to Qm). For explicit mathematical definitions, the reader may refer to [2]. We say
that an FSM A = 〈Σ, QA, q0A, QmA, δA〉 is a submachine of G if ΣA ⊆ Σ, QA ⊆
Q, QmA

⊆ Qm, and ∀σ ∈ ΣA, q ∈ QA, δA(σ, q)! ⇒ (δA(σ, q) = δ(σ, q)). The
statement A ⊆ G denotes that A is a submachine of G. We also say that A is a
submachine of G at q whenever q0A = q ∈ Q and A ⊆ G. For any q ∈ Q, we will
use M(G, q,Qm) = {A ⊆ G : A is trim with respect to QmA

and q0A
= q} to

represent the set of trim submachines of G at q with respect to Qm. This set has a
maximal element in the sense that this maximal element contains all other elements
as submachines. It is denoted as M(G, q,Qm). For convenience, we write M(G, q)
and M(G, q) when there is only one marked state, i.e., when Qm = {qm}.

As stated in [21], to take into account the numerical aspect of the optimal control
problem, costs are associated with each event of Σ. To this effect, we introduce
an occurrence cost function ce : Σ → R

+ ∪ {0} and a control cost function cc :
Σ → R

+ ∪ {0,∞}. Occurrence cost functions are used to model the cost incurred in
executing an event (energy, time, etc.). Control cost functions are used to represent
the fact that disabling a transition possibly incurs a cost. The control cost function
is infinity for events of Σuc. These cost functions are then used to introduce a cost
on the trajectories of a submachine A of G. To this effect, we first define a projection
pj that, when applied to a trace of events s = σs

1σ
s
2 . . . σ

s
‖s‖, gives the subtrace of s of

length j starting from σs
1 (pj(s) = σs

1σ
s
2 . . . σ

s
j if j ≤ ‖s‖, and is undefined otherwise).

We also introduce ΣG
d (A, q) as the set of disabled events at state q for the system to

remain in submachine A of G.
Definition 2.1. Let A be a submachine of G, and let Lm(A) be the marked

language of A. Then the following are defined.
• For any state q ∈ QA and string s = σs

1σ
s
2 . . . σ

s
‖s‖ such that δ∗A(s, q) exists,

the cost of the string s is given by

cg(q,A, s) =

‖s‖
∑

j=1

ce(σ
s
j) +

‖s‖
∑

j=1

∑

σ∈ΣG
d

(A,q′)

q′=δA(pj(s),q)

cc(σ).(2.1)

• The objective function denoted as cgsup(.) is given by

cgsup(A) = sup
s∈Lm(A)

cg(q0A, A, s).(2.2)

Basically, the cost of a trajectory is the sum of the occurrence costs of the events
belonging to this trajectory to which is added the cost of disabling events on the
way to remain in A. If an uncontrollable event is disabled, this renders the cost of
a trajectory infinite because the second term of (2.1) becomes infinity. The notation
cgsup(A) represents the worst-case behavior that is possible in submachine A.

3. Review of the DP-optimal problem for one final state. In general,
the purpose of optimal control is to study the behavioral properties of a system, to
take advantage of a particular structure, and to generate a controller which constrains
the system to a desired behavior according to quantitative and qualitative aspects.
In the basic setup of supervisory control theory (see [15, 16] and Chapter 3 of [2]),
optimality is with respect to set inclusion, and thus all legal behaviors are equally
good (zero cost) and illegal behaviors are equally bad (infinite cost). The work in [21]
enriches this setup by the addition of quantitative measures in the form of occurrence

516 H. MARCHAND, O. BOIVINEAU, AND S. LAFORTUNE

and control cost functions, to capture the fact that some legal behaviors are better
than others. The problem is then to synthesize a controller that is not only legal, but
also “good” in the sense of given quantitative measures. Some other studies appear
in [6, 11, 14, 24]. In this section, we present some results of [21] that are necessary
for developing the solution procedure for optimal schedulers. Our aim here is not to
describe in detail all the theory, which can be found in [19, 20, 21], but to present the
principal notations and results that we use in what follows.

Definition 3.1. A submachine A of G is said to be controllable if ∀ q ∈ QA,
such that there exists s ∈ Σ∗ and δ(s, qoA) = q, the following is satisfied:

∀σ((σ ∈ Σuc) ∧ (δ(σ, q)!)) ⇒ δA(σ, q)!

We now define the optimization problem for a single marked state qm.
Definition 3.2. ∀q ∈ Q, Ao ∈ M(G, q) is an optimal submachine if

cgsup(Ao) = min
A∈M(G,q)

cgsup(A) < ∞.

For such a submachine Ao, c
g
sup(Ao) represents the optimal cost (in fact, the worst

inevitable cost) necessary to reach qm from q0. It means that a submachine with a
lower cost could not ensure the accessibility of qm from q0. The following lemma
(Lemma 2.15 in [19]) is stated to note that optimal solutions lie within the class of
controllable submachines.

Lemma 3.3. Let A ∈ M(G, q,Qm). If cgsup(A) < ∞, then A is controllable.
Theorem 4.2 of [19] gives necessary and sufficient conditions for the existence of op-
timal submachines as follows.

Theorem 3.4. An optimal submachine of G exists if and only if there exists a
submachine A of G such that A is trim, controllable and ∀s ∈ L(G) and q ∈ Q such
that δ(s, q) = q we have cg(q,A, s) = 0.

Intuitively, this theorem states that an optimal solution exists when there are
controllable submachines of G in which all cycles have a zero cost. The controllability
assumption ensures that the positive cost cycles can be broken using controllable
events alone. We now introduce the notion of DP-optimal submachines. This kind of
submachine will be used intensively in the next sections.

Definition 3.5. A submachine ADO ∈ M(G, q) is DP-optimal if it is optimal
and ∀q′ ∈ QADO

, M(ADO, q
′) is an optimal submachine in M(G, q′).

If a particular DP-optimal FSM includes all other DP-optimal FSMs as subma-
chines of itself, then we call it the maximal DP-optimal submachine. The maximal
DP-optimal submachine of a machine G at q with respect to the final marked state qm
will be denoted by Mo

D(G, q, qm). Note that all DP-optimal submachines are acyclic.
The existence of a DP-optimal submachine of G is given by the following theorem
(Theorem 4.3 of [19]).

Theorem 3.6. If an optimal submachine of G exists, then the unique maximal
DP-optimal submachine Gm

des = Mo
D(G, q0, qm) of G with respect to the final state qm

also exists.
The cyclic DP-optimal algorithm. Consider an FSM G = 〈Σ, Q, q0, qm, δ〉

with a unique initial state q0 and a unique marked state qm. Assume that all occur-
rence costs are strictly positive; then there exists an algorithm [21], named DP-Opt,
with a worst-case complexity O(|Q|2|Σ| log(|Σ|)+|Q|3|Σ|) (Theorem 6.10 of [21]), that
constructs the desired maximal DP-optimal submachine of the FSM G with respect
to q0 and qm, that we denote as Gm

des. The algorithm also returns the worst inevitable

OPTIMAL SCHEDULERS IN DISCRETE EVENT CONTROL 517

qo
a

a

a

a

aa

a

a

b
b

b

b

u

v

X

X

X

X

X

X 1

X 2

5

4

3

7

6

c

d
c

e

f

e

g

f

d Event ce Remarks
a,f 1 Controllable

b,c,d,e 2 Controllable
g 4 Controllable
u 3 Uncontrollable
v 2 Uncontrollable

qo

a

a

a

b

u

v

X

X 1

X 2

4

c

f

f

d

Fig. 3.1. The initial system G, the event cost function, and the maximal DP-optimal subma-
chine G4

des
.

cost cgsup(G
m
des). Moreover, during the computation of the algorithm, we can recover

the submachines Mo
D(G, q, qm) associated with cgsup(M

o
D(G, q, qm)) for each state vis-

ited during the computation. A simplified version of this algorithm can be found
in [10] (when the control cost function is reduced to the null function for controllable
events).

Example of the DP-optimal problem. We conclude this section by illustrat-
ing the DP-optimal problem through an example that is reused in section 6. Let G be
an FSM and Σ = {a, b, c, d, e, f, g, u, v} such that a, b, c, d, e, f , and g are controllable;
u and v are uncontrollable. G and the event cost function defined on Σ are as in
Figure 3.1. We assume cc ∈ {0,∞}. Finally, the initial state is q0 and the final state
is X4.

Using the DP-Opt program, we obtain the maximal DP-optimal submachine of
G, denoted G4

des, for which the worst inevitable cost is equal to cgsup(G
4
des) = 6.

We can observe all the properties of the generated submachine. First, it is con-
trollable, since from any state, there exists a path that leads surely to the goal X4.
Also, it is optimal, since all the paths leading to X4 have a finite and minimized
worst-case cost (notably, no uncontrollable event at state X4 needs to be disabled).
Finally, the DP-optimality property can be observed. From every state q of G4

des, the
path from q to X4 which has the highest cost contains an uncontrollable event u that
cannot be disabled.

We have reviewed the optimal control problem and the notion of DP-optimal
submachines when only one marked state is present in the system. We now turn our
attention to the case of multiple marked states and present our results for this new
problem. This will require the introduction of a new, more comprehensive, optimality
criterion.

4. The optimal control problem with multiple marked states. In the
previous section, we were interested in finding a DP-optimal submachine of G that
makes the system evolve from an initial state q0 to a final state qm by minimizing a cost
function along the various trajectories of the system. Here, our goal is different. We
consider an FSM G with a set of multiple marked (or final) states X = (Xi)i∈[1,...,n].
Our aim is now to have the system reach each and every one of the states of X . To
account for the fact that it may not be possible to find such a path, we assume in the
following the possibility of resetting the system to its initial state q0, when the system
has evolved in one of the states of X . The Reset event that is added in this section is
much more than an artifact for developing the theory. Indeed, many interpretations
can be associated with it. First, there are physical systems that can actually be
reset to their initial state (like a World Wide Web browser, for example). Second,

518 H. MARCHAND, O. BOIVINEAU, AND S. LAFORTUNE

the Reset event can be seen as an event whose occurrence signals the impossibility
of visiting all the states of X without visiting the initial state q0 more than once.
This apparent impossibility can be alleviated by having multiple systems perform in
parallel. For example, in the case of a communication network, a message that is sent
cannot be brought back to the initial state. However, it can be regenerated, and then
the number of Reset events can be regarded as an indicator of the number of copies of
the message that must be generated and sent in parallel in a broadcast or a multicast
(See section 7).

4.1. Stepwise DP-optimality definition. Due to the Reset event, the sys-
tem is now represented by the following FSM G = 〈Σ ∪ {Reset}, Q, q0,X , δ〉, with
δ(Reset,Xi) = q0 ∀Xi ∈ X . As in the previous section, we introduce cost func-
tions that take into account the particular Reset event: the occurrence cost function
ce : Σ∪ {Reset} → R

+ ∪ {0} such that ∀σ ∈ Σ, ce(σ) ≥ 0 and ce(Reset) = 0, and the
control cost function cc : Σ ∪ {Reset} → R

+ ∪ {0,∞} such that ∀σ ∈ Σ, cc(σ) ≥ 0
and cc(Reset) = 0.

Definition 4.1. Let s ∈ Lm(G). The trajectory s is said to be valid if there
exists at least n prefixes of s, (si)i∈[1,...,n], such that δ(q0, si) = Xi ∈ X .

In other words, a trajectory is valid if it makes the system evolve into each of
the marked states in X . Note that the definition does not require that the trajectory
visit each marked state exactly once. Besides, due to the Reset event, the system has
the possibility of coming back in its initial state along the trajectory. The set of valid
trajectories of the FSM G will be denoted as S.

Given that our primary interest is in the states of X , we introduce the notion of
a valid state trajectory.

Definition 4.2. Let s be a valid trajectory in S, such that s = ts1 . . . t
s
l , with

l > n and δ(q0, t
s
1 . . . t

s
k) = Xs

k ∈ X ∪ {q0}. We define the function D from S into
{q0}(X

∗{q0})
∗, such that D(s) = (Xs

k)k∈[1,...,l].
2 Such a trajectory is called a valid

state trajectory with respect to X . We denote as D the set of valid state trajectories
in G, with respect to the set of valid trajectories S: D = D(S).

A valid state trajectory d ∈ D corresponds to a trajectory in {q0}(X
∗{q0})

∗ that
contains all the states of X (with possible repetitions).

Since we must deal with a set of marked states rather than with a single marked
state, we need to introduce a model that comprises all the states of the set X and
that accounts for the global behavior of the system. It is not possible to use a clas-
sical merge operation (⊕, Definition 6.2 in [21]), because states might appear in
different submachines in different contexts, i.e., with different partial transition func-
tions associated with them. Therefore, instead of using a merge, we introduce the
notion of a scheduler. A scheduler can be thought of as a concatenation of (DP-
optimal, in our case) submachines. The role of the scheduler is then to make the
system evolve according to one submachine at a time and to account for switching
between them at appropriate instants. In what follows, the symbol “◦” will denote
the concatenation of two submachines A and A′ of G. It is defined in terms of
languages. Let Lm(A) and Lm(A′) be the marked languages of A and A′. Then
Lm(A ◦A′) = {st : s ∈ Lm(A), t ∈ Lm(A′)}. Note that Lm(A ◦A′) ⊆ Lm(G) if and
only if QmA

= {q0A′
} and QmA′

⊆ QmG
= X . Also note that, due to possible cycles

in the FSM G, A ◦A′ is in general no longer a submachine of G since some state q of
G may be shared by the two submachines A and A′ but without the same transitions.

2This function allows the “extraction” of the state trajectory in G from the valid trajectory s.

OPTIMAL SCHEDULERS IN DISCRETE EVENT CONTROL 519

Definition 4.3. Let d = (Xd
k′)k′∈[0,...,l] ∈ D be a valid state trajectory of X∪{q0},

and let (Ak)k∈[1,...,l] such that l ≥ n and Ak ∈ M(G,Xd
k−1, X

d
k) ∀k ∈ [1, . . . , l]; then

the structure A = A1 ◦A2 ◦ · · · ◦Al is called a scheduler with respect to G and X . The
set of schedulers with respect to G and X is denoted as Msc(G,X).

In this particular case, for each submachine of the scheduler, there is only one
initial state and one final state. Hence, for two consecutive submachines Ai and Ai+1,
we have qmAi

= q0Ai+1
. Note that for a scheduler A = A1 ◦A2 ◦ · · · ◦Al, some Ak may

be simply reduced to the simple FSM (Xd
k

Reset
−→ q0). This FSM is clearly a DP-optimal

submachine from Xd
k to q0. Besides, in some cases, Msc(G,X) can be reduced to ∅.

The cost associated with a scheduler A = A1 ◦ A2 ◦ · · · ◦ Al, denoted as Csc
sup(A), is

given by

Csc
sup(A) =

l
∑

i=1

cgsup(Ai).(4.1)

The following definition extends the notion of DP-optimality to the notion of stepwise
DP-optimality.

Definition 4.4. Let A ∈ Msc(G,X) be a scheduler, such that A makes the
system evolve through a valid state trajectory d = (Xd

k′)k′∈[0,...,l] of D. A = A1 ◦
A2 ◦ · · · ◦ Al is said to be stepwise DP-optimal if each of the submachines Ak ∈
M(G,Xd

k−1, X
d
k) is DP-optimal with respect to its initial state Xd

k−1 and final state

Xd
k , and if the following condition is satisfied:

Csc
sup(Ao) = min

A∈Msc(G,X)
Csc

sup(A) < ∞.

We wish to draw attention to the following assumption.
Assumption 4.1. From now on, we assume that the DP-optimal submachines

under consideration, with the exception of (Xd
k

Reset
−→ q0), are maximal. This is done

for two main reasons. First, the algorithm DP-Opt (see Appendix A of [10]) out-
puts exactly the maximal DP-optimal submachines. Second, taking the maximal
DP-optimal submachines allows the system greater freedom. Indeed, it contains all
the other DP-optimal submachines; therefore, it has more possible paths from the
initial state to the final marked state. In most applications, it is desirable to lower
the probability of taking the worst-case cost path, which is the intent of taking the
maximal DP-optimal submachine for (Gi

des)i∈[1,...,n]. The more possible paths there
are, the less likely it is for the system to take the worst-case cost path. Note that the

Reset machine (Xd
k

Reset
−→ q0) need not be maximal (this can only happen if occurrence

costs cannot be equal to zero); in this case, however, given our interpretation of the

Reset event, we will include the single transition (Xd
k

Reset
−→ q0) in the scheduler.

Under this assumption, the following property is a direct consequence of Defini-
tion 4.4.

Property 4.2. Let G be an FSM, and let X be the set of marked states of G.
Let A be a stepwise DP-optimal scheduler, such that A = A1 ◦ A2 ◦ · · · ◦ Al. Let d =
(Xd

k)k∈[0,...,l] of D be the associated valid state trajectory. Then ∀k ∈ [1, . . . , l], Ak =

Mo
D(G,Xd

k−1, X
d
k). Furthermore, the global cost of the scheduler is

Csc
sup(A) =

l
∑

k=1

cgsup(M
o
D(G,Xd

k−1, X
d
k)) < ∞.(4.2)

520 H. MARCHAND, O. BOIVINEAU, AND S. LAFORTUNE

This property states that if a stepwise DP-optimal scheduler exists, then all the sub-
machines constituting this scheduler are the respective Mo

D(G,Xk−1, Xk). Moreover
the cost of the scheduler is then simply equal to the sum of the costs of these DP-
optimal submachines. We will refer to this important result as the additivity property
of the stepwise DP-optimal scheduler. In what follows, the set of all schedulers A such
that all the submachines of A are of the form Mo

D(G,Xi, Xj) for Xi, Xj ∈ X ∪ {q0},
is denoted Msc

D (G,X).
Now that we have defined the notion of a stepwise DP-optimal scheduler and

given some of its properties, we need to give necessary and sufficient conditions for
its existence. The next subsection gives these conditions and also proves desirable
properties of such a scheduler.

4.2. Existence of a stepwise DP-optimal scheduler. Theorem (4.7) pre-
sented below gives necessary and sufficient conditions for the existence of a stepwise
DP-optimal scheduler. First we prove the following lemma.

Lemma 4.5. If the DP-optimal submachines Mo
D(G,Xi, Xj) and Mo

D(G,Xj , Xk)
of G exist, then there exists a DP-optimal submachine Mo

D(G,Xi, Xk). Moreover, we
have the following triangular inequality:

cgsup(M
o
D(G,Xi, Xk)) ≤ cgsup(M

o
D(G,Xi, Xj)) + cgsup(M

o
D(G,Xj , Xk)).(4.3)

Proof. Assume the existence of Mo
D(G,Xi, Xj) = 〈Σij , Qij , Xi, Xj , δij〉 and of

Mo
D(G,Xj , Xk) = 〈Σjk, Qjk, Xj , {Xk}, δjk〉. Consider the intersection of the states

of these two submachines as being Qij ∩ Qjk = {Xj , q1, . . . , qn}. Note that this
intersection might be reduced to {Xj}. We construct a new submachine Gik =
〈Σik, Qik, q0ik

, Qmik
, δik〉 from these submachines:

Gik =

Σik = Σij ∪ Σjk, Qik = Qij ∪Qjk,

q0ik
= Xi, Qmik

= {Xk},

δik(σ, q) =

δjk(σ, q) if it exists and q ∈ Qjk,

δij(σ, q) if it exists and q ∈ Qij − {Xj , q1, . . . , qn},

undefined otherwise.

This submachine Gik is well defined. Any possible ambiguity has been eliminated
by separately dealing with the states {Xj , q1, . . . , qn} in the definition of δik. Gik

is obtained by always following the partial transition function of Mo
D(G,Xj , Xk) as

a default behavior, and following the partial transition function of Mo
D(G,Xi, Xj)

otherwise whenever possible. First, the machines Mo
D(G,Xi, Xj) and Mo

D(G,Xj , Xk)
are trim. Second, Gik is constructed by forward propagation; therefore, all the states
of Gik are accessible with respect to the initial state Xi and are coaccessible with
respect to the marked state Xk. Therefore, Gik is trim.

Moreover, Gik is controllable. Indeed, the partial transition function δik says that
as long as the system has not reached a state of the set {Xj , q1, . . . , qn}, it follows the
partial transition function of δij . Due to the DP-optimality of Mo

D(G,Xi, Xj), the
system will always reach a state of the set {Xj , q1, . . . , qn} with a finite cost. Indeed,
if the system never visits a state in {q1, . . . , qn}, it will eventually reach Xj . Let
us call q the first state of the set {Xj , q1, . . . , qn} that is visited by the system as it
evolves. At this point, the default partial transition function becomes δjk; therefore,
the system will eventually reach the marked state Xk with a finite cost since the
submachine Mo

D(G,Xi, Xj) is DP-optimal. Since the cost of reaching Xk from q is

OPTIMAL SCHEDULERS IN DISCRETE EVENT CONTROL 521

finite, the overall cost of reaching Xk is necessarily finite. From Lemma 3.3, Gik is
controllable.

Finally, Gik has no positive cost cycles. Mo
D(G,Xi, Xj) and Mo

D(G,Xi, Xk) do
not have positive cost cycles (by definition of DP-optimality). As we have described
previously, before the system reaches a state of {Xj , q1, . . . , qn} for the first time, it will
not complete a positive cost cycle (from the DP-optimal nature of Mo

D(G,Xi, Xj)).
After the system reaches a state of {Xj , q1, . . . , qn} for the first time, it will not
complete a positive cost cycle either (from the DP-optimal nature of Mo

D(G,Xj , Xk)).
Therefore, no new cycles have been introduced. The only cycles that may exist in Gik

are those of Mo
D(G,Xi, Xj) and Mo

D(G,Xj , Xk).

Given that Gik is trim, controllable, and contains no cycles of positive cost in
G, FSM Gik satisfies the preconditions of Theorem (3.4), and there exists an optimal
submachine of Gik. Following Theorem 3.6, there also exists a DP-optimal submachine
Mo

D(G,Xi, Xk) of Gik.

The proof of the triangular inequality relies on what we have said previously. The
cost of reaching a state of the set {Xj , q1, . . . , qn}, from the initial state Xi, is less
than cgsup(M

o
D(G,Xi, Xj)) (equality is possible but not necessary when Xj is reached).

Once one of the states {Xj , q1, . . . , qn} has been reached, the cost for the system to
reach the marked state Xk is less than cgsup(M

o
D(G,Xj , Xk)) (equality is possible but

not necessary when the system visits Xj) because the corresponding machine is DP-
optimal. More formally, let us take a trace s of events that leads from the initial state
Xi to the final state Xk, i.e., such that δik(s,Xi) = Xk. As seen earlier, s visits at
least one state of the set {Xj , q1, . . . , qn}. Let us call it q again. We can now subdivide
s into s1 and s2 such that s = s1s2, δik(s1, Xi) = q, and δik(s2, q) = Xk. From the
DP-optimality of the two submachines Mo

D(G,Xi, Xj) and Mo
D(G,Xj , Xk)∀s such

that s = s1s2, δik(s1, Xi) = q, δik(s2, q) = Xk, we can compare

{

cg(Xi,M
o
D(G,Xi, Xj), s1) ≤ cgsup(M

o
D(G,Xi, Xj)),

cg(q,Mo
D(G,Xj , Xk), s2) ≤ cgsup(M

o
D(G,Xj , Xk)).

Since this is true for all traces leading from Xi to Xj , we can deduce the triangular
inequality.

The following corollary uses the construction in the proof of Lemma 4.5 to intro-
duce a necessary condition for the existence of a stepwise DP-optimal scheduler. The
proof is straightforward and can be found in [10].

Corollary 4.6. If Gk
des does not exist, then there exists no subscheduler that

makes the system evolve from q0 to Xk, should it be indirectly via states of X .

As a consequence of these results, we can ensure that a state Xk is accessible
in an optimal way if and only if Gk

des exists. We are now able to give the necessary
and sufficient conditions of the existence of a stepwise DP-optimal scheduler. This is
stated by Theorem 4.7.

Theorem 4.7. There exists a corresponding stepwise DP-optimal scheduler A ∈
Msc

D (G,X) if and only if the n DP-optimal submachines Gi
des of G exist ∀Xi ∈ X , i ∈

[1, . . . , n].

Proof. The necessary condition is given by Corollary 4.6, which states that if
there is a state Xi of X such that there does not exist a DP-optimal submachine
Gi

des, then there is no way to reach this state with a finite cost (thus in a DP-optimal
way) and the goal cannot be achieved. All the states of X cannot be visited, since
one of them cannot be visited. The condition is sufficient since FSM A, such that

522 H. MARCHAND, O. BOIVINEAU, AND S. LAFORTUNE

A = G1
des◦(X1

Reset
−→ q0)◦G

2
des◦(X2

Reset
−→ q0)◦· · ·◦G

n
des◦(Xn

Reset
−→ q0), visits all the states

of X . A is then a possible scheduler allowing the achievement of the goal.
This theorem implies that the stepwise DP-optimal problem has a solution when

there exists a DP-optimal submachine for each of the Xi. Besides, if a stepwise DP-
optimal solution exists, it need not be unique in general. There is no notion of a
maximal stepwise DP-optimal scheduler, as in the DP-optimal problem [21]. The
problem of finding one of the optimal schedulers is now explored.

5. Determination of a stepwise DP-optimal scheduler. In this section, we
need to assume that the occurrence costs are strictly positive: ∀σ ∈ Σ, ce(σ) > 0.
This assumption is necessary when we use the DP-Opt algorithm in order to ensure
polynomial complexity. We also assume that a DP-optimal submachine exists for
all the states Xi ∈ X . From here on, Gi

des will denote the maximal DP-optimal
submachine of the particular FSM Gi = 〈Σ, Q, q0, Xi, δ〉 output by the DP-Opt

algorithm. We take advantage of the DP-optimal structure of each of the Gi
des. We

explore the possibility of starting the system at q0, reaching a state Xi, and instead of
doing a Reset, continuing the graph to a state Xj . To do so, we convert the problem
to a path-cost minimization problem on a graph equivalent to a TSP.

5.1. Modeling of the problem. In order to convert the stepwise DP-optimal
problem into a path-cost minimization problem, we use the DP-Opt algorithm. This
algorithm computes for each Xi ∈ X the DP-optimal submachine Gi

des. During this
computation, a state Xj belonging to X may be reached. Due to the DP-optimality
definition, the algorithm also gives the DP-optimal submachine between Xj and Xi.
The worst inevitable case cost between these two states can be collected as well and
placed in a matrix C ∈ R

n+1 × R
n+1 that has the following form (see [10] for the

algorithm and further details):

• C[i, i] = ∞, • C[i, 0] = 0, i 6= 0,

• C[0, i] = cgsup(G
i
des), i 6= 0, • C[k, i] =

{

cgsup(M
o
D(G,Xk, Xi)) if it exists,

∞ otherwise.

(5.1)

From additivity Property 4.2, the cost of a scheduler A = A1 ◦A2 ◦ · · · ◦Al of Msc
D is

equal to

Csc
sup(A) =

l
∑

k=1

cgsup(Ak) =

l
∑

k=1

cgsup(M
o
D(G,Xdk−1

, Xdk
)) =

l
∑

k=1

C[dk−1, dk].(5.2)

Considering (5.2), the new optimization problem is now reduced to finding a path
with a minimal cost in the directed graph associated with the matrix C. This closely
resembles the TSP with the slight difference that multiple visits to states of X are
possible. In this new problem, the “cities” are represented by the set of nodes X , and
the “streets” are represented by machines (Gi

des)i∈[1,...,n] and Mo
D(G,Xi, Xj) when

these are available. The costs of these paths are given by the maximum costs for
each machine, i.e., the (cgsup(G

i
des))i∈[1,...,n] and the (cgsup(M

o
D(G,Xi, Xj)))i,j∈[1,...,n].

Figure 5.1 illustrates this conversion from the graph of the FSM to the reachability
graph.

Note that some elements of C might be equal to ∞ after all Gi
des have been

computed, which does not mean that the corresponding DP-optimal submachines do
not exist. This means that they have not been computed in the algorithm DP-Opt.

OPTIMAL SCHEDULERS IN DISCRETE EVENT CONTROL 523

qo

X 5
X 6

X 7

qo

X 5

X 7

X 6
M D

o
(G,X5,X)7

Reset

Reset

Reset

Gdes
7

Gdes
6

Gdes
5

M D
o

(G,X5,X)6

M D
o

(G,X ,X)76

Fig. 5.1. Conversion from the FSM to a reachability graph on the marked states.

Indeed, let us suppose that some Mo
D(G,Xi, Xj) has not been computed (and that

therefore C[i, j] = ∞). It means that it is less costly to perform a Reset from state
Xi to state q0, and to reach Xj through G

j
des. Another way of seeing this is to look at

what the DP-Opt algorithm does. It backtracks from the marked state, say Xj . If it
reaches Xi before q0, this means that the cost from Xi to Xj is less than the cost from
q0 to Xj , in which case it is less costly to go directly from Xi to Xj than to reset the
system. On the other hand, if state Xi is not reached when the algorithm reaches q0
during its backtracking, it means that the cost to go from Xi to Xj is greater than the
cost of resetting the system (0 in our case) and taking the DP-optimal submachine
G

j
des. This explains why these paths are not taken into account as possible paths and

are directly replaced in the matrix C by an infinite cost.

5.2. Generation of the stepwise DP-optimal scheduler. The problem of
finding a stepwise DP-optimal scheduler A0 has been brought down to solving an
instance of the TSP, a classic combinatorial optimization problem. Many methods
exist to solve the problem in an acceptable amount of time [8]. We specify once more
the conditions in which we solve the TSP. The costs of the paths are all nonnegative.
The nodes of X must be visited at least once. One requirement of the TSP is that
the salesman come back to the city he started from. This condition does not change
anything in our problem since this maps to a Reset, which has null cost in our model.
Finally, note that the cost matrix C, given in section 5.1, is not necessarily symmetric.

The first step is to transform our modified version of the TSP, where we can visit
a node more than once (but at least once), into an ordinary TSP where we must visit
each node exactly once. This is typically done by transforming the matrix C into
a matrix C ′, called the all-pairs shortest-paths matrix [8]. Many techniques exist to
perform such a computation. Among them is the Floyd–Warshall algorithm [8], which
runs in a worst case of O(n3), where n represents the number of vertices. Once the
all-pairs shortest-paths matrix C ′ is obtained, we can feed it to a TSP solver.

C and C ′ have the same dimension but represent different features of the graph.
C contains, as noninfinite elements, the costs of the links that actually exist in the
graph of the TSP. C ′ contains the minimum costs necessary to go from one marked
state to another, along DP-optimal submachines. C ′ is a reachability matrix, whereas
C is a connectivity matrix. Notably, C ′ shows if states can be reached by using the
Reset event. Concretely, to obtain C ′ from C, one only needs to replace any infinite
value in C by the value in the same column in the first line (the cost of the Gi

des

associated with column i).

Resolution of the TSP. The actual solving of the TSP from matrix C ′ can be
done by using several methods. The most common method is the branch and bound
method (see Chapters 9 and 10 of [9] and [12, 7]). An outline of the method can
be found in Appendix B of [10]. The worst-case complexity for solving the TSP is

524 H. MARCHAND, O. BOIVINEAU, AND S. LAFORTUNE

(n + 1)!. However, the branch and bound method is expected to give a solution to
the TSP in a tolerable amount of time. (To give a feel of the time complexity of this
method, a 1,000 node fully-connected TSP can be solved in about 20 minutes on a
standard workstation.)

The principle of the branch and bound method is quite natural. A branching
strategy and a bounding strategy are used alternatively. The branching strategy
consists of forcing a supplementary constraint to the system, usually by forcing a set
of subpaths in the graph. This allows us to find a solution that is suboptimal in
general but that is sometimes optimal. The bounding strategy focuses on finding a
lower bound on the cost of the optimal solution by relaxing one of the constraints
of the problem (usually by relaxing the constraint that the solution must be a tour).
The branching yields a search tree, and the bounding yields a way of quickly finding
a suboptimal solution which is close to the optimal solution of the problem. The final
solution is optimal.

5.3. Restitution of the stepwise DP-optimal scheduler. From a solution of
the TSP, we now build a corresponding stepwise DP-optimal scheduler. The resolution
of the TSP provides an optimal solution that gives the ordering in which the states
should be visited so as to minimize the worst-case cost. A solution is under the form
of a set of n + 1 pairs (there are n + 1 = |X ∪ {q0}| states), in which each state
appears exactly once as an initial state and exactly once as a final state of a pair. For
pairs (Xi, Xj) that represent a physically existing submachine Mo

D(G,Xi, Xj), i.e., for
which C[i, j] < ∞, it is sufficient to map these pairs to their associated submachine.
As for the pairs (Xi, Xj) that do not map to an existing DP-optimal submachine,
i.e., those for which C[i, j] = ∞ and C ′[i, j] < ∞, they are divided into two pairs,
namely, (Xi, q0) and (q0, Xj). The first is mapped to a Reset to the initial state, and

the second is mapped to the DP-optimal submachine G
j
des.

Theorem 5.1. Given a solution of the TSP, by adopting the previous mapping,
the obtained scheduler is stepwise DP-optimal.

Proof. The initial solution of the TSP with respect to the matrix C ′ is given
by a tour of the form {(q0, Xi1); (Xi1 , Xi2); . . . (Xij , Xij+1); . . . ; (Xin , q0)} with a cor-
responding cost TSP (C ′) = C ′[0, i1] + C ′[i1, i2] + · · · + C ′[ij , ij+1] + · · · + C ′[in, 0].
Consider now the transformation previously adopted. If the pair (Xi, Xj) originally
exists, i.e., C[i, j] < ∞, then the path is admissible in the original problem and we
replace the pair by the submachine Mo

D(G,Xi, Xj), where the corresponding cost
cgsup(M

o
D(G,Xi, Xj)) is equal to C[i, j]. If the pair (Xi, Xj) does not map to an exist-

ing DP-optimal submachine, i.e., C[i, j] = ∞, then we need to Reset the system before
directly going to Xj through G

j
des. The triangular inequality of Lemma (4.5) ensures

that in this case, C ′[i, j] = cgsup(G
j
des). The pair is then replaced by the subscheduler

(Xi
Reset
−→ q0) ◦G

j
des, with the corresponding cost equal to cgsup(G

j
des).

We then obtain a new sequence of pairs, with a cost equal to TSP (C ′) but for
which all the submachines actually exist in the original problem. The DP-optimality
of each submachine of the scheduler is given by construction, since we only consider
submachines of the form Mo

D(G,Xi, Xj) or G
j
des. The minimal cost of the scheduler

is ensured by the optimality of the TSP solution and by the fact that the mapping
does not add new costs.

An interesting property is given next. It states that all the submachines that con-
stitute a stepwise DP-optimal scheduler are directly derived from all the DP-optimal
submachines built during the computation of the matrix C (see section 5.1 and (5.1)).

OPTIMAL SCHEDULERS IN DISCRETE EVENT CONTROL 525

Proposition 5.2. A stepwise DP-optimal scheduler Ao obtained by the TSP
solution is composed of exactly n different DP-optimal submachines (not counting the
possible Resets of the system). Moreover, all these submachines are obtained from the
DP-optimal submachines (Gi

des)i∈[1,...,n] computed during the matrix generation step
(see (5.1)).

Proof. The general solution of the TSP for the matrix C ′ is a tour of the form
{(q0, Xi1); (Xi1 , Xi2); . . . ; (Xij , Xij); . . . ; (Xin , q0)}. Note that there are exactly n+ 1
pairs in this tour (but the last pair is a trivial one, i.e., a Reset). If a pair (Xi, Xj)
originally exists, i.e., if C[i, j] < ∞, then the path is in the original problem and it
is replaced by the submachine Mo

D(G,Xi, Xj). If not, i.e., if C[i, j] = ∞, then the

system is reset before directly going to Xj through G
j
des. The pair is then replaced

by the subscheduler (Xi
Reset
−→ q0) ◦ G

j
des. The n pairs are then replaced by either the

DP-optimal submachine Mo
D(G,Xi, Xj) = Trim(Gj

des, Xi, Xj), or by the subsched-

uler (Xi
Reset
−→ q0)◦G

j
des. The final solution of our problem has then exactly n nontrivial

submachines that can be obtained from the n DP-optimal submachine (Gi
des)i=[1,...,n]

of G, by a trim operation.

Corollary 5.3. In a stepwise DP-optimal scheduler obtained by the TSP solu-
tion, the states of X are visited exactly once by the stepwise DP-optimal scheduler.3

We wish to draw attention to the following fact. The stepwise DP-optimal sched-
uler visits each marked state exactly once when it is obtained from the TSP solution.
However, the system itself, through its evolution described by the FSM G, may visit
a marked state of G more than once. This comes from the fact that the scheduler is
constructed on C ′, whereas the behavior of the system modeled by the FSM G should
be observed at a less abstract level, namely at the level of the FSM, G.

Remark 5.1. In [10], we also presented the resolution of the stepwise DP-optimal
problem in the case of a nonzero occurrence cost for the Reset event (see section 5.3
of [10] for further details).

5.4. Some simplifications of the TSP resolution. In order to solve the
stepwise DP-optimal problem, we have to solve the corresponding TSP for the matrix
C. The TSP is an NP-complete problem. It is then greatly advantageous to find
some simplification methods, taking advantage of the special structure of a stepwise
DP-optimal scheduler, in order to reduce the computational complexity of the corre-
sponding TSP without loss of global optimality. Proofs and algorithms are omitted
in this section due to lack of space. They can be found in the companion paper [10].

5.4.1. Divide and conquer. In some cases, it is possible to divide the matrix
C into several smaller ones. In such cases, it suffices to solve the TSP on each of these
submatrices. The following proposition states the necessary and sufficient conditions
for this simplification.

Proposition 5.4. Assume there exists a partition of X = ∪k∈[1,...,l](Xk) such
that ∀k1, k2 ∈ [1, . . . , l], ∀Xi ∈ Xk1 , and ∀Xj ∈ Xk2 , the submachine Mo

D(G,Xi, Xj)
is not defined.

If Ao is a stepwise DP-optimal scheduler with respect to X , then it is possible
to find a set of schedulers AXk

, where each AXk
is stepwise DP-optimal with respect

to Xk with an optimal cost cscsup(AXk
) to visit of all the states of Xk, and such that

Ao = ◦lk=1AXk
with cscsup(Ao) =

∑l

k=1 c
sc
sup(AXk

).

3The proof is omitted and can be found in [10].

526 H. MARCHAND, O. BOIVINEAU, AND S. LAFORTUNE

In view of Proposition 5.4, the global problem can be solved on each submatrix
Ck, k ∈ [1, . . . , l], corresponding to the particular set of states Xk∪{q0}. The necessary
computation to find the connected components before applying Proposition 5.4 can
be performed in O(n + E), where E is the number of vertices of the directed graph
associated to matrix C (see [10] for details).

5.4.2. Terminal path simplification. We address here a property of the sched-
uler that can lead to a simplification on the matrix C. This property states that if
there exists a kind of “dead-end” in the graph of the matrix, then it is always better
to follow this path until the end than to perform a Reset and come back to visit the
end of this path later.

Proposition 5.5. Assume that there exists a subset Xi = (Xik)k∈[1,...,m] of X ,
with m < n and such that

1. ∀k ∈ [1, . . . ,m− 1], Mo
D(G,Xik , Xik+j

) exists for j ∈ [1, . . . ,m− k],
2. ∀k ∈ [2, . . . ,m], Mo

D(G,Xik , Xik−j
) does not exist for j ∈ [1, . . . , k − 1],

3. ∀k ∈ [1, . . . ,m] and ∀Xl ∈ X − Xi, M
o
D(G,Xik , Xl) is not defined.

Under these assumptions, the submachines (Gik
des)k∈[2,...,m] do not belong to the step-

wise DP-optimal scheduler Ao.

Proposition 5.5 deals with situations where a dead-end occurs. By dead-end, we
mean a set of states {q1, . . . , qn} in which ∀i ∈ [1, . . . , n], (qj)j>i are the only states
coaccessible from qi. If there exists a dead-end in the graph of marked states, the
system will never enter that dead-end directly through one of the Gi

des but will only
enter indirectly from the initial state q0. This means that no direct submachine of
the type Gi

des will be used by a scheduler to enter a dead-end. Any visit to a state of
the dead-end is done via a visit to a state that does not belong to the dead-end.

An algorithm that performs this simplification on the matrix C according to the
three assumptions in Proposition 5.5 is presented in [10]. Its complexity is linear in
the number of states of X . With this simplification, the paths of the form q0 → Xik

do not constitute valid paths any longer and, consequently, will not be taken into
account as possible solutions in the corresponding TSP solution. This terminal path
simplification can narrow down the search space when solving the TSP.

5.4.3. Predefined partial order for the visit of X . Throughout section 5,
we have assumed that we had no prespecified order in which to visit the marked states
in X . This may be the case in several applications. However, in other applications,
such as test-generation, we may be interested in the path taken by a system more than
in the final state it reaches. The designer may want to enforce the system to follow a
given path. The path would be characterized by the states it traverses, which would be
marked. This would yield an ordering, not on the marked states, but on the subpaths
themselves. A possible extension of this predefined partial order assumption would
be to consider our problem in a hierarchical setting in the same spirit as in [23, 22].

Let us consider a simple example. Assume that we have the marked states
{X1, . . . , X10} to visit in an optimal way. If we do not prespecify the order in which
they should be visited, the TSP will be solved on a 10 × 10 matrix. The designer
may want to observe the behavior of the system when it visits states X1 through X3

in that order, X4 through X7 in that order, and X7 through X10 in that order. This
would reduce the TSP to a 3 × 3 matrix, abstracting away from the ten states to four
macrostates: {q0}, {X1, X2.X3}, {X4, X5, X6, X7}, and {X8, X9, X10}. The solution
thus obtained will not be stepwise DP-optimal per se. It will be optimal given the
additional constraints imposed by the designer.

OPTIMAL SCHEDULERS IN DISCRETE EVENT CONTROL 527

qo
a

a

a

a

aa

a

a

b
b

b

b

u

v

X

X

X

X

X

X 1

X 2

5

4

3

7

6

f

c

d

e

c

e

g

f

d
Event ce Remarks

a,f 1 Controllable
b,c,d,e 2 Controllable

g 4 Controllable
Reset 0 Controllable

u 3 Uncontrollable
v 2 Uncontrollable

Fig. 6.1. The initial system G and the event cost function.

qo
a

b
v

X 1

X 2

c

(a)
c
g
sup(G1

des
) = 6

qo
a

v

X 1

X 2

c f

(b)
c
g
sup(G2

des
) = 4

qo

a

b

v
X

X 1

X 2

3
a

c f

(c) c
g
sup(G3

des
) = 5

qo

a

a

a

b

u

v

X

X 1

X 2

4

c

f

f

d

(d) c
g
sup(G4

des
) = 6

qo

a

ab

b

X 5

e

(e) c
g
sup(G5

des
) = 4

qo

a

a

ab

b

X

X
5

6

e

(f) c
g
sup(G6

des
) = 5

qo

aa

a

ab

b

X

X

X

5

7

6

e

(g) c
g
sup(G7

des
) = 6

Fig. 6.2. The DP-optimal FSMs for the different state of X .

6. Example. The following example is constructed to illustrate the essential
stages of the optimal control problem for multiple marked states to visit. For the sake
of simplicity, we have assumed that all control costs have zero cost for controllable
events and infinite costs for uncontrollable events. We here consider a system modeled
by the FSM G, which represents its legal behavior. In this example, there are seven
states denoted (Xi)i∈[1,...,7] = X to visit in no particular order. Some costs are
allocated to each of the events of the FSM G. The event costs and their status
(controllable or not) are as depicted in Figure 6.1.

Note that in Figure 6.1, the Reset events are not represented but exist between
each of the (Xi)i∈[1,...,7] and the initial state q0. The first phase of the algorithm
consists of computing the various DP-optimal submachines (Gi

des)i∈[1,...,7] for each
of the final states of X . This part is performed using the DP-Opt algorithm (see
Appendix A of [10]). The seven figures given next (Figure 6.2) correspond to the
DP-optimal submachines for each of the final states (Xi)i∈[1,...,7]. We also give the
worst inevitable cost for each submachine (Gi

des)i∈[1,...,7].
According to (5.1) in section 5.1, we obtain the matrix C, encoding the worst

inevitable cost between two states Xi and Xj .

528 H. MARCHAND, O. BOIVINEAU, AND S. LAFORTUNE

q0 X1 X2 X3 X4 X5 X6 X7

q0 ∞ 6 4 5 5 4 5 6

X2 0 2 ∞ 1 2 ∞ ∞ ∞
X3 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
X4 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
X5 0 ∞ ∞ ∞ ∞ ∞ 1 2

X6 0 ∞ ∞ ∞ ∞ ∞ ∞ 1

X7 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞

Following Proposition 5.4, we can see that X1 = {X1, X2, X3, X4} and X2 =
{X5, X6, X7} form a partition of the set of states X = (Xi)i∈[1,...,7]. Moreover, the
states of X2 satisfy Proposition 5.5. Thus, in order to solve the TSP, we can now
consider the two following matrices. Note that in the second one, we have replaced
C[0, 6] and C[0, 7] by ∞ as stated by Proposition 5.5.

q0 X1 X2 X3 X4

q0 ∞ 6 4 5 5

X1 0 ∞ 1 2 3

X2 0 2 ∞ 1 2

X3 0 ∞ ∞ ∞ ∞
X4 0 ∞ ∞ ∞ ∞

q0 X5 X6 X7

q0 ∞ 4 ∞ ∞
X5 0 ∞ 1 2

X6 0 ∞ ∞ 1

X7 0 ∞ ∞ ∞

One solution (there are several) of the TSP for each submatrix is

{(q0, X4); (X4, X1); (X1, X2); (X2, X3); (X3, q0)},

{(q0, X5); (X5, X6); (X6, X7); (X7, q0)}.

This is the output of the TSP resolution method run on each of the subproblems.
The optimal worst-case costs are 13 and 6, respectively. From Theorem (5.1), there
exist two stepwise DP-optimal schedulers A01 and A02 . We need to retrieve them
from the output of the resolution of the TSP and build a global stepwise DP-optimal
scheduler A0.

We look at each one of the pairs and see if they correspond to a DP-optimal
submachine. In this case (q0, X4), (X1, X2), (X2, X3), and (X3, q0) correspond to

G4
des, Mo

D(G,X1, X2), Mo
D(G,X2, X3), and X3

Reset
−→ q0, respectively. (X4, X1) does

not have any associated DP-optimal submachine. We decompose it: (X4, X1) be-

comes (X4
Reset
−→ q0) concatenated with G1

des. An optimal DP-optimal scheduler Ao1 is
the following:

Ao1 = G4
des ◦ (X4

Reset
−→ q0) ◦G

1
des ◦M

o
D(G,X1, X2) ◦M

o
D(G,X2, X3) ◦ (X3

Reset
−→ q0).

For the second subproblem of the divide and conquer method, we also map the pairs
to original DP-optimal submachines, yielding scheduler Ao2 .

Ao2 = G5
des ◦M

o
D(G,X5, X6) ◦M

o
D(G,X6, X7) ◦ (X7

Reset
−→ q0).

Note that we use exactly four DP-optimal submachines for the first subproblem
and three for the second, as expected from Proposition 5.3. We finally generate the

OPTIMAL SCHEDULERS IN DISCRETE EVENT CONTROL 529

global stepwise DP-optimal scheduler Ao as the concatenation of the two subschedulers
Ao1 and Ao2 , yielding the following scheduler, Ao.

Ao = Ao1 ◦Ao2

= G4
des ◦ (X4

Reset
−→ q0) ◦G

1
des ◦M

o
D(G,X1, X2) ◦M

o
D(G,X2, X3) ◦ (X3

Reset
−→ q0)

◦ G5
des ◦M

o
D(G,X5, X6) ◦M

o
D(G,X6, X7) ◦ (X7

Reset
−→ q0).

In fact, this scheduler is actually composed of three different nontrivial subschedulers.
The stepwise DP-optimal Ao can be rewritten as

Ao = G4
des ◦ (X4

Reset
−→ q0) ◦A1 ◦ (X3

Reset
−→ q0) ◦A2 ◦ (X7

Reset
−→ q0).

where

{

A1 = Mo
D(G,X1, X2) ◦M

o
D(G,X2, X3),

A2 = G5
des ◦M

o
D(G,X5, X6) ◦M

o
D(G,X6, X7).

(6.1)

This last expression shows the minimum number of Resets that are necessary to visit
all the Xi in an optimal way (three, in this case).

7. Potential applications of the theory. Applications of the theory that we
have elaborated cover various fields of engineering. One application that can be de-
veloped from the theory is test objective generation. In test objective generation, the
goal is to check whether a particular system meets the expectations or the require-
ments that are associated with it. In this framework, the states of interest may be
states in which the system is suspected to behave incoherently or incorrectly, or states
in which misbehavior could be dramatic or dangerous. These would be the states that
would be marked. The theory that we developed allows us to visit all these states and
to test the behavior of the system in each one. Once the system has reached one of
the marked states, all the known events can be disabled to check if the system stops
or enters a forbidden state. A timeout can be set, for example. If the system has
not behaved incoherently after that timeout, we can decide to pursue the visit of the
marked states. Other more involved strategies can be applied to determine whether a
state is faulty or not. For each state, either the behavior of the system is acceptable,
or it is not. In the first case where the state is flawless, the next submachine of the
scheduler is activated in order to make the system evolve in the next state of interest
to be tested. In the case where a failure has been detected in the state, either we stop
since the system is faulty and does not correspond to the awaited specifications, or we
proceed to determine other possible faults. To do so, we reset the system to its initial
state q0, and go directly to the next state, say Xi, through its direct DP-optimal
submachine, namely Gi

des, and the process continues.
Another application area is planning in the case of multiple goals in AI. Several

search algorithms exist when one unique goal is sought (see part II of [18]). Planning
in the case of multiple goals remains challenging and interesting. The framework
in which we have developed the theory allows goals to be independent or related.
Once again, the Reset event has an interesting interpretation in AI. It represents
the impossibility to meet all the goals without returning to the initial state. It may
represent the possibility of using several agents to achieve the goals, each running in
parallel. The number of Reset events gives the necessary and sufficient number of
agents that are needed to perform the goal of reaching all the subgoals in parallel,
without any conflicts. These applications constitute interesting further work.

We give a last potential application example of our theory: routing in a com-
munication network. In the same way that several agents can perform in parallel to

530 H. MARCHAND, O. BOIVINEAU, AND S. LAFORTUNE

achieve different tasks, in a communication network a message can be broadcast by
generating multiple copies of it and sending these copies in parallel, along the step-
wise DP-optimal paths. These paths are actually the stepwise DP-optimal schedulers
seen as stepwise DP-optimal subnetworks. The marked states represent the agents to
whom the messages are destined. The costs may be the energy consumed for each
transmission between nodes. The uncontrollability of certain events may reflect the
possibility of other agents changing the terminal path to certain nodes, based on their
own view of the network.

Example 7.1. Consider the example of section 6 as a routing problem in a commu-
nication problem. Relation (6.1) (i.e., the solution of the stepwise DP-optimal prob-
lem) highlights the manner in which the information would need to be sent through
the communication network. Given that there are exactly three Reset events, the
sender should generate exactly three messages and send them in parallel. For each
message, the sender can specify (in each header, for example) the desired route that
each message should take, according to the sender’s view of the network and calcu-
lations. (This routing is actually given by the corresponding stepwise DP-optimal
subscheduler.) However, the uncontrollability is represented by the fact that other
intermediate routing nodes may have a view of the network that is different from that
of the sender, in which case the former might decide on a new route.

8. Conclusion. In this paper, we have introduced a new type of optimal control
for DES. Previous work in optimal control deals with numerical performances in
supervisory control theory when the goal to achieve is a unique state of interest. In
contrast, our goal was to make the system evolve through a set of goals one by one,
with no order necessarily specified a priori. The order in which the states are visited
was part of the optimization problem since it had an influence on the cost of visiting
all the goal states.

The system to be controlled is represented by an FSM with a set of multiple
marked states X = (Xi)i∈[1,...,n] representing the states of interest. Our aim was
to have the system reach each and every one of the (Xi)i∈[1,...,n]. To do so, we have
introduced the notion of a scheduler. A scheduler can be thought of as a concatenation
of submachines. The role of the scheduler is to make the system evolve according to
one submachine at a time and account for switching between them at appropriate
instants, i.e., when one of the states of interest has been reached. We have then
introduced the notion of a stepwise DP-optimal scheduler of an FSM G with respect
to the set X . This particular type of scheduler is custom made given the system
on which the optimization is to be run. It has the particularity of being composed
of DP-optimal submachines which allow optimality from state of interest to state of
interest (stepwise). Moreover, the ordering of these DP-optimal submachines allows
global optimality in the sense that the total worst-case cost of visiting all the states
of X is minimized.

We gave a necessary and sufficient condition for the existence of a stepwise DP-
optimal scheduler, namely, the existence of n DP-optimal submachines between the
initial state q0 and each state of the n states of X . This condition is not very restrictive,
since if it does not hold, that means that one of the states is not reachable in a
controllable manner, i.e., not surely reachable from the initial state q0. In such a
case, it is obvious that the state in question will never be reachable with a surely
finite cost.

From a computational point of view, we showed that our optimal problem could
be brought down to an instance of the TSP. The solution of this particular TSP

OPTIMAL SCHEDULERS IN DISCRETE EVENT CONTROL 531

gives a direct access to both the structure of a stepwise DP-optimal scheduler and
the worst-case cost for visiting all the states of interest. Considering the high com-
putational complexity of this step, we also gave ways of taking advantage of some
particular properties of the structure of a stepwise DP-optimal scheduler, leading to
the reduction of the computational complexity of the corresponding TSP without loss
of global optimality.

Finally, besides the possible applications briefly presented in section 7, future
work will most probably extend the theory to the case of a system where the events
are partially observable.

Acknowledgment. The authors wish to thank the reviewers for their relevant
comments.

REFERENCES

[1] E. Brinskma, A theory for the derivation of tests, Protocol Specification, Testing and verifica-
tion, 7 (1988), pp. 63–74.

[2] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1999.

[3] J. Fernandez, C. Jard, T. Jéron, and C. Viho, Experiment in automatic generation of test
suites for protocols with verification technology, Sci. Comput. Programming, 29 (1997), pp.
123–146.

[4] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Com-
putation, Addison-Wesley, Reading, MA, 1979.

[5] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, Planning and acting in partially
observable stochastic domains, Artificial Intelligence, 101 (1998), pp. 99–134.

[6] R. Kumar and V. Garg, Optimal control of discrete event dynamical systems using network
flow techniques, in Proceedings of the 29th Allerton Conference on Communication, Con-
trol, and Computing, Champaign, IL, 1991, pp. 705–714.

[7] V. Kumar and L. N. Kanal, A general branch and bound formulation for and/or graph and
game tree search, in Search in Artificial Intelligence, Springer-Verlag, New York, Berlin,
1988, pp. 91–130.

[8] E. L. Lawler, J. K. Lenstra, A. H. G. Rinooy Kan, and D. B. Shmoys, The Traveling
Salesman Problem, John Wiley, New York, 1985.

[9] E. L. Lawler and D. E. Wood, Branch-and-bound methods: A survey, Oper. Res., 14 (1966),
pp. 699–719.

[10] H. Marchand, O. Boivineau, and S. Lafortune, On the Synthesis of Optimal
Schedulers in Discrete Event Control Problems with Multiple Goals, Tech. Re-
port n◦ CGR-98-10, Control Group Reports, College of Engineering, Univer-
sity of Michigan, Ann Arbor, MI, 1998. Available via ftp. from ftp://ftp.eecs.
umich.edu/techreports/systems/control group/lafortune/.

[11] H. Marchand and M. Le Borgne, On the optimal control of polynomial dynamical systems
over z/pz, in Proceedings of the 4th IEE International Workshop on Discrete Event Sys-
tems, Cagliari, Italy, 1998, pp. 385–390.

[12] K. Murty, Operations Research: Deterministic Optimization Models, Prentice-Hall, Upper
Saddle River, N.J., 1995.

[13] D. J. Musliner, E. H. Durfee, and K. G. Shin, {Circa}: {A} cooperative intelligent real
time control architecture, IEEE Trans. Systems, Man, and Cybernetics, 23 (1993), pp.
1561–1574.

[14] K. Passino and P. Antsaklis, On the optimal control of discrete event systems, in Proceedings
of the 28th IEEE Conference on Decision and Control, Tampa, FL, 1989, pp. 2713–2718.

[15] P. J. Ramadge and W. M. Wonham, Supervisory control of a class of discrete event processes,
SIAM J. Control Optim., 25 (1987), pp. 206–230.

[16] P. J. G. Ramadge and W. M. Wonham, The control of discrete event systems, Proceedings
of the IEEE, 77 (1989), pp. 81–98.

[17] A. Rouger and M. Phalippou, Test cases generation from formal specifications, in Proceed-
ings of the ISS’92, Yokohama, Japan, 1992, p. C10.2.

[18] S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall, Upper
Saddle River, NJ, 1995.

532 H. MARCHAND, O. BOIVINEAU, AND S. LAFORTUNE

[19] R. Sengupta and S. Lafortune, A Deterministic Optimal Control Theory for Discrete Event
Systems: Computational Results, Tech. Report n◦ CGR-93-16, Control Group Reports,
College of Engineering, University of Michigan, Ann Arbor, MI, 1993. Available via ftp.
from ftp://ftp.eecs.umich.edu/techreports/systems/control group/lafortune/.

[20] R. Sengupta and S. Lafortune A Deterministic Optimal Control Theory for Discrete Event
Systems: Formulation and Existence Theory, Tech. Report n◦ CGR-93-7, Control Group
Reports, College of Engineering, University of Michigan, Ann Arbor, MI, 1993. Available
via ftp. from ftp://ftp.eecs.umich.edu/techreports/systems/control group/lafortune/.

[21] R. Sengupta and S. Lafortune, An optimal control theory for discrete event systems, SIAM
J. Control Optim., 36 (1998), pp. 488–541.

[22] G. Shen and P. Caines, Control consistency and hierarchically accelerated dynamic program-
ming, in Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL,
1998, pp. 1686–1691.

[23] G. Shen, P. Caines, and P. Hubbard, Control Consistency and Hierarchically Accelerated
Dynamic Programming, Tech. report, Department of Electrical Engieering, McGill Univer-
sity, Montreal, Quebec, Canada, 1997.

[24] E. Tronci, Optimal state supervisory control, in Proceedings of the 35th IEEE Conference on
Decision and Control, Kobe, Japan, 1996, pp. 2237–2242.

