
Incremental Design of a Po wer Transformer

Station Controller using a Controller Synthesis

Methodology?

Herv�e Marchand1 and Mazen Samaan2

1 IRISA / INRIA - Rennes,

F-35042 RENNES, France

e-mail: hmarchan@irisa.fr
2 EDF/DER, EP, dept. CCC,

6 quai Watier, 78401 CHATOU, France

e-mail: Mazen.Samaan@der.edf.fr

Abstract. In this paper, we describe the incremental speci�cation of a

pow er transformer station controller using a contr oller synthesis method-

ology. We specify the main requirements as simple properties, named

contr ol objectives, that the controlled plant has to satisfy . Then, using

algebraic tec hniques, the controller is automatically derived from these

set of con trol objectiv es. In our case, the plant is speci�ed at a high level,

using the data-ow synchronous Signal language and then by its logical

abstraction, named polynomial dynamical system. The control objectives

are speci�ed as invariance, reachability, attr activityproperties, as well as

partial order relations to be checked by the plant. The control objectives

equations are then synthesized using algebraic transformations.

Key-words: Discrete Even t Systems, Polynomial Dynamical System, Supervi-

sory Control Problem, Signal, Pow er Plant.

1 Introduction & Motivations

The Signal language [8] is developed for precise speci�cation of real-time reac-

tive systems [2]. In such systems, requirements are usually chec keda posteriori

using property veri�cation and/or simulation techniques. Control theory of Dis-

crete Even t Systems (DES) allows to use constructive methods, that ensure, a

priori, required properties of the system behavior. The validation phase is then

reduced to properties that are not guaranteed by the programming process.

There exist di�erent theories for control of Discrete Even t Systems since the

80's [14, 1, 5, 13]. Here, we choose to specify the plant in Signal and the control

synthesis as well as veri�cation are performed on a logical abstraction of this

program, called a polynomial dynamical system (PDS) over Z=3Z. The control

? This work was partially supported by �Electricit �e de France (EDF) under contract

number M64/7C8321/E5/11 and by the Esprit SYRF project 22703.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1605-1624, 1999.
 Springer-Verlag Berlin Heidelberg 1999

of the plant is performed by restricting the controllable input values with respect

to the control objectives (logical or optimal). These restrictions are obtained by

incorporating new algebraic equations into the initial system. The theory of PDS

uses classical tools in algebraic geometry, such as ideals, varieties and morphisms.

This theory sets the basis for the veri�cation and the formal calculus tool, Si-

gali built around the Signal environment. Sigali manipulates the system of

equations instead of the sets of solutions, avoiding the enumeration of the state

space. This abstract level avoids a particular choice of set implementations, such

as BDDs, even if all operations are actually based on this representation for sets.

Fig. 1. Description of the tool

The methodology is the following (see Figure 1). The user �rst speci�es

in Signal both the physical model and the control/veri�cation objectives to

be ensured/checked. The Signal compiler translates the Signal program into

a PDS, and the control/veri�cation objectives in terms of polynomial rela-

tions/operations. The controller is then synthesized using Sigali. The result

is a controller coded by a polynomial and then by a Binary Decision Diagram.

To illustrate our approach, we consider in this paper the application to the

speci�cation of the automatic control system of a power transformer station. It

concerns the response to electric faults on the lines traversing it. It involves com-

plex interactions between communicating automata, interruption and preemp-

tion behaviors, timers and timeouts, reactivity to external events, among others.

The functionality of the controller is to handle the power interruption, the redi-

rection of supply sources, and the re-establishment of the power following an

interruption. The objective is twofold: the safety of material and uninterrupted

best service. The safety of material can be achieved by (automatic) triggering

circuit-breakers when an electric fault occurs on lines, whereas the best quality

service can be achieved by minimizing the number of costumers concerned by

a power cut, and re-establishment of the current as quickly as possible for the

customers hit by the fault (i.e, minimizing the failure in the distribution of power

in terms of duration and size of the interrupted sub-network).

1606 H. Marchand and M. Samaan

2 Overview of the power transformer station

In this section, we make a brief description of the power transformer station

network as well as the various requirements the controller has to handle.

2.1 The power transformer station description

�Electricit�e de France has hundreds of high voltage networks linked to production

and medium voltage networks connected to distribution. Each station consists of

one or more power transformer stations to which circuit-breakers are connected.

The purpose of an electric power transformer station is to lower the voltage so

that it can be distributed in urban centers to end-users. The kind of transformer

(see Figure 2) we consider, receives high voltage lines, and feeds several medium

voltage lines to distribute power to end-users.

Fig. 2. The power transformer station topology.

For each high voltage line, a transformer lowers the voltage. During opera-

tion of this system, several faults can occur (three types of electric faults are

considered: phase PH, homopolar H, or wattmetric W), due to causes internal or

external to the station. To protect the device and the environment, several cir-

cuit breakers are placed in a network of cells in di�erent parts of the station

(on the arrival lines, link lines, and departure lines). These circuit breakers are

informed about the possible presence of faults by sensors.

Power and Fault Propagation: We discuss here some physical properties of

the power network located inside the power transformer station controller. It is

obvious that the power can be seen by the di�erent cells if and only if all the

upstream circuit-breakers are closed. Consequently, if the link circuit-breaker is

1607Incremental Design of a Power Transformer Station Controller

opened, the power is cut and no fault can be seen by the di�erent cells of the

power transformer station. The visibility of the fault by the sensors of the cells

is less obvious. In fact, we have to consider two major properties:

{ On one hand, if a physical fault, considered as an input of our system, is

seen by the sensors of a cell, then all the downstream sensors are not able to

see some physical faults. In fact, the appearance of a fault at a certain level

(the departure level in Figure 3(a) for example) increases the voltage on the

downstream lines and masks all the other possible faults.

(a) The fault masking (b) The fault propagation

Fig. 3. The Fault properties

{ On the other hand, if the sensors of a cell at a given level (for example

the sensors of one of the departure cells as illustrated in Figure 3(b)) are

informed about the presence of a fault, then all the upstream sensors (here

the sensors of the arrival cell) detect the same fault. Consequently, it is the

arrival cell that handle the fault.

2.2 The controller

The controller can be divided into two parts. The �rst part concerns the local

controllers (i.e., the cells). We chose to specify each local controller in Signal,

because they merge logical and numerical aspects. We give here only a brief

description of the behavior of the di�erent cells (more details can be found in

[12, 7]). The other part concerns more general requirements to be checked by

the global controller of the power transformer station. That speci�cation will be

described in the following.

The Cells: Each circuit breaker controller (or cell) de�nes a behavior beginning

with the con�rmation and identi�cation of the type of the fault. In fact, a variety

of faults are transient, i.e., they occur only for a very short time. Since their

duration is so short that they do not cause any danger, the operation of the

circuit-breaker is inhibited. The purpose of this con�rmation phase is let the

transient faults disappear spontaneously. If the fault is con�rmed, the handling

consists in opening the circuit-breaker during a given delay for a certain number

1608 H. Marchand and M. Samaan

of periods and then closing it again. The circuit-breaker is opened in consecutive

cycles with an increased duration. At the end of each cycle, if the fault is still

present, the circuit-breaker is reopened. Finally, in case the fault is still present

at the end of the last cycle, the circuit-breaker is opened de�nitively, and control

is given to the remote operator.

The speci�cation of a large part of these local controllers has been performed

using the Signal synchronous language [12] and veri�ed using our formal cal-

culus system, named Sigali [7].

Some global requirements for the controller: Even if is quite easy to

specify the local controllers in Signal, some other requirements are too informal,

or their behaviors are too complex to be expressed directly as programs.

1. One of the most signi�cant problems concerns the appearance of two faults

(the kind of faults is not important here) at two di�erent departure cells, at

the same time. Double faults are very dangerous, because they imply high

defective currents. At the place of the fault, this results in a dangerous path

voltage that can electrocute people or cause heavy material damages. The

detection of these double faults must be performed as fast as possible as well

as the handling of one of the faults.

2. Another important aspect is to know which of the circuit breakers must be

opened. If the fault appears on the departure line, it is possible to open the

circuit breaker at departure level, at link level, or at arrival level. Obviously,

it is in the interest of users that the circuit be broken at the departure level,

and not at a higher level, so that the fewest users are deprived of power.

3. We also have to take into account the importance of the departure circuit-

breaker. Assume that some departure line, involved in a double faults prob-

lem, supplies a hospital. Then, if the double faults occur, the controller

should not open this circuit-breaker, since electricity must always delivered

to a hospital.

The transformer station network as well as the cells are speci�ed in Signal. In

order to take into account the requirements (1), (2) and (3), with the purpose of

obtaining an optimal controller, we rely on automatic controller synthesis that

is performed on the logical abstraction of the global system (network + cells).

3 The Signal equational data ow real-time language

Signal [8] is built around a minimal kernel of operators. It manipulates signals

X, which denote unbounded series of typed values (xt)t2T , indexed by time t in
a time domain T . An associated clock determines the set of instants at which

values are present. A particular type of signals called event is characterized

only by its presence, and has always the value true (hence, its negation by not

is always false). The clock of a signal X is obtained by applying the operator

event X. The constructs of the language can be used in an equational style to

1609Incremental Design of a Power Transformer Station Controller

specify the relations between signals i.e. , between their values and between their

clocks. Systems of equations on signals are built using a composition construct,

thus de�ning processes. Data ow applications are activities executed over a set

of instants in time. At each instant, input data is acquired from the execution

environment; output values are produced according to the system of equations

considered as a network of operations.

3.1 The Signal language.

The kernel of the Signal language is based on four operations, de�ning primitive

processes or equations, and a composition operation to build more elaborate

processes in the form of systems of equations.

Functions are instantaneous transformations on the data. The de�nition of a

signal Yt by the function f : 8t; Yt = f(X1t ; X2t ; : : : ; Xnt) is written in Signal:

Y := ff X1, X2, : : : , Xng. Y, X1, : : : , Xn are required to have the same clock.

Selection of a signal X according to a boolean condition C is: Y := X when C.

If C is present and true, then Y has the presence and value of X. The clock of Y

is the intersection of that of X and that of C at the value true.

Deterministic merge noted: Z := X default Y has the value of X when it is

present, or otherwise that of Y if it is present and X is not. Its clock is the union

of that of X and that of Y.

Delay gives access to past values of a signal. E.g., the equation ZXt = Xt�1,

with initial value V0 de�nes a dynamic process. It is encoded by: ZX := X$1 with

initialization ZX init V0. X and ZX have equal clocks.

Composition of processes is noted \|" (for processes P1 and P2, with paren-

thesizing: (| P1 | P2 |)). It consists in the composition of the systems of equa-

tions; it is associative and commutative. It can be interpreted as parallelism

between processes.

The following table illustrates each of the primitives with a trace:

n 3 2 1 0 3 2 : : :
zn := n$ 1 init 0 0 3 2 1 0 3 .: : :

p := zn-1 -1 2 1 0 -1 2 : : :
x := true when (zn=0) t t

y := true when (n=0) default (not x) f t f

Derived features: Derived processes have been de�ned on the base of

the primitive operators, providing programming comfort. E.g., the instruction

X ^ = Y speci�es that signals X and Y are synchronous (i.e., have equal clocks);

when B gives the clock of true-valued occurrences of B.

For a more detailed description of the language, its semantic, and applica-

tions, the reader is referred to [8]. The complete programming environment also

features a block-diagram oriented graphical user interface and a proof system

for dynamic properties of Signal programs, called Sigali (see Section 4).

1610 H. Marchand and M. Samaan

3.2 Speci�cation in Signal of the power transformer station

The transformer station network we are considering contains four departure,

two arrival and one link circuit-breakers as well as the cells that control

each circuit-breaker [7]. The process Physical Model in Figure 4 describes the

power and fault propagation according to the state of the di�erent circuit-

breakers. It is composed of nine subprocesses. The process Power Propagation

describes the propagation of power according to the state of the circuit-breakers

(Open/Closed). The process Fault Visibility describes the fault propagation

and visibility according to the other faults that are potentially present. The

remaining seven processes encode the di�erent circuit-breakers.

Fig. 4. The main process in Signal

The inputs of this main process are booleans that encode the physical

faults: Fault Link M, Fault Arr i M (i=1,2), Fault Dep j M (j =1,..,4). They

encode faults that are really present on the di�erent lines. The event inputs

req close ... and req open ... indicate opening and closing requests of the

various circuit-breakers. The outputs of the main process are the booleans

Fault Link, Fault Arr i, Fault Dep j, representing the signals that are sent

to the di�erent cells. They indicate whether a cell is faulty or not. These outputs

represents the knowledge that the sensors of the di�erent cells have.

We will now see how the subprocesses are speci�ed in Signal.

The circuit-breaker: A circuit-breaker is speci�ed in Signal as follows: The

process Circuit-Breaker takes two sensors inputs: Req Open and Req Close.

They represent opening and closing requests. The output Close represents the

status of the circuit-breaker.

1611Incremental Design of a Power Transformer Station Controller

(| Close := (Req_Close default (false when Req_Open) default Z_Close

| Z_Close := Close $1 init true

| Close ^= Tick

| (Req_Close when Req_Open) ^= when (not Req_Open) |)

Fig. 5. The Circuit-breaker in Signal

The boolean Close becomes true when the process receives the event

req close, and false when it receives the event Req open, otherwise it is equal to

its last value (i.e. Close is true when the circuit-breaker is closed and false other-

wise). The constraint Req Close when Req Open ^= when not Req Close says

that the two events Req Close and Req Open are exclusive.

Power Propagation: It is a �lter process using the state of the circuit-breakers.

Power propagation also induces a visibility of possible faults. If a circuit-breaker

is open then no fault can be detected by the sensors of downstream cells.

Fig. 6. speci�cation in Signal of the power propagation

This is speci�ed in the process Power Propagation shown in Figure 6.

The inputs are booleans that code the physical faults and the status of

the circuit-breakers. For example, a fault could be detected by the sensor

of the departure cell 1 (i.e. Fault Dep 1 E is true) if there exists a physical

fault (Fault Dep 1 M=true) and if the upstream circuit-breakers are closed (ie,

Close Link=true and Close Arr 1=true and Close Dep 1=true).

Fault visibility and propagation: The Fault Visibility process in Figure

7, speci�es fault visibility and propagation. As we explained in Section 2.1, a

fault could be seen by the sensors of a cell only if no upstream fault is present.

1612 H. Marchand and M. Samaan

Fig. 7. Speci�cation in Signal of the fault propagation and visibility

For example, a fault cannot be detected by the sensor of the departure

cell 1 (i.e. Fault Dep 1 is false), even if a physical fault exists at this level

(Fault Dep 1 E=true1), when another physical fault exists at the link level

(Fault Link 1 K=true) or at the arrival level 1 (Fault Arr 1 K=true). It is thus,

true just when the departure cell 1 detects a physical fault (Fault Dep 1 E)

and no upstream fault exists. A contrario, if a fault is picked up by a cell,

then it is also picked up by the upstream cells. This is for example the mean-

ing of Fault Link := (when (Fault Arr 1 default Fault Arr 2)) default

Fault link K.

4 Veri�cation of Signal programs

The Signal environment contains a veri�cation and controller synthesis tool-

box, Sigali. This tool allows us to prove the correctness of the dynamical be-

havior of the system. The equational nature of the Signal language leads to the

use of polynomial dynamical equation systems (PDS) over Z=3Z, i.e. integers
modulo 3: f-1,0,1g, as a formal model of program behavior. The theory of PDS

uses classical concepts of algebraic geometry, such as ideals, varieties and co-

morphisms [6]. The techniques consist in manipulating the system of equations

instead of the sets of solutions, which avoids enumerating state spaces.

To model its behavior, a Signal process is translated into a system of poly-

nomial equations over Z=3Z [7]. The three possible states of a boolean signal X

(i.e. , present and true, present and false, or absent) are coded in a signal variable

x by (present and true! 1, present and false! �1, and absent! 0). For the

non-boolean signals, we only code the fact that the signal is present or absent:

(present! 1 and absent! 0).

Each of the primitive processes of Signal are then encoded as polynomial

equations. Let us just consider the example of the selection operator. C := A

when B means "if b = 1 then c = a else c = 0". It can be rewritten as a

polynomial equation: c = a(�b� b2). Indeed, the solutions of this equation are

the set of possible behaviors of the primitive process when. For example, if the

signal B is true (i.e. , b=1), then (�b� b2) = (�1� 1) = 1 in Z=3Z, which leads

to c = a.

1 Note that this fault has already be �ltered. It can only be present if all the upstream

circuit-breakers are closed

1613Incremental Design of a Power Transformer Station Controller

The delay $, which is dynamical, is di�erent because it requires memoriz-

ing the past value of the signal into a state variable x. In order to encode

B := A$1 init B0, we have to introduce the three following equations:

8<
:

x0 = a+ (1� a2)x (1)

b = xa2 (2)

x0 = b0 (3)

where x0 is the value of the memory at the next instant. Equation (1) describes

what will be the next value x0 of the state variable. If a is present, x0 is equal to a
(because (1�a2) = 0), otherwise x0 is equal to the last value of a, memorized by

x. Equation (2) gives to b the last value of a (i.e. the value of x) and constrains

the clocks b and a to be equal. Equation (3) corresponds to the initial value of

x, which is the initial value of b.
Table 1 shows how all the primitive operators are translated into polynomial

equations. Remark that for the non boolean expressions, we just translate the

synchronization between the signals.

Boolean expressions

B := not A b = � a

C := A and B
c = ab(ab� a� b� 1)

a2 = b2 = c2

C := A or B
c = ab(1� a� b� ab)

a2 = b2 = c2

C := A default B c = a+ (1� a2)b

C := A when B c = a(�b� b2)

B := A $1 (init b0)

x0 = a+ (1� a2)x

b = a2x

x0 = b0

non-boolean expressions

B := f(A1; : : : ; An) b2 = a21 = � � � = a2n
C := A default B c2 = a2 + b2 � a2b2

C := A when B c2 = a2(�b� b2)

B := A $1 (init b0) b2 = a2

Table 1. Translation of the primitive operators.

Any Signal speci�cation can be translated into a set of equations called

polynomial dynamical system (PDS), that can be reorganized as follows:

S =

8<
:
X 0 = P (X;Y)
Q(X;Y) = 0

Q0(X) = 0

(1)

where X;Y;X 0 are vectors of variables in Z=3Z and dim(X) = dim(X 0). The

components of the vectors X and X 0 represent the states of the system and are

called state variables. They come from the translation of the delay operator. Y
is a vector of variables in Z=3Z, called event variables. The �rst equation is the

state transition equation; the second equation is called the constraint equation

1614 H. Marchand and M. Samaan

and speci�es which events may occur in a given state; the last equation gives

the initial states. The behavior of such a PDS is the following: at each instant t,
given a state xt and an admissible yt, such that Q(xt; yt) = 0, the system evolves

into state xt+1 = P (xt; yt).

Veri�cation of a Signal program: We now explain how veri�cation of a

Signal program (in fact, the corresponding PDS) can be carried out. Using

algebraic operations, it is possible to check properties such as invariance, reach-

ability and attractivity [7]. Note that most of them will be used in the sequel as

control objectives for controller synthesis purposes. We just give here the basic

de�nitions of each of this properties.

De�nition 1. 1. A set of states E is invariant for a dynamical system if for

every x in E and every y admissible in x, P (x; y) is still in E.
2. A subset F of states is reachable if and only if for every state x 2 F there

exists a trajectory starting from the initial states that reaches x.
3. A subset F of states is attractive from a set of states E if and only if every

state trajectory initialized in E reaches F . �

For a more complete review of the theoretical foundation of this approach, the

reader may refer to [6, 7].

Speci�cation of a property: Using an extension of the Signal language,

named Signal+, it is possible to express the properties to be checked, as well as

the control objectives to be synthesized (see section 5.2), in the Signal program.

The syntax is

(| Sigali(Verif_Objective(PROP)) |)

The keyword Sigali means that the subexpression has to be evaluated by Si-

gali. The function Verif Objective (it could be invariance, reachability,

attractivity, etc) means that Sigali has to check the corresponding property

according to the boolean PROP, which de�nes a set of states in the corresponding

PDS. The complete Signal program is obtained composing the process specify-

ing the plant and the one specifying the veri�cation objectives in parallel. Thus,

the compiler produces a �le which contains the polynomial dynamical system re-

sulting from the abstraction of the complete Signal program and the algebraic

veri�cation objectives. This �le is then interpreted by Sigali. Suppose that, for

example, we want, in a Signal program named \system", to check the attrac-

tivity of the set of states where the boolean PROP is true. The corresponding

Signal+ program is then:

(| system() (the physical model specified in Signal)

| PROP: definition of the boolean PROP in Signal

| Sigali(Attractivity(True(PROP))) |)

The corresponding Sigali �le, obtained after compilation of the Signal pro-

gram, is:

1615Incremental Design of a Power Transformer Station Controller

read(``system.z3z''); => loading of the PDS

Set_States : True(PROP); => Compute the states where PROP is true

Attractivity(S,Set_States);

=> Check for the attractivity of Set_States from the initial states

The �le \system.z3z" contains in a coded form the polynomial dynamical sys-

tem that represents the system. Set States is a polynomial that is equal to 0

when the boolean PROP is true. The methods consist in verifying that the set of

states where the polynomial Set States takes the value 0 is attractive from the

initial states (the answer is then true or false): Attractivity(S, Set States).

This �le is then interpreted by Sigali that checks the veri�cation objective.

4.1 Veri�cation of the power transformer network

In this section, we apply the tools to check various properties of our Signal

implementation of the transformer station. After the translation of the Sig-

nal program, we obtain a PDS with 60 state variables and 35 event variables.

Note that the compiler also checks the causal and temporal concurrency of our

program and produces an executable code. We will now describe some of the

di�erent properties, which have been proved.

(1) \There is no possibility to have a fault at the departure, arrival and link

level when the link circuit-breaker is opened." In order to check this property, we

add to the original speci�cation the following code

(| Error:= ((Fault_Link or Fault_Arr_1 or Fault_Arr_1 or

Fault_Dep_1 or Fault_Dep_2 or Fault_Dep_3 or Fault_Dep_4)

when Open_Link) default false

| Error ^= Tick

| Sigali(Reachable(True(Error))) |)

The Error signal is a boolean which takes the value true when the property is

violated. In order to prove the property, we have to check that there does not

exist any trajectory of the system which leads to the states where the Error

signal is true (Reachable(True(Error))). The produced �le is interpreted by

Sigali that checks whether this set of states is reachable or not. In this case,

the result is false, which means that the boolean Error never takes the value

true. The property is satis�ed2 . In the same way, we proved similar properties

when one of the arrival or departure circuit-breakers is open.

(2) \If there exists a physical fault at the link level and if this fault is picked

up by its sensor then the arrival sensors can not detect a fault". We show here

the property for the arrival cell 1. It can be expressed as an invariance of a set

of states.

(| Error:= (Fault_Arr_1 when Fault_Link_E) default false

| Error ^= Tick

| Sigali(Invariance(False(Error))) |)

2 Alternatively, this property could be also expressed as the invariance of the boolean

False(Error), namely Sigali(Invariance(False(Error))).

1616 H. Marchand and M. Samaan

We have proved similar properties for a departure fault as well as when a physical

fault appears at the arrival level and at the departure level at the same time.

(3) We also proved using the same methods the following property: \If a

fault occurs at a departure level, then it is automatically seen by the upstream

sensors when no other fault exists at a higher level."

All the important properties of the transformer station network have been

proved in this way. Note that the cell behaviors have also been proved (see [7]

for more details).

5 The automatic controller synthesis methodology

5.1 Controllable polynomial dynamical system

Before speaking about control of polynomial dynamical systems, we �rst need to

introduce a distinction between the events. From now on, we distinguish between

the uncontrollable events which are sent by the system to the controller, and the

controllable events which are sent by the controller to the system.

A polynomial dynamical system S is now written as:

S :

8<
:
Q(X;Y; U) = 0

X 0 = P (X;Y; U)
Q0(X0) = 0

(2)

where the vector X represents the state variables; Y and U are respectively the

set of uncontrollable and controllable event variables. Such a system is called a

controllable polynomial dynamic system. Let n, m, and p be the respective di-

mensions of X , Y , and U . The trajectories of a controllable system are sequences

(xt; yt; ut) in (Z=3Z)
n+m+p such that Q0(x0) = 0 and, for all t, Q(xt; yt; ut) = 0

and xt+1 = P (xt; yt; ut): The events (yt; ut) include an uncontrollable compo-

nent yt and a controllable one ut
3. We have no direct inuence on the yt part

which depends only on the state xt, but we observe it. On the other hand, we

have full control over ut and we can choose any value of ut which is admissible,

i.e. , such that Q(xt; yt; ut) = 0. To distinguish the two components, a vector

y 2 (Z=3Z)
m is called an event and a vector u 2 (Z=3Z)

p a control . From now

on, an event y is admissible in a state x if there exists a control u such that

Q(x; y; u) = 0; such a control is said compatible with y in x.

The controllers: A PDS can be controlled by �rst selecting a particular ini-

tial state x0 and then by choosing suitable values for u1; u2; : : : ; un; : : : . We will

here consider control policies where the value of the control ut is instantaneously
computed from the value of xt and yt. Such a controller is called a static con-

troller . It is a system of two equations: C(X;Y; U) = 0 and C0(X) = 0, where

3 This particular aspect constitutes one of the main di�erences with [14]. In our case,

the events are partially controllable, whereas in the other case, the events are either

controllable or uncontrollable.

1617Incremental Design of a Power Transformer Station Controller

the equation C0(X) = 0 determines initial states satisfying the control objectives

and the other one describes how to choose the instantaneous controls; when the

controlled system is in state x, and when an event y occurs, any value u such

that Q(x; y; u) = 0 and C(x; y; u) = 0 can be chosen. The behavior of the system

S composed with the controller is then modeled by the system Sc:

Sc =

8<
:
X 0 = P (X;Y; U)
Q(X;Y; U) = 0 C(X;Y; U) = 0

Q0(X0) = 0 C0(X0) = 0

(3)

However, not every controller (C;CO) is acceptable. First, the controlled system

SC has to be initialized ; thus, the equations Q0(X) = 0 and C0(X) = 0 must

have common solutions. Furthermore, due to the uncontrollability of the events

Y , any event that the system S can produce must be admissible by the controlled

system SC . Such a controller is said to be acceptable.

5.2 Traditional Control Objectives

We now illustrate the use of the framework for solving a traditional control

synthesis problem we shall reuse in the sequel.

Suppose we want to ensure the invariance of a set of statesE. Let us introduce
the operator

�
pre, de�ned by: for any set of states F ,

�
pre (F) = fx 2 (Z=3Z)

n j 8y admissible, 9u;Q(x; y; u) = 0 and P (x; y; u) 2 Fg

Consider now the sequence (Ei)i2N de�ned by:

�
E0 = E

Ei+1 = Ei\
�
pre (E)

(4)

The sequence (4) is decreasing. Since all sets Ei are �nite, there exists a j such
that Ej+1 = Ej . The set Ej is then the greatest control-invariant subset of

E. Let gj be the polynomial that has Ej as solution, then C0(X) = gj and

C(X;Y; U) = P �(gj)
4 is an admissible feed-back controller and the system SC :

S + (C0; C) veri�es the invariance of the set of states E.
Using similar methods, we are also able to to compute controllers (C;C0)

that ensure

{ the reachability of a set of states from the initial states of the system,

{ the attractivity of a set of states E from a set of states F .
{ the recurrence of a set of states E.

We can also consider control objectives that are conjunctions of basic properties

of state trajectories. However, basic properties cannot, in general, be combined

in a modular way. For example, an invariance property puts restrictions on the

4 the solutions of the polynomial P �(g) are the triples (x; y; u) that satisfy the relation

\P (x; y; u) is solution of the polynomial g".

1618 H. Marchand and M. Samaan

set of state trajectories which may be not compatible with an attractivity prop-

erty. The synthesis of a controller insuring both properties must be e�ected by

considering both properties simultaneously and not by combining a controller

insuring safety with a controller insuring attractivity independently. For more

details on the way controllers are synthesized, the reader may refer to [4].

Speci�cation of the control objectives: As for veri�cation (Section 4),

the control objectives can be directly speci�ed in Signal+ program, using

the key-word Sigali. For example, if we add in the Signal program the line

Sigali(S Attractivity(S,PROP)), the compiler produces a �le that is inter-

preted by Sigali which computes the controller with respect to the control

objective. In this particular case, the controller will ensure the attractivity of

the set of states Set States, where Set States is a polynomial that is equal to

zero when the boolean PROP is true. The result of the controller synthesis is a

polynomial that is represented by a Binary Decision Diagram (BDD). This BDD

is then saved in a �le that could be used to perform a simulation [11].

Application to the transformer station: We have seen in the previous sec-

tion, that one of the most critical requirements concerns the double fault prob-

lem. We assume here that the circuit-breakers are ideal, i.e. they immediately

react to actuators (i.e. , when a circuit-breaker receives an opening/closing re-

quest, then at the next instant the circuit-breaker is opened/closed). With this

assumption, the double fault problem can be rephrased as follows:

\if two faults are picked up at the same time by two di�erent departure cells,

then at the next instant, one of the two faults (or both) must disappear."

In order to synthesize the controller, we assume that the only controllable

events are the opening and closing requests of the di�erent circuit-breakers. The

other events concern the appearance of the faults and cannot be considered

controllable. The speci�cation of the control objective is then:

(| 2_Fault := when (Fault_Dep_1 and Fault_Dep_2)

default when (Fault_Dep_1 and Fault_Dep_3)

default when (Fault_Dep_1 and Fault_Dep_4)

default when (Fault_Dep_2 and Fault_Dep_3)

default when (Fault_Dep_2 and Fault_Dep_4)

default when (Fault_Dep_3 and Fault_Dep_4) default false

| Z_2_Fault := 2_Fault $1 init false

| Error := 2_Fault and Z_2_Fault

| Sigali(S_Invariance(S,False(Error)) |)

The boolean 2 Fault is true, when two faults are present at the same time

and is false otherwise. The boolean Error is true when two faults are present

at two consecutive instants. We then ask Sigali to compute a controller that

forces the boolean Error to be always false (i.e., whatever the behavior, there

is no possibility for the controlled system to reach a state where Error is true).

1619Incremental Design of a Power Transformer Station Controller

The Signal compiler translates the Signal program into a PDS, and the

control objectives in terms of polynomial relations and polynomial operations.

Applying the algorithm, described by the �xed-point computation (4), we are

able to synthesize a controller (C1; C0), that ensures the invariance of the set

of states where the boolean Error is true, for the controlled system SC1
= S +

(C1; C0). The result is a controller coded by a polynomial and a BDD.

Using the controller synthesis methodology, we solved the double fault prob-

lem. However, some requirements have not been taken into account (importance

of the lines, of the circuit-breakers,...). This kind of requirements cannot be

solved using traditional control objectives such as invariance, reachability or at-

tractivity. In the next section, we will handle this kind of requirements, using

control objectives expressed as order relations.

5.3 Numerical Order Relation Control Problem

We now present the synthesis of control objectives that considers the way to

reach a given logical goal. This kind of control objectives will be useful in the

sequel to express some properties of the power transformer station controller, as

the one dealing with the importance of the di�erent circuit-breakers. For this

purpose we introduce cost functions on states. Intuitively speaking, the cost

function is used to express priority between the di�erent states that a system

can reach in one transition. Let S be a PDS as the one described by (2). Let us

suppose that the system evolves into a state x, and that y is an admissible event

at x. As the system is generally not deterministic, it may have several controls

u such that Q(x; y; u) = 0. Let u1 and u2 be two controls compatible with y in

x. The system can evolve into either x1 = P (x; y; u1) or x2 = P (x; y; u2). Our
goal is to synthesize a controller that will choose between u1 and u2, in such

a way that the system evolves into either x1 or x2 according to a given choice

criterion. In the sequel, we express this criterion as a cost function relation.

Controller synthesis method: Let X = (X1; : : : ; Xn) be the state variables

of the system. Then, a cost function is a map from (Z=3Z)
n to N, which associates

to each x of (Z=3Z)
n some integer k.

De�nition 2. Given a PDS S and a cost function c over the states of this

system, a state x1 is said to be c-better than a state x2 (denoted x1 �c x2), if
and only if, c(x2) � c(x1). �

In order to express the corresponding order relation as a polynomial relation,

let us consider kmax = supx2(Z=3Z)n(c(x)): The following sets of states are then
computed Ai = fx 2 (Z=3Z)

n j c(x) = ig: The sets (Ai)i=0::kmax
form a

partition of the global set of states. Note that some Ai could be reduced to the

empty set. The proof of the following property is straightforward:

Proposition 1. x1 �c x2 , 9i 2 [0; ::; kmax]; x1 2 Ai ^ x2 2
Skmax

j=i Aj �

1620 H. Marchand and M. Samaan

Let g0; : : : ; gkmax
be the polynomials that have the sets A1; : : : ; Akmax

as solu-

tions5. The order relation �c de�ned by the proposition 1 can be expressed as

polynomial relation:

Corollary 1. x �c x
0 , R�c(x; x

0) = 0, where

R�c(X;X 0) =

nY
i=1

fg2i (X)� (

nY
j=i

(g2j (X
0)))g with f � g = (f2 + g2)2:

As we deal with a non strict order relation, from �c, we construct a strict order

relation, named �c de�ned as: x �c x
0 , fx �c x

0^q(x0 �c x)g. Its translation
in terms of polynomial equation is then given by:

R�c(X;X 0) = R�c(X;X 0)� (1�R2
�c
(X 0; X)): (5)

We now are interested in the direct control policy we want to be adopted by the

system; i.e. , how to choose the right control when the system S has evolved

into a state x and an uncontrollable event y has occurred.

De�nition 3. A control u1 is said to be better compared to a control u2, if and
only if x1 = P (x; y; u1) �c x2 = P (x; y; u2): Using the polynomial approach, it

gives R�c(P (x; y; u1); P (x; y; u2)) = 0. �

In other words, the controller has to choose, for a pair (x; y), a compatible

control with y in x, that allows the system to evolve into one of the states that

are maximal for the relation R�c . To do so, let us introduce a new order relation

Ac de�ned from the order relation �c.

(x; y; u) Ac (x
0; y0; u0),

8<
:
x = x0

y = y0

P (x; y; u) �c P (x; y; u
0)

(6)

In other words, a triple (x; y; u) is \better" than a triple (x; y; u0) whenever

the state P (x; y; u) reached by choosing the control u is better than the state

P (x; y; u0) reached by choosing the control u0.

We will now compute the maximal triples of this new order relation among all

of the triples. To this e�ect, we use I = f(x; y; u) 2 (Z=3Z)
n+m+p j Q(x; y; u) =

0g the set of admissible triples (x; y; u). The maximal set of triples Imax is then

provided by the following relation:

Imax = I � f(x; y; u) j 9(x; y; u0) 2 I; (x; y; u0) Ac (x; y; u)g (7)

The characterization of the set of states Imax in terms of polynomials is the

following:

5 To compute e�ciently such polynomials, it is important to use the Arithmetic De-

cision Diagrams (ADD) developed, for example, by [3].

1621Incremental Design of a Power Transformer Station Controller

Proposition 2. The polynomial C that has Imax as solutions is given by:

C(X;Y; U) = Q(X;Y; U)� (1� 9elimU0(Q(X;Y; U 0
)�R�c (P (X;Y; U 0

); P (X;Y; U))))

where the solutions of 9elimU 0(Q(X;Y; U 0) are given by the set

f(x; y)=9u0; Q(x; y; u0) = 0g.

Using this controller, the choice of a control u, compatible with y in x, is reduced
such that the possible successor state is maximal for the (partial) order relation

�c. Note that if a triple (x; y; u) is not comparable with the maximal element

of the order relation Ac, the control u is allowed by the controller (i.e. , u is

compatible with the event y in the state x).

Without control, the system can start from one of the initial states of I0 =
fx = Q0(x) = 0g. To determine the new initial states of the system, we will

take the ones that are the maximal states (for the order relation R�c) among

all the solutions of the equation Q0(X) = 0. This computation is performed by

removing from I0 all the states for which there exist at least one smaller state

for the strict order relation �c. Using the same method as the one previously

described for the computation of the polynomial C, we obtain a polynomial C0.

The solutions of this polynomial are the states that are maximal for the order

relation Ac.

Theorem 1. With the preceding notations, (C;C0) is an acceptable controller

for the system S. Moreover, the controlled system SC = (S+(C;C0)) adopts the

control policy of De�nition 3. �

Some others characterization of order relations in terms of polynomials can be

found in [10]. Finally, note that the notion of numerical order relation has been

generalized over a bounded states trajectory of the system, retrieving the clas-

sical notion of Optimal Control [9].

Application to the power transformer station controller: We have seen

in Section 5.2 how to compute a controller that solves the double fault problem.

However, even if this particular problem is solved, other requirements had not

been taken into account. The �rst one is induced by the obtained controller

itself. Indeed, several solutions are available at each instant. For example, when

two faults appear at a given instant, the controller can choose to open all the

circuit-breakers, or at least the link circuit-breaker. This kind of solutions is not

admissible and must not be considered. The second requirements concerns the

importance of the lines. The �rst controller (C1; C0) does not handle this kind

of problems and can force the system to open the bad circuit-breakers.

As consequences, two new requirements must be added in order to obtain a

real controller:

1. The number of opened circuit-breaker must be minimal

2. The importance of the lines (and of the circuit-breakers) has to be di�erent.

1622 H. Marchand and M. Samaan

These two requirements introduce a quantitative aspect to the control objectives.

We will now describe the solutions we proposed to cope with these problems.

First, let us assume that the state of a circuit-breaker is coded with a state

variable according to the following convention: the state variable i is equal to 1

if and only if the corresponding circuit-breaker i is closed. CB is then a vector

of state variables which collects all the state variables encoding the states of the

circuit-breakers. To minimize the number of open circuit-breaker and to take into

account the importance of the line, we use a cost function . We simply encode

the fact that the more important is the circuit-breaker, the larger is the cost

allocated to the state variable which encodes the circuit-breaker. The following

picture summarizes the way we allocate the cost.

The cost allocated to each state variable corresponds to the cost when the

corresponding circuit-breaker is opened. When it is closed, the cost is equal to

0. The cost of a global state is simply obtained by adding all the circuit-breaker

costs. With this cost function, it is always more expensive to open a circuit-

breaker at a certain level than to open all the downstream circuit-breakers.

Moreover, the cost allocated to the state variable that encodes the second de-

parture circuit-breaker (encoded by the state variable Xdep2)) is bigger than the

others because the corresponding line supplies a hospital (for example). Finally

note that the cost function is minimal when the number of open circuit-breaker

is minimal.

Let us consider the system SC1
. We then introduce an order relation over

the states of the system: a state x1 is said to be better compared to a state

x2 (x1 w x2) if and only if for their corresponding sub-vectors CB1 and CB2,

we have CB1 wc CB2. This order relation is then translated in an algebraic

relation Rwc , following Equation (5) and by applying the construction described

in proposition 2 and 1, we obtain a controller (C2; C
0
0) for which the controlled

system SC2
= (SC1

+ (C2; C
0
0)) respects the control strategy.

6 Conclusion

In this paper, we described the incremental speci�cation of a power transformer

station controller using the control theory concepts of the class of polynomial

dynamical systems over Z=3Z. As this model results from the translation of a

Signal program [8], we have a powerful environment to describe the model for

a synchronous data-ow system. Even if classical control can be used, we have

shown that using the algebraic framework, optimal control synthesis problem

1623Incremental Design of a Power Transformer Station Controller

is possible. The order relation controller synthesis technique can be used to

synthesize control objectives which relate more to the way to get to a logical

goal, than to the goal to be reached.

Acknowledgment: The authors gratefully acknowledge relevant comments

from the anonymous reviewers of this paper.

References

1. S. Balemi, G. J. Ho�mann, H. Wong-Toi, and G. F. Franklin. Supervisory control

of a rapid thermal multiprocessor. IEEE Transactions on Automatic Control,

38(7):1040{1059, July 1993.
2. A. Benveniste and G. Berry. Real-time systems designs and programming. Pro-

ceedings of the IEEE, 79(9):1270{1282, September 1991.
3. R.E. Bryant and Chen Y. Veri�cation of Arithmetic Functions with Binary Dia-

grams. Research Report, School of Computer Science CMU, May 1995.
4. B. Dutertre and M. Le Borgne. Control of polynomial dynamic systems: an exam-

ple. Research Report 798, IRISA, January 1994.
5. L.E. Holloway, B.H. Krogh, and A. Giua. A survey of Petri net methods for

controlled discrete event systems. Discrete Event Dynamic Systems: Theory and

Application, 7:151{190, 1997.
6. M. Le Borgne, A. Benveniste, and P. Le Guernic. Polynomial dynamical systems

over �nite �elds. In Algebraic Computing in Control, volume 165, pages 212{222.

LNCIS, G. Jacob et F. Lamnabhi-lagarrigue, March 1991.
7. M. Le Borgne, H. Marchand, E. Rutten, and M. Samaan. Formal veri�cation of

signal programs: Application to a power transformer station controller. In Proceed-

ings of AMAST'96, pages 271{285, Munich, Germany, July 1996. Springer-Verlag,

LNCS 1101.
8. P. Le Guernic and T. Gautier. Data-ow to von Neumann: the SIGNAL approach.

In Jean-Luc Gaudiot and Lubomir Bic, editors, Advanced Topics in Data-Flow

Computing, chapter 15, pages 413{438. Prentice-Hall, 1991.
9. H. Marchand and M. Le Borgne. On the optimal control of polynomial dynamical

systems over Z=pZ. In 4th International Workshop on Discrete Event Systems,

pages 385{390, Cagliari, Italy, August 1998.
10. H. Marchand and M. Le Borgne. Partial order control of discrete event systems

modeled as polynomial dynamical systems. In 1998 IEEE International Conference

On Control Applications, Trieste, Italia, September 1998.
11. H. Marchand, Bournai P., M. Le Borgne, and P. Le Guernic. A design environment

for discrete-event controllers based on the signal language. In 1998 IEEE Inter-

national Conf. On Systems, Man, And Cybernetics, pages 770{775, San Diego,

California, USA, October 1998.
12. H. Marchand, E. Rutten, and M. Samaan. Synchronous design of a transformer

station controller with Signal. In 4th IEEE Conference on Control Applications,

pages 754{759, Albany, New-York, September 1995.
13. H. Melcher and K. Winkelmann. Controller synthesis for the production cell case

study. In Proceedings of the 2nd Workshop on Formal Methods in Software Practice

(FMSP-98), pages 24{33, New YOrk, March 4{5 1998. ACM Press.
14. P. J. Ramadge andW. M. Wonham. The control of discrete event systems. Proceed-

ings of the IEEE; Special issue on Dynamics of Discrete Event Systems, 77(1):81{

98, 1989.

1624 H. Marchand and M. Samaan

