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Abstract

This paper describes how a polynomial equationnal ap-
proach of the theory of logic discrete event systems leads
to efficient algorithms for the synthesis of supervisory
controllers. Even if traditional control objectives can be
considered in our framework (invariance, reachability or
attractivity), we address here the synthesis of optimal
controller with control objectives specified as a minimiza-
tion of a given cost function over the states through the
trajectories of the system.

Introduction

The main purpose of real-time applications is to control
reactive systems for which control and physical parts are
often merged. Thus, different theories dedicated to the
control of discrete event systems had emerged since the
80’s [1, 2]. Usually, the starting point of these theories is:
given a model for the system and the control objectives,
a controller must be derived by various means such that
the resulting behavior of the closed loop system meets
the control objectives. In the Ramadge and Wonham
theory [1], the physical model is modeled as finite state
automaton. The behavior of the plant is then described
in terms of the language generated by the automaton.
The control of the physical model is then performed by
inhibiting some events belonging to a set of controllable
events, while the other events can not be prevented from
occuring. In our case, the physical model is decribed as a
polynomial dynamical system over Z/pz !, with p prime
[3]. In our framework, we use an input/output approach
(however systems defined as finite state automata, like
in Ramadge and Wonham framework [1], can also be
considered within this framework). The physical model
is then represented by a polynomial dynamical system
while the control of the system is performed by restrict-
ing the controllable input values to values suitable for
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1Z/pZ denotes the Galois field with p elements {0,..,p — 1}
with usual multiplication and addition modulo p.

the control goal. This restriction is obtained by incor-
porating new algebraic equations to the initial system,
using various algebraic operations.

Usually, control objectives are expressed as invari-
ance, reachability and attractivity of a given properties.
However some control objectives could not be expressed
as traditional objectives. They relate more to the way
to get to a logical goal, than to the goal to be reached.
The optimal control, very popular in classical control
theory can solve these problems. This new kind of con-
trol has emerged in the nineties. Some papers concern-
ing the optimal control theory can be found in [4, 5, 6].
In this paper, the optimal controller synthesis problem
for polynomial dynamical systems is presented. It in-
volves constructing a controller which is able to choose
a sequence of inputs that will transfer the polynomial
dynamical system from a set of initial states to a given
set of final states while minimizing a cost function over
the states through the trajectories of the system.

The remainder of this paper is organized as follows:
the first section is dedicated to the presentation of poly-
nomial dynamical systems and to an overview of of tradi-
tional control problems. In the second part, the optimal
control problem is presented. Some examples of possible
uses of the optimal control theory are finally presented
in the third part.

1 Control of Polynomial dynamical
systems

The first point concerns the choice of the model on which
the control will be performed. We have chosen to rep-
resent the system by a polynomial dynamical system
(PDS), which can be seen as an implicit equational rep-
resentation of an automaton. A PDS can then be used
as formal basis for verification and optimal controller
synthesis purpose.

1.1 A Polynomial dynamical system

Formally, the general form of a PDS over Z/,7 is the
following :

X! - P(X,Y,U)
S =4 QX,Y,U) = 0 (1)
Qo(X) = 0

where X,Y,U, X' are vectors of variables in Z /pz. and
dim(X) = dim(X') = n. The components of vectors



X and X' represent the states of the system and are
called state variables. Y is a vector of variables in Z/p,7,,
with dim(Y") = m, called uncontrollable event variables,
whereas U is a vector of controllable event variables, with
dim(U) = 1,. For simplicity, we can consider that the
uncontrollable event variables are emitted by the system
to the controller, and the controllable event variables
are emitted by the controller to the system. The first
equation is the state transition equation. It captures the
dynamical behavior of the system. The second equation
is called the constraint equation, it specifies which event
may occur in a given state. The last equation defines
the set of initial states. In the sequel, z € (Z/,z)",
y € (Z/pz)™ u € (Z/pz)!, will denote a particular
instantiation of the vectors X,Y,U. The behavior of such
a PDS is the following: at each instant ¢, given a state
z; and an admissible y;, we can choose some u; which
is admissible i.e., such that Q(x¢,ys,us) = 0. In this
case, the system evolves into state xir1 = P(x¢, Y, U)-
A trajectory (x;,y;,u;)ieN, initialized at (zo,yo,uo) is a
sequence (z;,y;, u;), such that the pair Q(z;,y;,u;) =0
and Ti41 = P(.’L‘i, y,)

1.2 The control of a polynomial dynamical
system

Due to the distinction between the event variables (con-
trollable and uncontrollable status), the events (y;,us)
include an uncontrollable component y; and a control-
lable one u;. We have no direct influence on the y; part
which depends only on the state ;. On the other hand,
we have full control over u; and we can choose any value
of uy which is admissible, i.e. such that Q(z¢, ys, u) = 0.
The chosen value determines the next state z;1, and in-
directly influences the possible values for y;41. A PDS
S can be controlled by first selecting a particular ini-
tial state xg and then by choosing suitable values for
U, U2,y - - -, Up, - ... Different strategies can be chosen to
determine the control values. Here, we will only consider
static control policies. This means that the value of the
control wu; is instantaneously computed from the value of
z¢ and y¢. Such a controller is called a static controller.
Formally, it is a system of two equations:

C(X,Y,U) =0
{éapﬁ (2)

where the equation Cy(X) = 0 determines initial states
satisfying the control objectives and the other one de-
scribes how the instantaneous controls are choosen;
when the controlled system is in state z, and when an
event y occurs, any value u such that Q(z,y,u) = 0 and
C(z,y,u) = 0 can be chosen.

1.3 Traditional control objectives

We illustrate the use of this present framework for solv-
ing a particular traditional control synthesis problem.
Suppose we want to ensure the invariance of a set of
states E.

Let us introduce the operator pre, defined by: for
any set of states F',

pre (F) = {z€ (Z/pz)" | Yy admissible
3u,Q(z,y,u) = 0 and P(z,y,u) € F}

Roughly speaking, pre (F) computes the set of states
from which it is always possible to reach F' in one tran-
sition by choosing a suitable controllable event u when
an event y occured. Consider now the sequence (E;);en
defined by:

E, = E
{ Eiyn = Einpre(B) ®)

The sequence (3) is decreasing. Since all sets E; are
finite, there exists a j such that E; 4, = E;. The set E;
is then the greatest control-invariant subset of E. Let g;
be the polynomial which has E; as solution, then

Co(X) = g
{mx%m Pe(gy) @)

where P*(g) is the polynomial which has as solutions
the set {(z,y,u) / P(z,y,u) is solution of g} (cf [7]),
is an admissible feed-back controller and the controlled
system S¢ : S + (Cp, C) such that

X' = P(X,Y,U)
RX,Y,U) = 0

S ={ C(X,V,U) = 0 (5)
Qo(X) = 0
Co(X) = 0

verifies the invariance of the set of states E. Further-
more, using the same methods, we are able to ensure
attractivity, reachability of a set of states. For more de-
tails about this kind of control, the reader could refer to
previous works [8].

We can also consider control objectives which are
conjunction of basic properties of state trajectories.
However, basic properties cannot, in general, be com-
bined in a modular way. For example, a safety prop-
erty (i.e., an invariant property) puts restrictions on the
set of state trajectories which may be not compatible
with an attractivity property. Finally, the synthesis of a
controller insuring both properties (invariance of a set
of states and at the same time attractivity of an other
one, for example) must be effected by considering both
properties simultaneously? not by combining a controller
insuring safety with a controller insuring attractivity in-
dependently.

However, many properties of discrete event system
cannot be stated with the help of static relations. For
example if we want a signal y never to take the same

2By simultaneously, we mean that the fix point computations
(similar to (3)), used to compute the unique controller that ensures
the invariance of a set of states and at the same time attractivity
of an other one) are mixed in a single fix point computation.



value two consecutive times, it must satisfy the relation
VY1, Yn+1 — Yn # 0. Such properties nead a dynamical
controller to be enforced. The main idea is to extend
the order of the initial system so that the initial control
objective is reduced to a static control control objective
for the new system [9].

2 Optimal Control

Although it is very popular in classical control theory,
optimal control is a new approach for DES, which has
emerged in the nineties. This approach was motivated
by the fact that some control objectives could not be ex-
pressed as traditional objectives (invariance, attractiv-
ity, temporal logic). The graph theoretical formulation
of the optimal control problem, for a class of DESs rep-
resented by automata, was given by Sengupta and Lafor-
tune [4] and a supervisory optimal control by Lin [10],
whereas Ionescu [5] presented in an optimization method
for a system specified with a temporal logic. Passino
and Antaklis [6] have associated a cost with every state
transition of a DES and examined the optimization in
respect of an event cost function. They use the A* algo-
rithm to perform the controller synthesis computation.
Other work in this area can be found in [11, 12, 13].

In this section, the optimal controller synthesis prob-
lem for PDSs is presented. It involves constructing a
controller which is able to choose a sequence of inputs
that will transfer the system from a set of initial states
to a given set of final states while minimizing a cost
function. We assume that all the events are controllable
(for notational simplicity); that means that there is no
perturbation. The control strategy is defined as follows.
A cost is attached to each control variable. In our ap-
proach, we recall that a control is a vector of controllable
variables. It is then possible to have synchronization be-
tween different controls. To be more general, a cost is
also attached to each state. Finally, the optimal con-
trol strategy is based on dynamical programming [14].
An overview of the optimal controller synthesis problem
under perturbations will be introduced in section 2.3

2.1 The optimal controller synthesis problem
for PDS’s

Since, in this section, we only consider the case where
there is no perturbation, the PDS can be rephrased as

follows: X' = P(X,U)
QX,U) = 0 ©)
Qo(Xo) = 0

where X (respectively) U is the vector of state vari-
ables in (Z/pz )" (respectively vector of commands in
(Z/pz. )Y). In more usual terms, this defines the dynam-
ical system

Tit1 = P(zi,u;)
Qziui) = 0 (M)
Qo(zo) = 0

Now we are given a set Xj,; of initial states (i.e. the
solutions of the polynomial Qo(Xo)), and a set Xy of
final states. A walid control sequence of the system is
then a sequence of controls u, .. .,u,, which transfers
the system from one of the initial states to one of the
final states:

Kinit D To —2 11— ... l;lmnf_lgmnfeét'f (8)
where ny is the first hitting time of X%, for the consid-
ered valid control sequence.

The cost of a trajectory s, = (2o,...,%n,) associ-
ated to the corresponding valid control sequence s, =

(1o, - .., un,—1) is defined as follows:
nyg ny—1
Clssrsy) 2 S @) + Y dw)  (9)
=0 =0

where ¢'(z;) (resp. ¢'(u;)) is the cost attached to the
state x; (resp. the event u;). Thus we wish to minimize
(9) subject to (7,8). This is achieved by computing back-
ward recursively the value function, following a variant
of the Bellman principle [14]. The actual computation
of this is described next.

2.2 Optimal controller synthesis

This section outlines a computational method for syn-
thesizing control equations which will force the system
to evolve from an initial set of states X;,; to a final
set of states Xy with a minimal cost. Finally, the vari-
ous stages of the algorithm are described in this section.
Problem (9,7,8) is indeed a time invariant finite horizon
problem, since the final instant ny is a first hitting time.
Hence one should expect a time invariant value function
together with a time invariant controller, we calculate
both next.

2.2.1 Optimal value function computation

First, we compute a value function Vinin (), the minimal
cost, for a given admissible control sequence and initial
state z, to reach X¢. To this end, we consider a sequence
of value functions (V;);en, initialized by:

{ Vo(z) = ("(z) forz € X

forz & A (10)

== o

This sequence of value functions is updated by back-
tracking from the final states to the initial states. This is
described now in terms of our framework. Set Ay = X}.
In a first step, we compute the set of states from which
Xy can be reached in one transition.

X = {z€(Z/pz)" | Fu,Q(z,u) =0= P(z,u) € Xo}
To each state of X] is attached the cost Vi (z):
Vz € X},

Vi(z) = min{Vo(2),c"(z) + min _{c'(u) + Vo(P(z,u))}}

u/Q(z,u)=0



Let us now assume that we are at iteration ¢, then X
and V;;, are computed as follows:

X = {ze€ (Z/pZ )/
Ju, Q(z,u) = 0 = P(z,u) € X;}
Xipn = LU
Vipr(z) = V,Vee X/,
(11)
where

V =min{Vi(z),c" () + {c (u) + Vi(P(z,u))}}

min
(v/Q(z,u)=0)
If a cost has already been computed (in a previous step),
then this cost is compared with the new one, and the
minimum is taken. This way cycles on states can be
considered.

It is easy to see, that Vi € N, Vi(z) > Vi1 (z). Since
V; has values in N, there exists a k such that Vip41 =
Vi Vz € (Z/pz )" (note that, in this case, we also have
Xk+1 = Xj). This is our Viin(z) value function. If
Vainin(z) < +00 and z € Xjni, then z is a valid initial
state.

This description of the algorithm provides us di-
rectly with an efficient implementation using both ADD
(Arithmetic Decision Diagrams) and BDD (Binary De-
cision Diagrams) technologies (see [9] for details). Using
such implementation, the actual computation of X; and
V; are performed without state space enumeration.

2.2.2 Control strategy

The classical way to recover the (time invariant) feed-
back control from Bellman recursion (11) would consist
in keeping a table providing, for each state x, the op-
timal controls v if any. In our case this would result
in combinatorial explosion. Instead, we shall regard the
value function Vipin, computed using (11), as specifying
a preorder relation on the set of states, from which a
controller could be computed.

Using the preceding notations, for a given state x
and associated set {ui,...,u;} of admissible controls,
the pair (z,u) is said to be preferred to the other pairs
(z,u;), if and only if

Yu' € {ul, e ,uk},
¢ (W) + Vain (P (2, ")) 2 ¢'(u) + Viin (P(z, 1)) ,

i.e., we set:
(z,y) = (2,y") & cou(®,u) > czu(z’,u') (12)
with ¢z (z,4) = Viin(P(z,u)) + ¢ (w).

Using algebraic methods rely on the ADD [9], it is
possible to re-express the corresponding order relation
as a polynomial relation and further to synthesize the
control equations.

Relation (12) is then translated in terms polyno-
mial relations. To this purpose, we introduce the sets

A1, Agy s Agyae € Z/pz[X, U], where ko is the
maximum of the value function Vi,;,, such that,

Vi € [1..kmaz];
Ai = {(z,u) € (Z/pZ )n—i—m/cw,u(a‘.) =i} .

Using the (4;)ic(o.....kmas]> relation (12) becomes:

(13)

(z,u) = (2',u')
<
3 €10,.., kmaz], (z,u) € 4; = (2',u') € U;.l:i A;.

Let go, ..., g; be the principal generators 2 of the sets
Ag, ..., A; then the preorder relation > defined by (12)
can be expressed as polynomial relation:

(z,u) = (',u') © R-(X, X", U,U") = 0

where

R (X, X, U,U") = [T - (X, 0N J(as (X", U}

i=1 j=i

Ry (z,z,u,u’) = 0 means that, in a given state z, the
trajectory initialized in = with the control v will have a
smaller cost than the one with the control u'. Finally,
the control equations are then given by:

R(X,U)=0
-~
VU' € (Z/pz,)', (Q(X,U') =0= Rx(X,X,U,U") =0)

In other words, the control chooses, for a state z, an
admissible control which makes it evolve to the state
which is maximal for the relation R. The controller of
the system is then provided by the following polynomial
relation:

R(X,U) = Velimy (1 - Q(X,U")(R- (X, X, U, U"))].

where  the solutions of  the polynomial
Velimx:(P(X,X")) is the set which is equal to
{z / Vz, (z,z') is solution of P}.

The controlled system is then obtained by adding
the controller R(X,U) to the initial system (6) and by
restricting the set of initial states Xj,i:

X' = P(X,U)
g _ ) exu = o
¢ - R(X,U) = 0
Imaz‘(XO) = 0

where the solution of I,,,(Xo) is the subset of initial
states X, with a minimal cost, i.e., such that:

Imaz(z) = 06 V2! € Xinit, Vimin(2) < Vinin(z')

In other words, we remove from the initial set of states
X;nit all the states for which there exists a state with a
greater cost.

3By principal generator of a set F, we mean the polynomial for
which its solutions are the set E. In our framework, this polyno-
mial always exists.



2.3 Optimal control with perturbations

If the PDS has uncontrollable event variables, the com-
putation of the value function Vi, is quite different.
In fact, we cannot minimize directly the cost of uncon-
trollable events. We take a minmax game theoretic ap-
proach. The computation of the value function is then
realized by taking, for a given state z, the maximal cost
for the admissible uncontrollable event, and for this pair
(z,y), by choosing the control with the minimal cost.

As for the case with no perturbation, the computa-
tion of Vi, is realized by backtracking from the final
states to the initial states:

Xipn = {z€(Z/pz)" /Yy admissible
HUJQ(x:yau) =0= P(x,y,u) € Xl}
Xi+1 = i(”‘!"'l U X;
Vipi(z) =V, VzeXx,
where
V o= min{Vi(e) , ¢'(2) + maxy;q(m=o{cy (v)+

min(y/Q(s,y,u)=0)1¢ () + Vi(P(z,y,u))}}}

Then control synthesis is quite similar to the one devel-
oped in the previous section.

3 Example

In this section, we briefly mention some examples which
illustrate the use of optimal control.

First, the optimal control theory can be used to per-
form an excursion of minimal duration from the set of
initial states. To synthesize such a controller, we at-
tach to each event a cost equal to one. The final states
are taken identical to the initial states. By computing
the value function V., we attach to the initial state
the minimal number of transitions which is necessary to
come back to one of the set of initial states. This kind of
control could be useful to perform quickest resetting of a
system when some external event is sent to the system,
by a human operator for example.

Alternatively, suppose we want to ensure both the
invariance of a set of states E and the optimal control of
the system S from the initial states into . We recognize
here the notion of optimal attraction of a set of states
E as introduced by Brave and Heymann in [12]. The
computation of such a controller consists of two steps.

In the first step, we synthesize the controller (Cy, C)
that ensures the invariance of the set of states E. If such
a controller exists, then according to section 1.3, the set
of states F' such that x € F & Cy(z) = 0 is invariant
for the controlled system S. = S + (Cp,C). From this
point, in the second step, we can compute the optimal
controller (Cy,C"), that will drive the system S from
the initial set of states to F', according to a given cost
function over the states and the event of the system S.

Let us now consider the following controlled system S¢..

QX,Y,U) = 0

X' = P(X,Y,U)
Ci(X) = 0
C'(X,Y,U) * Co(X,Y, U = 0
CX,Y,U)*(1-Co(X,Y,U)’") = 0

It is straightforward to see that the controller C' is
active if and only if the system is not in F, i.e.,
Co(X,Y,U)P~! =1 (at the same time the controller C
is not active) and one time the system has reached the
set of states F' (Co(X,Y,U) = 0), the controller that en-
sures the invariance of E becomes active and C' becomes
inactive since Cj is equal to zero.

We can also compose two (or more) optimal control
synthesis problems. Suppose that the system is initial-
ized in a set of states Xy, and that the first goal to achieve
is to reach the set of states X} with a minimal cost. Sup-
pose now that once the goal is achieved, the system must
come back to the set of states Xy. In order to perform
both goals, we first compute a controller C'y which en-
sures the first goal for the system S. A second controller
¢1 which ensures the second goal for the system S is then
computed. Finally by composing the two controller Cy
et Cs in the following way, we obtain a controlled PDS
which achieves the global goal.

~
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where G is a new state variable, which is equal to 1 when
the system tries to achieve the first goal and is equal to
-1 when the system tries to achieve the second goal.

4 Conclusion

In this paper, we have shown the usefulness of control
theory concepts for the class of polynomial dynamical
systems over a finite Galois field (in particular Z/pz, ).
Even if traditional control can be performed, we showed
that using the same algebraic framework, optimal con-
trol synthesis problem can also be performed.

In our framework, the optimal control consists in con-
structing a controller which is able to choose a sequence
of inputs that will transfer the system from a set of ini-
tial states to a given set of final states while minimizing a
cost function. The computation of such a controller can
be split into two different stages. During the first one, we
compute a value function Vinin(z), the minimal cost, for
a given admissible control sequence and initial state z,
to reach the final set of states. The value function Vi



is then regarded as specifying a preorder relation on the
set of states, from which a controller can be computed.

However, the use of order relation to express control
objectives cabe separately considered and gives access to
another class of static optimal control This kind of con-
trol can be used to synthesize control objectives which
relate more to the way to get to a logical goal, than to
the goal to be reached. Morever, the controller coming
from traditional control objectives are not determinis-
tic, in the sense that for a given state and an admissible
uncontrollable event fired, different controllable events
can be chosen by the controller. Therefore, in order to
obtain explicit control laws over the controllable event
variables, this new kind of control objectives must en-
compass traditional control objectives (see [15] for more
details). Finally, we can notice that the optimal control
theory presented in this paper has been implemented for
a particular class of polynomial dynamical system over
Z /37 - This kind of system results from the translation
of a SIGNAL program [16, 3] (not presented here). We
then have a powerful environment to describe the model
for real-time data-flow system, on which control can be
performed.

The theory of polynomial dynamical systems over
Z/pz, deserves much more research. One issue is the
control under partial observations or in a slightly dif-
ferent domain the control of implicit non-deterministic
polynomial dynamical systems. Some other perspectives
concern the synthesis of fault tolerance controllers or the
synthesis of controllers with control objectives expressed
as properties that depend on the behavior of numerical
variables.
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