
1998 IEEE Int. Conf. On Systems, Man, and Cybernetics, San Diego, USA Oct. 11-14

On the Synthesis of Optimal Schedulers in Discrete Event Control Problems with Multiple Goals
∗

Hervé Marchand, Olivier Boivineau and Stéphane Lafortune

Dept. of Electrical Eng. & Computer Science, Univ. of Michigan

1301 Beal avenue, Ann Arbor, Michigan 48109-2122

e-mail: {marchand, oboivine, stephane}@eecs.umich.edu

Abstract

This paper deals with a new type of optimal control for Dis-
crete Event Systems that extends the theory of [7]. Our aim
is to make a system optimally evolve through a set of multi-
ple goals, one by one, with no order necessarily pre-specified.
Our method is divided into two steps. We first use the result-
s in [7] to synthesize individual optimal controllers for each
goal. We then develop the solution of another optimal control
problem, namely, how to adapt, if necessary, and schedule all
of the controllers built in the first step in order to visit all
of the goals with least total cost. We solve this problem by
defining the notion of a scheduler and then by mapping the
problem of finding an optimal scheduler to an instance of the
Traveling Salesman Problem [1].

Keywords: Discrete Event Systems, Optimal Control,
Scheduler, Traveling Salesman Problem.

1 Introduction

We are interested in a new class of optimal control prob-
lems for Discrete Event Systems. We adopt the formalism
of supervisory control theory [4] and model the system as
the regular language generated by a Finite State Machine
(FSM). Our control problem follows the theory in [7] and is
characterized by the presence of uncontrollable events, the
notion of occurrence costs for events, and a worst-case ob-
jective function. A significant difference with the work in [7]
is that we wish to make the system evolve through a set of
marked states (or multiple goals), one by one, with no order
necessarily specified a priori; in contrast, the theory in [7]
only deals with a single marked state. Our problem formu-
lation is motivated by several application domains such as
test objective generation in verification and diagnostic, and
planning in environments with uncertain results of actions.

Our solution approach consists of two steps. In the first
step, we specialize the theory in [7] to synthesize a set of
optimal controllers corresponding to the different marked s-
tates (or goals), each treated individually. These controllers
are synthesized in a manner that gives them optimal sub-
structure, consistent with the notion of DP-optimality of [7].
In the second step, we develop the solution of another op-
timal control problem, namely, how to adapt and piece to-

∗This work is partially supported by INRIA and by ARO
grant DAAH04-96-1-0377.

gether, or schedule, the controllers built in the first step in
order to visit all of the marked states with least total cost.
We solve this problem by defining the notion of a scheduler
and by mapping the problem of finding an optimal scheduler
to an instance of the well-known Traveling Salesman Prob-
lem (TSP) [1]. We suggest different strategies to reduce the
computational complexity of this step while preserving opti-
mality. Finally, we show how to recover the solution to the
original problem from the solution of the TSP. Proofs and
details, omitted here due to space limitations, can be found
in report [2].

2 Notations

The system to be controlled is modeled as a FSM defined
by a 5-tuple G = 〈Σ, Q, q0, Qm, δ〉, where Σ is the set of
events, Q is the (finite) set of states, q0 is the initial state,
Qm is the set of marked states, and δ is the partial transi-
tion function defined on Σ∗×Q. The behavior of the system
is described by the prefix-closed language L(G) [4], generat-
ed by G. Similarly, the language Lm(G) corresponds to the
marked behavior of the FSM G, i.e., the set of trajectories
of the system ending in one of the marked states of G. Some
of the events in Σ are uncontrollable, i.e., their occurrence
cannot be prevented by a controller, while the others are con-
trollable. In this regard, Σ is partitioned as Σ = Σc ∪ Σuc,
where Σc represents the set of controllable events and Σuc

the set of uncontrollable events. In the sequel, we will only
be interested in trim FSMs, i.e., FSMs for which all states
of Q are accessible from q0 and coaccessible to Qm [4]. We
say that FSM A = 〈Σ, QA, q0A, QmA, δA〉 is a submachine of
G, denoted A ⊆ G, if ΣA ⊆ Σ, QA ⊆ Q, QmA ⊆ Qm, ∀σ ∈
ΣA, q ∈ QA δA(σ, q)! ⇒ (δA(σ, q) = δ(σ, q)) (The notation
δA(σ, q)! means that δA(σ, q) is defined, i.e., there is a transi-
tion labeled by event σ out of state q in machine A). We say
that A is a submachine of G at q whenever q0A = q ∈ Q and
A ⊆ G. For any q ∈ Q, we will use M(G, q, Qm) = {A : A is
a trim submachine of G with respect to QmA and q0A = q} to
represent the set of trim submachines of G at q with respect
to Qm. This set has a maximal element in the sense that the
maximal element contains all other elements as submachines.
It is denoted by M(G, q, Qm); for convenience, we will write
M(G, q) and M(G, q) when there is only one marked state,
i.e., when Qm = {qm}.

1

3 Review of DP-Optimality for

one final state

In this section, we recall some results for the optimal con-
trol of DES that can be found in [7]. In this section, it is
assumed that Qm = {qm}. Before dealing with the optimal
control problem, we recall the definition of controllability for
a submachine:

Definition 3.1 A submachine A of G is said to be con-
trollable if for all q ∈ QA, such that there exists s ∈ Σ∗

and δ(s, qoA) = q, the following is satisfied: ∀σ((σ ∈
Σuc) ∧ (δ(σ, q)!)) ⇒ δA(σ, q)!.

In language terms, the previous definition can be
rephrased as follows: a submachine A of G is controllable
if Lm(A)Σuc ∩ L(G) ⊆ Lm(A).

To take into account the numerical aspect of the opti-
mal control problem, two cost values are associated to each
event of Σ. To this effect, we introduce an occurrence cost
function1 ce : Σ → IR+ ∪ {0} and a control cost function
cc : Σ → IR+ ∪ {0,∞}. Control costs are used to rep-
resent the fact that disabling a transition possibly incurs
a cost. The control cost function is infinity for events in
Σuc. The cost functions are then used to introduce a cost
on the trajectories of a submachine A of G. We also de-
fine a projection pj that, when applied to a trace of events
s = σs

1σ
s
2 . . . σs

‖s‖, gives the subtrace of s of length j start-
ing from σs

1 (pj(s) = σs
1σ

s
2 . . . σs

j if j ≤ ‖s‖, and is undefined
otherwise). We also introduce ΣG

d (A, q) as the set of disabled
events at state q for the system to remain in submachine A

of G.

Definition 3.2 Let A be a submachine of G and Lm(A) be
the marked language generated by A, then

• For any state q∗ ∈ QA and string s = σs
1σ

s
2 . . . σs

‖s‖, such
that δA(s, q∗) exists, the cost of s is given by:

c
g(q∗, A, s) =

‖s‖
∑

j=1

ce(σ
s
j) +

‖s‖
∑

j=1

∑

σ ∈ ΣG
d

(A, q)
q = δA(pj(s), q∗)

cc(σ) (1)

• The objective function denoted by cg
sup(.) is given by:

c
g
sup(A) = sup

s∈Lm(A)

c
g(q0A, A, s). (2)

Basically, the cost of a trajectory is the sum of the occur-
rence costs of the events composing it, to which is added
the cost of controlling events on the way to remain in ma-
chine A. If an uncontrollable event is disabled, the cost of
a trajectory becomes infinite because the second term of (1)
becomes infinity. Finally, cg

sup(A) represents the worst case
behavior that is possible in submachine A. We now define
the optimization problem.

1This function is labeled “event cost function” in [7].

Definition 3.3 For all q ∈ Q, Ao ∈ M(G, q) is an optimal
submachine if

c
g
sup(Ao) = min

A∈M(G,q)
c
g
sup(A) < ∞. (3)

In particular, an optimal solution in the set M(G, q0) is an
optimal submachine of the plant G and represents a solution
of the optimal control problem, which in general has more
than one solution. For such a submachine Ao, cg

sup(Ao) rep-
resents the optimal cost (in fact, the worst inevitable cost)
necessary to reach qm from q0. It means that a submachine
with a lower cost could not ensure the accessibility of qm

from q0. The following lemma (lemma (2.15) in [6]) is s-
tated to note that optimal solutions lie within the class of
controllable submachines.

Lemma 3.4 Let A ∈ M(G, q, Qm). If cg
sup(A) < ∞ then A

is controllable.

Theorem (4.2) of [6] gives necessary and sufficient conditions
for the existence of optimal submachines:

Theorem 3.5 An optimal submachine of G exists if and
only if there exists a submachine A of G such that A is
trim, controllable and for all s ∈ L(G) and q ∈ Q such that
δ(s, q) = q we have cg(q, A, s) = 0.

Intuitively, this theorem states that an optimal solution ex-
ists when there are controllable submachines of G in which
all cycles have a zero cost. The controllability assumption
ensures that the positive cost cycles can be broken using
controllable events alone.

We now introduce the notion of DP-Optimal submachines.
This kind of submachine will be used intensively in the next
sections.

Definition 3.6 A submachine ADO ∈ M(G, q) is DP-
Optimal if it is optimal and for all q′ ∈ QADO , M(ADO, q′)
is an optimal submachine in M(G, q′).

If a particular DP-Optimal FSM includes all other DP-
Optimal FSMs as submachines of itself, then we call it
the maximal DP-Optimal submachine. The maximal DP-
Optimal submachine of a machine G at q with respect to the
final marked state qm will be denoted by Mo

D(G, q, qm). Note
that all DP-Optimal submachines are acyclic. The existence
of a DP-Optimal submachine of G is given by the following
theorem (theorem 4.3 of [6]).

Theorem 3.7 If an optimal submachine of G exists,
then the unique maximal DP-Optimal submachine Gm

des =
Mo

D(G, q0, qm) of G w.r.t. the final state qm also exists.

The cyclic DP-Optimal algorithm: Consider a FSM
G = 〈Σ, Q, q0, qm, δ〉 with a unique initial state q0, and a u-
nique marked state qm. Assume that all occurrence costs are
strictly positive; then there exists an algorithm [7], named
DP-Opt, with a worst-case complexity O(|Q|2|Σ|log(|Σ|) +
|Q|3|Σ|) (theorem 6.10 of [7]), that constructs the desired

maximal DP-Optimal submachine of the FSM G w.r.t. q0

and qm, that we denote as Gm
des. The algorithm also returns

the worst inevitable cost cg
sup(G

m
des). Moreover, during the

computation of the algorithm, we can recover the subma-
chines Mo

D(G, q, qm) associated with cg
sup(M

o
D(G, q, qm)), for

each state visited during the computation. A simplified ver-
sion of this algorithm can be found in [2] (when the control
cost function is reduced to the null function for controllable
events).

4 The Optimal Control problem

with multiple marked states

In the previous section, we were interested in finding a DP-
Optimal submachine of G that makes the system evolve from
an initial state q0 into a final state qm. Here, our goal is dif-
ferent. We consider a FSM G with a set of multiple marked
states X = (Xi)i∈[1,...,n]. Our goal is to have the system
reach each and every one of the (Xi)i∈[1,...,n]. To account
for the fact that it may not be possible to find such a path,
we assume in the following the possibility of resetting the
system to its initial state q0, when the system has evolved in
one of the states of X (we discuss this assumption in section
7).

4.1 Stepwise DP-Optimality Definition

Due to the Reset event, the system is now represented by
the following FSM G : 〈Σ ∪ {Reset} , Q , q0 ,X , δ〉, with
δ(Reset, Xi) = q0 for all Xi ∈ X . Besides, we assume
that the event Reset is controllable and that ce(Reset) =
cc(Reset) = 0.

Definition 4.1 Let s ∈ Lm(G). The trajectory s is said to
be valid if there exists at least n prefixes of s: (si)i∈[1,...,n]

such that δ(q0, si) = Xi ∈ X .

In other words, a trajectory is valid if it makes the system
evolve into each of the marked states. Note that the defini-
tion does not require that the trajectory visit each marked
state only once. The valid trajectory set of the FSM G will
be denoted by S.

Definition 4.2 Let s be a valid trajectory in S, such that
s = ts

1 . . . ts
l , with l ≥ n and δ(q0, t

s
1 . . . ts

k) = Xs
k ∈ X ∪ {q0}.

We define the function D from S into q0(X
∗{q0})

∗, such that
D(s) = (Xs

k)k∈[1,...,l]. Such a trajectory is called a valid

state trajectory w.r.t. X .

We denote as D the set of valid state trajectories in G, with
respect to the set of valid trajectories S: D = D(S). A
valid state trajectory d ∈ D corresponds to a trajectory of
q0(X

∗{q0})
∗, that contains all the states of X (with possible

repetitions).
We now need a structure, named a scheduler, that makes

the system evolve through all the states of X . Such a struc-
ture can be thought of as a concatenation of (DP-Optimal)
submachines. The role of the scheduler is to make the system
evolve according to one submachine at a time, and account

for switching between submachines at appropriate instants.
To build a scheduler, we introduce the “◦” operator that de-
notes the concatenation of two submachines A and A′ of G.
It is defined in terms of languages. Let Lm(A) and Lm(A′)
be the marked languages of A and A′, respectively. Define
Lm(A ◦ A′) = {st, s ∈ Lm(A), t ∈ Lm(A′)}. Note that
Lm(A ◦ A′) ⊆ Lm(G) if and only if QmA = {q0A′

} and
QmA′

⊆ QmG = X . Due to possible cycles in the FSM G,
A ◦ A′ is in general no longer a submachine of G.

Definition 4.3 Let d = (Xd
k)k∈[0,...,l] ∈ D be a valid state

trajectory visiting X ∪{q0} and let (Ak)k∈[1,...,l] be such that
l > n and Ak ∈ M(G,Xd

k−1, X
d
k) for all k ∈ [1, . . . , l], then

A = A1 ◦A2 ◦ . . . ◦Al is called a scheduler w.r.t. G and X .
The set of schedulers w.r.t. G and X is denoted Msc(G,X).

Note that, due to the Reset event, for a scheduler A = A1 ◦
A2 ◦ . . . ◦ Al, some Ak may be simply reduced to the simple

transition (Xd
k

Reset
−→ q0). Besides, in some cases, Msc(G,X)

can be reduced to ∅.
The cost Csc

sup(A) of a scheduler A = A1 ◦ A2 ◦ . . . ◦Al, is
given by:

C
sc
sup(A) =

l
∑

i=1

c
g
sup(Ai) (4)

The following definition extends the notion of DP-
optimality of [7] to a scheduler.

Definition 4.4 Let Ao ∈ Msc(G,X) be a scheduler that
makes the system evolve through d = (Xd

k)k∈[0,...,l] of D. Ao

is Stepwise DP-Optimal (SDP-Opt) if all the submachines
Ak are DP-Optimal w.r.t. the initial state Xd

k−1 and the
marked state Xd

k , and if Csc
sup(Ao) is equal to:

C
sc
sup(Ao) = min

A∈Msc(G,X)
C

sc
sup(A) < ∞

We here wish to draw attention to the fact that we will only
use maximal DP-Optimal submachines. This is done for two
main reasons. First, the algorithm referred to in §3 outputs
exactly maximal DP-Optimal submachines. Second, taking
the maximal DP-Optimal submachines allows the system a
greater freedom. Indeed, the maximal DP-Optimal subma-
chine has more possible paths from the initial state to the fi-
nal marked state. In most applications, it is desirable to low-
er the probability of taking the worst-case cost path, which
is the intent of using the maximal DP-Optimal submachines
for (Gi

des)i∈[1,...,n].
A direct consequence of definition (4.4) is given by the

following property:

Property 4.5 Let A be a SDP-Opt scheduler w.r.t. G and
X , such that A = A1 ◦ A2 ◦ . . . ◦ Al. Let d = (Xd

k)k∈[0,...,l]

of D be the associated valid state trajectory. Then ∀k ∈
[1, . . . , l], Ak = Mo

D(G, Xd
k−1k, Xd

k). Furthermore, the global
cost of the scheduler is:

C
sc
sup(A) =

l
∑

k=1

c
g
sup(M

o
D(G, X

d
k−1, X

d
k) < ∞

This property states that if a SDP-Opt scheduler exists, al-
l the submachines constituting this scheduler are given by
the (Mo

D(G, Xk, Xk+1))k∈[1,...,l]. The cost of the scheduler is
simply the sum of the costs of the DP-Optimal submachines.
The set of schedulers such that all the submachines of A are
of the form Mo

D(G, Xi, Xj), for Xi, Xj ∈ X ∪{q0} is denoted
Msc

D (G,X).

4.2 Stepwise DP-Optimal scheduler Ex-

istence

Before we present the necessary and sufficient conditions for
the existence of a SDP-Opt scheduler, we need the following
lemma:

Lemma 4.6 If DP-Optimal submachines M o
D(G, Xi, Xj)

and Mo
D(G, Xj , Xk) of G exist, then there exists a DP-

Optimal submachine Mo
D(G, Xi, Xk). Moreover, we have the

following triangular inequality:

c
g
sup(M

0
D(G, Xi, Xk)) ≤

cg
sup(M

0
D(G, Xi, Xj)) +

cg
sup(M

0
D(G, Xj , Xk))

From lemma (4.6), we can ensure that a state Xi is accessible
in an optimal way if and only if Gi

des exists. Theorem (4.7)
gives the necessary and sufficient conditions of the existence
of a SDP-Opt scheduler.

Theorem 4.7 A SDP-Opt scheduler A ∈ Msc
D (G,X) exists

if and only if the n DP-Optimal submachines Gi
des of G exist

for all Xi ∈ X , i ∈ [1, . . . , n].

This theorem implies that the SDP-Opt problem has a so-
lution when there exists a DP-Optimal submachine for each
of the Xi.

If a SDP-Opt solution exists, it need not be unique in gen-
eral. There is no maximal SDP-Opt scheduler, in contrast
to the DP-Optimal problem [7]. The problem of finding a
SDP-Opt schedulers is explored in the next section.

5 Stepwise DP-Optimal sched-

uler Determination

In this section, we assume that a DP-Optimal subma-
chine exists for all the states Xi ∈ X . Gi

des will de-
note the DP-Optimal submachine of the particular FSM
Gi = 〈Σ, Q, q0, Xi, δ〉. We take advantage of the DP-Optimal
structure of each of the Gi

des. We explore the possibility of
starting the system at q0, reaching a state Xi, and instead of
doing a Reset, continuing to a state Xj . To do so, we con-
vert the problem to a path-cost minimization problem on a
graph equivalent to a Traveling Salesman Problem (TSP).

5.1 Modeling of the problem

In order to convert the SDP-Opt problem into a path-cost
minimization problem, we use the DP-Opt algorithm. This

algorithm computes for each Xi ∈ X , the DP-Optimal sub-
machine Gi

des. During this computation, a state Xj belong-
ing to X may be reached. Due to the DP-Optimality defi-
nition, the algorithm also gives the DP-Optimal submachine
between Xj and Xi. The worst inevitable case cost between
these two states can be collected as well and placed in a
matrix C ∈ IRn+1 × IRn+1 that has the following form:

• C[i, i] = ∞, C[i, 0] = 0, C[0, i] = cg
sup(G

i
des), i 6= 0

• C[k, i] =

{

cg
sup(Mo

D(G, Xk, Xi)) if it exists
∞ otherwise

Note that some C[i, j] can be infinite after all Gi
des have

been computed. This does not mean that the corresponding
DP-Optimal submachines do not exist, but that they have
not been computed. Indeed, let us suppose that some
Mo

D(G, Xi, Xj) has not been computed (C[i, j] = ∞). It
means that it is less costly to perform a Reset from Xi to
q0, and to reach Xj through G

j
des.

The cost Csc
sup(A) of a scheduler A = A1 ◦ A2 ◦ . . . ◦ Al of

Msc
D is then equal to

l
∑

k=1

c
g
sup(M

o
d (G, Xdk

, Xdk+1
)) =

l
∑

k=1

C[dk, dk+1]

With this equation, the new optimization problem is now
reduced to finding a minimum cost path in the oriented graph
associated with the matrix C. This closely resembles the
TSP with the slight difference, that multiple visits to states
of X are possible.

5.2 Resolution of the TSP

The problem of finding a SDP-Opt scheduler A0 has been
brought down to a TSP, a classic combinatorial optimiza-
tion problem. The cities are represented by the set of n-
odes X ∪ {q0}, and the streets are represented by the ma-
chines (Gi

des)i∈[1...n] and Mo
D(G, Xi, Xj) when they exist.

The costs of these paths are given by the optimal cost-
s for each machine, i.e., the (cg

sup(G
i
des)i∈[1...n] and the

(cg
sup(M

o
D(G, Xi, Xj)))i,j∈[1...n]. The nodes of X must be

visited at least once. One requirement of the TSP is that
the salesman come back to the city he started from (i.e.,
q0). This condition does not change anything to our prob-
lem since this maps to a Reset, which has null cost in our
model.

The first step is to transform our modified version of the
TSP, where we can visit a node more than once (but at least
once), into an ordinary TSP where we must visit each node
exactly once. This is typically done by transforming the
matrix C into C′, called the all-pairs shortest-paths matrix
[1]. This can be performed in O(n3) using for example the
Floyd-Warshall algorithm [1].

Once C′ is obtained, we can feed it to a TSP solver. Solv-
ing of the TSP from C ′ can be done by using the Branch
& Bound method (chapters 9 and 10, [3]). This method is
expected to give a solution to the TSP in a tolerable amount
of time (to give a feel of the time complexity of this method,

a 1,000 node fully-connected TSP can be solved in about 20
minutes on a standard workstation).

The principle of the Branch & Bound method is quite
natural. A branching strategy and a bounding strategy are
used alternatively. The branching strategy consists of forcing
a supplementary constraint to the system, usually by forcing
a set of sub-paths in the graph. This allows to find a solution
that is suboptimal in general but that is sometimes optimal.
The bounding strategy focuses on finding a lower bound on
the cost of the optimal solution, by relaxing one of the con-
straints of the problem, usually by relaxing the constraint
that the solution must be a tour. The branching yields a
search tree, and the bounding yields a way of quickly finding
a suboptimal solution which is close to the optimal solution
of the problem. The final solution is optimal.

5.3 Stepwise DP-Optimal scheduler

Restitution

From a solution of the TSP, we now need to build a cor-
responding SDP-Opt scheduler. The resolution of the TSP
provides an optimal solution that gives the ordering in which
the states have to be visited so as to minimize the worst-
case cost. A solution of the TSP is under the form of a set
of n + 1 pairs, in which each state appears exactly once as
an initial state and exactly once as a final state of a pair.
For pairs (Xi, Xj) that represent a physically existing sub-
machine Mo

D(G, Xi, Xj) (i.e., C[i, j] < ∞), it suffices to map
these pairs to their associated submachine. As for the pairs
(Xi, Xj) that do not map to an existing DP-Optimal sub-
machine (i.e., C[i, j] = ∞, C ′[i, j] < ∞), they are divided
into two pairs, namely, (Xi, q0) and (q0, Xj). The first is a

Reset to the initial state (Xi
Reset
−→ q0), and the second can be

mapped to the DP-Optimal submachine G
j
des.

Theorem 5.1 Given a solution of the TSP, the previous
mapping yields a SDP-Opt scheduler.

An interesting property is given next. It states that all the
submachines that constitute a SDP-Opt scheduler can be di-
rectly derived from the DP-Optimal submachines built dur-
ing the computation of the matrix C.

Proposition 5.2 A SDP-Opt scheduler Ao is composed by
exactly n different DP-Optimal submachines (not counting
the possible Resets of the system) obtained from the DP-
Optimal submachines (Gi

des)i∈[1,...,n] computed during the
matrix generation step.

This results shows that the computation of the Gi
des is neces-

sary and sufficient to both test for the existence of a solution
and to generate the solution when it exists.

6 Some simplifications of the T-

SP resolution

In order to solve the SDP-Opt problem, we first have to solve
the TSP for the matrix C. As the TSP is a NP-complete

problem, it is desirable to find some simplifications, taking
advantage of the special structure of a SDP-Opt scheduler
leading to the reduction of the computational complexity of
the corresponding TSP without loss of global optimality.

6.1 Divide and conquer

In some cases, it will be possible to divide the matrix C into
several smaller ones. It will then be equivalent to solving
the TSP on each of these sub-matrices. The following prop-
erty states the necessary and sufficient conditions for this
simplification.

Proposition 6.1 Assume there exists a partition of X =
∪k∈[1,...,l](Xk) such that ∀k1, k2 ∈ [1, . . . , l], and ∀Xi ∈ Xk1

and ∀Xj ∈ Xk2
, Mo

D(G, Xi, Xj) is not defined. If Ao is a
SDP-Opt scheduler w.r.t. G and X , then it is possible to
find a set of schedulers AXk

, SDP-Opt w.r.t. G and Xk with
csc
sup(AXk

) as the optimal cost to perform the visit of all states
of Xk, such that Ao = ◦l

k=1AXk
, and

c
sc
sup(Ao) =

l
∑

k=1

c
sc
sup(AXk

)

Considering proposition (6.1), the global problem can be
solved on each sub-matrix (Ck)k∈[1,...,l] corresponding to the
particular set of states Xk∪{q0}. The necessary computation
to find the connected components before applying proposi-
tion (6.1) can be performed in O(n + E), where E is the
number of vertices of the directed graph associated to ma-
trix C [2].

6.2 Terminal path simplification

We address here a property of the scheduler that can lead
to a simplification on the matrix C. This property states
that if there exists a kind of “dead-end” in the graph of the
matrix, then it is always better to follow this path until the
end than to perform a Reset and come back to visit the end
of this path later.

Proposition 6.2 Assume that there exists a subset Xi =
(Xik

)k∈[1,...,m] of X , with m < n, such that:
1. ∀k ∈ [1, . . . , m − 1], Mo

D(G, Xik
, Xik+j

) exists for j ∈
[1, . . . , m − k],

2. ∀k ∈ [2, . . . , m], Mo
D(G, Xik−j

, Xik
) does not exist for

j ∈ [1, . . . , k − 1],
3. ∀k ∈ [1, . . . , m] and ∀Xl ∈ X − Xi, Mo

D(G, Xik
, Xl) is

not defined.
Under these assumptions, the submachines (Gik

des
) for k ∈

[2, . . . , m] do not belong to a SDP-Opt scheduler Ao.

An algorithm that performs this simplification on the matrix
C according to the three assumptions is presented in [2]. Its
complexity is linear in the number of states of X . With this
simplification, the paths of the form q0 → Xik

do not con-
stitute valid paths any longer and consequently, will not be
taken into account as possible solutions in the corresponding
TSP solution. This terminal path simplification can narrow
down the search space when solving the TSP.

7 Potential applications of the

theory

Applications of this theory cover various fields of engineer-
ing. One application is test objective generation where the
goal is to check whether a system meets the expectations or
requirements that are associated to it. In this framework,
the (marked) states of interest may be states in which the
system is suspected to behave incoherently or incorrectly, or
states in which misbehavior could be dramatic or dangerous.
The presented theory allows to visit all these states and to
test the behavior of the system in each one. Once the system
has reached one of the marked states, all the known events
can be disabled to check if the system stops or enters a for-
bidden state. If a failure is detected in the state, either we
stop since the system is faulty, or we continue to determine
other possible faults. We then Reset the system to its initial
state q0, and go directly to the next state, say Xi, through
its direct DP-Optimal submachine, Gi

des, and the process
continues.

Another application area is planning in the case of multi-
ple goals in Artificial Intelligence. Several search algorithms
exist when one unique goal is sought (see part II of [5]).
Planning with multiple goals remains challenging and inter-
esting. Our framework allows goals to be independent or
related. The Reset event has an interesting interpretation
in AI. It represents the impossibility to meet all the goals
without returning to the initial state. It may represent the
necessity of using several agents to achieve the goals in par-
allel. The number of Reset events gives the necessary and
sufficient number of agents needed to perform the goal of
reaching all the subgoals in parallel, optimally and without
any conflicts.

We give a last potential application example of our theo-
ry: routing in a communication network. In the same way
that several agents can perform in parallel to achieve dif-
ferent tasks, in a communication network a message can
be broadcast by generating multiple copies of it, and send-
ing these copies in parallel, along the Stepwise DP-Optimal
paths. The marked states represent the agents to whom the
message is destined. The costs may be the energy consumed
for each transmission between nodes. The uncontrollability
of certain events may reflect the possibility of other agents
changing the terminal path to certain nodes, based on their
own view of the network.

8 Conclusion

In this paper, we have introduced a new type of optimal
control for Discrete Event Systems. Previous work in opti-
mal control deal with numerical performances in supervisory
control theory when the goal to achieve is a unique state of
interest. In contrast, our aim was to make the system evolve
through a set of goals, one by one, with no order necessarily
specified a priori. The order in which the states are vis-
ited was part of the optimization problem since it had an
influence on the cost of visiting all the goal states. We in-
troduced the notion of a SDP-Opt scheduler of a FSM G

w.r.t. the set of states X . This particular type of scheduler
is custom made given the system on which the optimiza-
tion will be run. It has the particularity of being composed
of DP-Optimal submachines which allow optimality from s-
tate of interest to state of interest (stepwise). Moreover, the
ordering of these DP-Optimal submachines allows global op-
timality in the sense that the total worst-case cost of visiting
all the states of X is minimized. Finally, besides the possible
applications briefly presented in §7, future work will focus
on the issue of extending the theory to the case of a system
under partial observation.

References

[1] E. L. Lawler and D. E. Wood. Branch-and-bound meth-
ods: A survey. Operations Research, 14(4):699–719,
1966.

[2] H Marchand, O. Boivineau, and Lafortune S. On the
synthesis of optimal schedulers in discrete event control
problems with multiple goals. Technical Report CGR-98-
10, Control Group, College of Engineering, Univeristy of
Michigan, USA, July 1998.

[3] K. Murty. Operations research : deterministic optimiza-
tion models. Upper Saddle River, N.J. : Prentice Hall,
1995.

[4] P. J. Ramadge and W. M. Wonham. The control of
discrete event systems. Proceedings of the IEEE; Special
issue on Dynamics of Discrete Event Systems, 77(1):81–
98, 1989.

[5] S. Russel and P. Norvig. Artificial Intelligence: A Mod-
ern Approach. Prentice Hall, 1995.

[6] R. Sengupta and S. Lafortune. A deterministic optimal
control theory for discrete event systems: Computational
results. Technical Report n◦ CGR-93-16, Control Group,
College of Engineering, University of Michigan, USA, De-
cember 1993.

[7] R. Sengupta and S. Lafortune. An optimal control theory
for discrete event systems. SIAM Journal on Control and
Optimization, 36(2), March 1998.

