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Abstract

In this paper, we address computational methods for
the synthesis of controllers for discrete event sys-
tems modeled as polynomial dynamical systems over
Z/37- The control objectives are specified as order
relations to be checked by the system. The control ob-
jectives equations are then synthesized using algebraic
tools. The applications of these methods to the safety
specification of a power transformer station controller
is presented.
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1 Introduction

The control theory of discrete event systems (DES)
introduced by [1] is based on formal languages and
automata. The DES are described in terms of prefix-
closed language; each element of the alphabet repre-
senting a possible event. The control of the plant is
then performed by inhibiting some events (control-
lable events) while the other events (uncontrollable
events) can not be prevented from occuring.

In our framework, the specification of the plant is
realized using the synchronous language SIGNAL[2],
dedicated to the specification of real-time systems.
The formal bases used in the definition of this lan-
guage allow us to to check properties on the system.
To this purpose, the boolean part of the program (i.e.,
the plant) is translated into a polynomial dynamical
system (PDS) over Z/37[3]. Using algebraic meth-
ods and a PDS as a formal model, we are also able to
synthesize controllers satisfying various kinds of con-
trol objectives. The plant is then represented by a
PDS while the control of the system is performed by
restricting the controllable input values to values suit-
able for the control goal. This restriction is obtained
by incorporating new algebraic equations, called con-
troller to the initial system. Traditionally, control ob-
jectives are expressed as invariance, reachability and
attractivity of the plants [4]. In this paper, we extend

the class of control objectives to the class of optimal
control objectives expressed as order relation over the
states of the plant. We finally consider in this paper
the application of this control theory to the speci-
fication of the automatic control system of a power
transformer station.

The remainder of this paper is organized as follows:
Section 2 is dedicated to the presentation of PDS’s
and to an overview of logical control problems in our
framework. In Section 3, the order relation controller
synthesis problem is presented. Section 4 deals with
the application of these methods to the incremen-
tal construction of a power transformer station con-
troller.

2 Control of PDS
The encoding of SIGNAL programs results in dynam-

ical systems (PDS) over the Galois field Z /37 of the
general form :

X/ - P(X,Y,U)
s ={ QXx,v,U) = 0 (1)
Qo(X) = 0

where X,Y,U, X' are vectors of variables in Z /g7
and dim(X) = dim(X’) = n. The components of
vectors X and X'’ are called state variables represent
the states of the system. Y is a vector of variables in
z/ 3z, called uncontrollable event variables, where-
as U is a vector of controllable event variables. We
can consider that the uncontrollable event variables
are emitted by the system to the controller, and the
controllable event variables are emitted by the con-
troller to the system. The first equation is the state
transition equation and captures the dynamical as-
pect of the system; the second equation is called the
constraint equation, it specifies which event may oc-
cur in a given state. The last equation defines the set
of initial states. The behavior of such a PDS is the
following: at each instant ¢, given a state z; and an
admissible y; (i.e., which means that Q'(x,y) = 01.),

1Q/(X,Y) = Jelimy(Q(X,Y,U)) where the solutions of
the polynomial Jelimy (Q(X,Y,U)) is the set that is equal to




we can choose some u; that is admissible i.e., such
that Q(a¢,y,u:) = 0. In this case, the system e-
volves into state x¢11 = P (¢, Y, ut).

2.1 Control Synthesis of PDS

A PDS S can be controlled by first selecting a par-
ticular initial state xy and then by choosing suitable
values for wui,us,...,U,,.... We will here consider
static control policies, i.e., the value of the control
u is instantaneously computed from the value of x;
and y;. Such a controller is called a static controller.
It is a system of two equations: C(X,Y,U) = 0 and
Co(X) = 0, where the equation Cy(X) = 0 deter-
mines initial states satisfying the control objectives
and the other one describes how to choose the in-
stantaneous controls; when the controlled system is
in state x, and when an event y occurs, any value u
such that Q(x,y,u) = 0 and C(z,y,u) = 0 can be
chosen.

2.2 Logical control objectives

We now illustrate the use of the present framework
for solving a particular traditional control synthesis
problem we shall reuse in the sequel. Suppose we
want to ensure the invariance of a set of states F.

Let us introduce the operator pre, defined by: for any
set of states F,

pre (F) = {ze (Z/37)" / Vy admissible

Consider now the sequence (E;), v defined by:

Ey = E @)
Ei+1 = Eiﬂ p?e (E)

The sequence (2) is decreasing. Since all sets E; are
finite, there exists a j such that E;;; = E;. The

set I; is then the greatest control-invariant subset
of E. Let g; be the polynomial that has E; as so-
lution, then Co(X) = ¢; and C(X,Y,U) = P*(g;)?
is an admissible feed-back controller and the system
Sc S + (Cy, C) verifies the invariance of the set of
states . Using the same methods, we are able to
ensure attractivity, reachability of a set of states (see
[3, 4] for more details. After this brief presentation of
classical control objectives, the next section will de-
scribe some new kinds of control objectives specified
by order relations over the states of the systems.

3 Partial order control

Expressing control objectives as partial order rela-
tions is motivated by the fact that some control objec-
tives cannot be expressed as logical objectives. These
control objectives are more concerned with the way to

{(z,y) / Ju, (z,y,w) is solution of Q}
2p*(g) is the polynomial has as solutions the set
{(z,y,u) / P(z,y,u) is solution of g}

reach a given logical goal, rather than with the goal
to be reached.

3.1 Order relation controller synthesis

We suggest here a method for the synthesis of a con-
troller for a control objective modeled as a partial or-
der relation. To this purpose, let S be a PDS as (1).
Let us suppose that the system evolves to a state x,
and that y is an admissible event at x. It may exist
several controls u such that Q(x, y,u) = 0. Let uy and
ug be two controls admissible for the pair (z,y). The
system can evolve into two different states x; and xo
such that 1 = P(x,y,u1) and x2 = P(x,y,us). The
goal of the controller is to choose between u; and us,
in such a way that the system evolves into the state
that is optimal for some given order relation >. Since
the set of states is finite, each order relation can be
translated into an equation: Ry (z,2') =0 < z = 2/.
A strict order relation between the different states is
computed, defined as:

r-12' & (x>=2')and ~(a' = z). (3)

The translation of (3) into polynomial equations is
then given by:

Ry (x,2") = R (2,2") ® (1 = Re(2,2)) =0 (4)

where f @ f' = (f?+ f)%. A controller can then
be computed using the function R.. The possible

initial states are the optimal states (for R, ) among
all the solutions of the equation Qo(X) = 0. Let
I = {z / Qo(x) = 0} be the set of initial states,
then the optimal states (according to R,) are ob-
tained by removing, from the set of states I, all s-
tates for which there exists a “smaller” state for R, :
Iyt = I\{z /32’ € I,2’ = x} . Finally, to force the
system to choose the best control, we now introduce
the definition:

Definition 1 A control uy is said to be optimal com-
pared to a control ug, if and only if the state x1 =
P(x,y,u1) is greater than the states xo = P(x,y,us)
for the order relation R, .

In other words, the control chooses, for a pair (z,y),
an admissible control that makes the state x evolve to
the state which is optimal for the relation R, (note
that there may exist more than one optimal state).
The controller of the system is then provided by the
following polynomial relation:

{R(X,Y,U) = 0}
~ (5)
(VU € (Z/32)",(Q(X,Y,U") =0 =
P(X,Y, U) - P(X,Y, U’))}

The controlled system is S¢ : (S + (R, Iopt)) s.t.,



X' = P(X,Y,U)
_ ) QXx\U) = 0
S =\ RX.UU) = 0 (©)
Topt(Xo) = 0

3.2 Examples of order relations

various kinds of order relations (or partial order re-
lations) can be used to express properties over the
states. we present here some of them.

3.2.1 Minimally restrictive constraints on
uncontrollable events: Let us assume that the
system S is in « and receives the event y; then the sys-
tem can choose any control such that Q(z,y,u) = 0.
Let u; and us be two possible controls, and 1 and x5
the corresponding successor states. Then a minimal-
ly restrictive control can be synthesized by adopting
the following strategy: let Ad; and Ads bet the sets
of admissible y events in, respectively, x; and x5. Us-
ing the polynomial of the constraints equations over
the uncontrollable event variables denoted Q’(X,Y)
(i.e., the projection of @ on the X,Y components),
we get

{ Ady = {ye(Z/3gz)™ | Q'(z1,y) =0}
Ady = {ye(Z/3z)™ | Q'(x2,y) =0}

We now specify our order relation depending on the
following three different cases:

1. Ady C Ads: there are more spontaneous evolutions
in zo than in z;. The controller must choose the
control us rather than wu;.

2. Ads C Ad;: there are more spontaneous evolutions
in 1 than in z5. The controller must choose the
control u; rather than wus.

3. uy and us are not comparable. The controller can
choose either u; or wus.

We will now translate the above strategy into an order
relation. The result is a polynomial function R, such
that = = 2’ if and only if every admissible event in
the state z’ is also admissible in the states x :

Vy € (Z/3z)™, Q'(z,y) =0 = Q'(z,y)=0

and, z = 2’ & R-(X,X’') = 0, with R-(X,X’) =
Velimy ((1 — Q'(X',Y))Q'(X,Y)) 3. By applying the
methods described in section 3.1 (equation (5), we are
then able to synthesize a controller such that the con-
trolled system respects the control strategy of mini-
mally restrictive constraints on uncontrollable events.

3The solutions of the polynomial Velim x:(P(X, X")) is the
set that is equal to {z / V&', (z,z’) is solution of P}.

3.2.2 Maximization of the number of s-
tate variables equal to 1: Let (X1,...,X%) be a
subset of the set of state variables X; d; and ds be
two tuples of this subset of (Z/37)", k < n, where
the integer n represents the number of state variables.

dy = (21,...,2}) and dy = (27,...,2%)

Definition 2 We say di 3 ds if and only if

Vi € [1..k], x§:1:>%121’

To express 1, we introduce the polynomial function §
from (Z/37) % (Z/37) to Z/gz such that §(z,y) =
(x(x+1)(1 —y))? . We can check that 6(z,y) =0 <
{(z = 1) = (y = 1)}. The partial order relation
defined in definition (2), can then be expressed in
polynomial terms: dy Jdy < T(d1,d2) = 0, with
k
T(di,dy) = P (X7, X))

i=1

To extend this partial order relation to all states
of the system, let us consider two states of the
system 7 and w3, such that z; = (x1,d;) and
xy = (x3,dy), where d; and dy belong to (Z/37)".
Thus, 7 3O o if and only if dy 3 ds. Final-
ly Rg(l‘l,l'g) =0« 1 O xo, with Rg(xl,xz) =
T(aelim[Xk+1~~Xn,](m1)7 Helim[xk+1mxn]($2)). By apply—
ing the construction described in section 3.1, we syn-
thesize a controller that chooses, in a state x, one of
the best controls for the relation Ro.

Though it is always possible to express priorities over
the states using algebraic order relations, it is some-
times more useful to express directly the priorities us-
ing numerical cost functions, we investigate this next.

3.2.3 Numerical order relations: In this
section, we use cost functions over the states or
the events to express order relations. Let X =
(21,...,X,) be the state variables of the system. A
cost function is a map from (Z/37)" to IV, that asso-
ciates to each = of (Z/37)" some integer k. Consider
a PDS S, we assume some cost function f is given.
We introduce definition:

Definition 3 A state x1 is said to be f-optimal than
a state xo for the PDS S (noted x1 = x2), if and

only if, f(x2) > f(x1).

Using algebraic methods relying on the ADD devel-
oped by [5], it is possible to re-express > as a poly-
nomial relation Ry, (z =y 2’ & Ry (X, X’) = 0)
(See [6] for the algorithms details). As this order re-
lation is now expressed as a polynomial relation, we
are able to use the method described previously to
synthesize the corresponding controller.



4 The power transformer station controller

4.1 Brief description

The purpose of an electric power transformer station
is to lower the voltage of power so that it can be dis-
tributed in urban centers. The kind of transformer
we are interested in receives high voltage lines, and
several medium voltage lines come out of it and dis-
tribute power to end-users. For each high voltage line,
a transformer lowers the voltage. In the course of ex-
ploitation of this system, several kinds of electrical
defects can occur, due to causes internal or external
to the station. In order to protect the device and the

High power
Transtorrmear
Link
Cell )
N -

Circuit-Breaker
Aniival
Circuit-Breakier
w | Amival
I I Cell

Tl B N

Departure  pitribution of the power Departure
Cell fo the users Circuit-Breaker

& Possinlity of defect presence

Figure 1: The power transformer station topology.

environment, several circuit breakers are placed in d-
ifferent parts of the station. These circuit breakers
are informed about the possible presence of defects
by sensors at different locations on the lines and are
controlled by local control systems called cells.

The controller of the power transformer sta-
tion can be divided into two parts. The first part
concerns the local controllers (i.e., the cells). We
chose to specify each local controller in SIGNAL, be-
cause they merge logical and numerical aspects. A
description of the behavior of the different cells can
be found in [7]. The other part concerns more general
requirements to be checked by the global controller of
the power transformer station and is now described
in the sequel.

One of the most significant problems concerns the
appearance of two defects at two differents departure
level, at the same time. Double defect is very dan-
gerous, because it implies high defective currents. At
the place of the defect, this results in a dangerous
path voltage that can electrocute people and other
living creatures. The detection of these two defects
must be performed as fast as possible as well as the
handling of one of the defects. Another important as-
pect is to know which of the circuit breakers must be
opened. If the defect appears on the departure line,
it is possible to open the circuit breaker at departure

level, or at link level, or at arrival level. Obviously,
it is the interest of users that the circuit be broken
at departure level, and not at a higher level, so that
the fewest users are deprived of power. We also have
to take into account the importance of the circuit-
breakers. Assume that some departure line, involved
in the double defect problem, supplies with electric-
ity an hospital. Then, if the double defect problem
occurs, the controller should not open this circuit-
breaker, since electricity must always delivered to an
hospital. To take into account these requirements,
with the purpose of obtaining an optimal controller,
we choose to rely on our optimal control theory. We
will now describe how such controllers can be synthe-
sized.

4.2 Specification of controller

We have seen in the previous section, that one of the
most critical requirements concerns the double defect
problem. Assume that we have already a polynomial
dynamical system coming from the logical abstrac-
tion of the plant specified in SIGNAL. This one is
composed by four departure circuit-breakers, two ar-
rival circuit-breakers and one link circuit-breaker?.

We assume here that the circuit-breakers are ide-
al, i.e. they immediately react to actuators. With
this assumption, the double defect problem can be
rephrased as follows: if two defects are picked up at
the same time by two different departure cells, then
at the next instant, one of the two defects (or both)
must have disappeared.

The double defect requirement: in order to syn-
thesize the controller, we assume that the only con-
trollable events involve the opening and closing de-
mands of the different circuit-breakers. The other
events concern the appearance of the defects and can
not be considered as controllable.

The specification of the control objective is performed
as follows. After translating the plant into a PDS S,
we introduce a polynomial double defect (X) that is
equal to 1 when two defects are present at the same
time, and -1 otherwise. We are then able to compute
the set of states, where two defects are present at
two consecutive instants. This is performed by com-
puting the following polynomial: Error(X;, X; 1) =
double_ defect(X;) and double defect(X;_1). The so-
lutions

of this polynomial (i.e., when Error(X:, X;—1) = 0)
are the set of states where two defects are present at

two consecutive instants. The problem of controller
synthesis is now to ensure the invariance of the set of

states no_ double_ defect, which is the complementary

4The obtained PDS S is represented by more than 60 states
variables, 14 controllable events variables and 21 uncontrollable
events variables.



of the set of states Error. Applying the algorithm, de-
scribed in section 2.2, we are able to synthesize the
controller, given by the pair (C1, Cp), that ensures the
invariance of the set of states no_ double_ defect for

the controlled system S¢, = S+ (C1, Cp)., The qual-
itative requirements: however, even if the double

defect problem is solved, different requirements had
not been taken into account. The first one is induced
by the obtained controller itself. Indeed, several so-
lutions are available at each instant. For example,
when two defects appear at a given instant, the con-
troller can choose to open all the circuit-breakers, or
at least the link circuit-breaker. This kind of solu-
tions is not admissible and must not be considered.
The second requirements concerns the importance of
the lines. The first controller (Cy,Cy) does not look
at this kind of problems and can force the system to
open the bad circuit-breaker.

To encode the importance of the line, we use a cost
function (in fact both requirements will be taken into
account by this cost function). We simply have to
encode the fact that the more important is the circuit-
breaker, the more important is the cost allocated to
the state variable which encodes the circuit-breaker.
The picture (2) summarize the way we allocate the

cost.
) cOLLInk1) =14
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Figure 2: Cost allocated to each circuit breaker.

The cost allocated to each state variable correspond-
s to the cost when the corresponding circuit-breaker
is opened. When it is closed, the cost is equal to
0. The cost of a global state is simply obtained by
adding all the circuit-breaker costs. With this cost
function, it is always more expensive to open a circuit-
breaker at a certain level than to open all the down-
stream circuit-breakers. Finally, the cost allocated to
the state variable that encodes the second departure
circuit-breaker (encoded by the state variable X gcp2))
is bigger than the others because the corresponding
line supplies with electricity an hospital (for exam-
ple). Using methods described in sections 3.2.3 and
3.1, we then obtain a controller (Cs, Cy) which is suf-
ficient to solve our problem.

5 conclusion

In this paper, we have shown the usefulness of control
theory concepts for the class of polynomial dynami-
cal systems over Z/3z. As this model results from
the translation of a SIGNAL program (not presented
here)[2], we have a powerful environment to describe
the model for real-time data-flow system. Even if
classical control can be performed, we showed that
using the same algebraic framework, optimal control
synthesis problem can also be performed. The order
relation controller synthesis problem covers different
areas of control. It can first be used to synthesize con-
trol objectives which relate more to the way to get to
a logical goal, than to the goal to be reached, but can
also be used to obtain explicit control laws for the
controllable events (by using a strict order relation
for example), considering a previous classical control
synthesis problem. These methods have finally been
successfully applied to the incremental construction
of a power transformer station controller. For more
details, the reader could refer to [§].

The theory of PDSs deserves much more research.
One issue is the control under partial observations or
in a slightly different domain the control of implic-
it non-deterministic PDSs. Another point of interest
concerns the optimal control problem (see [8] for more
details). Some other perspectives concern the synthe-
sis of fault tolerance controllers.

This work is partially supported by Electri-
cité de France (EDF) under contract number
M64/7C8321/E5/11.
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