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Abstract

This paper presents the specification and validation

of the automatic circuit-breaking control system of

an electric power transformer station. It handles

the reaction to electrical defects on the high voltage

lines. The purpose of this study is to construct a dis-

crete event control system based on digital technolo-

gy. To this end, we use the synchronous approach to

reactive real-time systems, and in particular the da-

ta flow language Signal, and its tools for specifica-

tion, formal verification, simulation, and implemen-

tation. The hierarchical, state-based and preemptive

controller is implemented with Signal and its exten-

sion for preemptive tasks SignalGTι̇. A graphical

simulator supports validation of the specification.

Keywords: power systems, discrete event system-
s, reactive systems, synchronous language.

1 Introduction

This paper presents the specification and simulation
of the automatic circuit-breaking controller of an elec-
tric power transformer station. It is an experiment in
the synchronous approach to the specification, imple-
mentation and formal verification of reactive real time

systems [3]. We use the declarative language Signal,
applied to the design of the hierachical, state-based,
discrete event behavior of the controller of a power
transformer station.

The context of the application is a power trans-
former station, such as the hundreds counted on the
French national network operated by Électricité de

France (EDF). Such a transformer station features
an automatic control system handling the response
to electric defects on the lines connected to it. The

∗This work is supported by Électricité de France (EDF).

control involves complex interactions between com-
municating automata, interruption and preemption
behaviors, timers and timeouts, reactivity to exter-
nal events, . . . The functionality of the controller is
to handle the interruption of power, the redirection
of supply sources, and the re-establishment of power
following an interruption. The objective of the con-
troller is double: protecting the components of the
transformer itself, and minimizing the effects of the
defect in the distribution of power in terms of du-
ration and size of the interrupted sub-network. The
electric defects can be detected by sensors; the con-
troller has to distingish between several types of de-
fects, and between transient and persistent ones.

We use the synchronous approach to reactive real-
time systems, and particularly the data flow language
Signal. The synchronous languages are derived from
theoretical and applied studies on discrete event sys-
tems with real time aspects, and on specification me-
thodologies and programming environments for their
development [3, 5]. They evolved into commercial
products used in industrial settings [2]. Their aim is
to support the design of safety critical applications,
especially those involving signal processing and pro-
cess control. The synchronous approach guarantees
the determinism of the specified systems, and sup-
ports techniques for the detection of causality cycles
and logical incoherences. A family of languages is
based on this approach [5], featuring amongst other
Esterel, Lustre, Signal and also Statechart-

s. Among them, Signal [6] is a data-flow language,
with a declarative style: processes are systems of e-
quations. The compiler transforms the specification
into an optimized executable code (in C or For-

tran). Verification of dynamical properties is based
on polynomial dynamic systems over ZZ/3ZZ. Sig-

nalGTι̇ is a recent extension that provides constructs
for the specification of hierarchical preemptive tasks
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on intervals of time [11].

In this paper, we outline some results of a larger
experiment on the specification and verification of the
control system [8], by focusing on the specification of
a particular aspect of its functionality.

2 The power transformer sta-

tion

The transformer station on the network.

The French national electrice network, operated by
Électricité de France (EDF), counts a large number
of transformer stations. Their purpose is to lower the
voltage so that it can be distributed in urban centers
to end-users [8], as illustrated in Figure 1. For each
high voltage line, a transformer lowers the voltage. In
the course of exploitation of this system, several kinds
of electrical defects can occur, due to causes internal
or external to the station. Three types of electrical
defects are considered: phase (PH), homopolar (H),
or wattmetric (W). In order to protect the device and
the environment, several circuit breakers are placed
in different parts of the station. These circuit break-
ers are alerted by sensors at different locations, and
controlled by a local control system called cell (ar-
rival cell, link cells, and departure cells) and by an
operator in a remote control center.

Each circuit breaker controller defines a behavior
beginning with the confirmation and identification of
the type of the defect. If the defect is confirmed,
the treatment consists in opening the circuit-breaker
during a given delay, then closing it again, and af-
ter another delay, if the defect is still present, then
repeating these operations for a certain number of cy-
cles. The purpose of this is to treat transient defects;
in case the defect is still present at the end of the cy-
cle, the circuit-breaker is opened definitely, and the
control is given to the remote operator.

One of the problems is to know which of the circuit
breakers must be cut off. If the defect appears on the
departure line, it is then possible to cut off the cir-
cuit breaker at departure level, or at link level, or at
arrival level. Obviously, it is in the interest of user-
s that the circuit be broken at departure level, and
not at a higher level, so that the fewest users be de-
prived of power. This requires coordination between
the different circuit breaker cells [12].

Functional description of a departure cell.

We will focus on one of the types of cell: the depar-
ture cell, because it features all the interesting aspects
of the automatism behavior. Other cells have a be-
havior which is a subset of this one. It is decomposed
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Figure 1: Topology of a power transformer station.

in a confirmation process, which also cares for identi-
fying the type of the defect, followed by a treatment
phase in an attempt at making the defect disappear.

The confirmation phase consists in taking the time
to let transient defects cease naturally. For each of
the defect types (PH, H, or W) a delay can assess its
persistent presence. They are tested in sequence, un-
til a defect is confirmed (i.e., present at the end of
the corresponding delay). However, the sequence is
interrupted as soon as the defect disappears, or one
of the previously examined defect appears. This lat-
ter point involves a preemption hierarchy, as detailed
in Section 4.

The treatment phase begins when the defect is con-
firmed. It alternates between breaking the circuit
during varying delays, and closing it again to check
whether the defect has disappeared. Each circuit
break begins with emitting the command of open-
ing of the circuit breaker, followed by the reception
of the Open event, upon which the delay is fired. Up-
on completion of the delay, the closing of the circuit
breaker is required, and confirmed by the reception
of Closed. Once the circuit is re-established, either
the defect has disappeared, and the cell goes into its
normal state, or it is still present: then, after a .5s
delay, the treatment phase goes into the next cycle
(requesting opening, ...), or if it was the last cycle,
the circuit breaker is definitely cut off, and its man-
agement is left to a remote control operator. This
phase involves a series of values of the delay in the
successive cycles, which consist in a repetition of the
same task on a series of activation intervals.

In the following, Section 3 gives a brief overview of
Signal, and of its extension SignalGTι̇, introducing
features that answer the need for series of values, and
series of activation intervals found in the application.
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Then Section 4 describes the detailed specification of
the confirmation phase, and just a brief account of
the rest of the controller for the sake of brevity.

3 The synchronous language

Signal

The Signal equational language.

Signal [6] is built around a minimal kernel of op-
erators. It manipulates signals X, which denote un-
bounded series of typed values (xt)t∈T , indexed by
time t in a time domain T . An associated clock
determines the set of instants at which values are
present. A particular type of signals called event

is characterized only by its presence, and always has
the value true (hence, its negation by not is always
false). The clock of a signal X is obtained by ap-
plying the operator event X. The constructs of the
language can be used in an equational style to specify
the relations between signals i.e., between their val-
ues and between their clocks. Systems of equations
on signals are built using a composition construct.
Data flow applications are activities executed over a
set of instants in time. At each instant, input data
is acquired from the execution environment; output
values are produced according to the system of equa-
tions considered as a network of operations. Section
4 gives examples of their use.

Kernel of the Signal language.

It is based on four operations, defining primitive
processes or equations, and a composition operation
to build more elaborate processes in the form of sys-
tems of equations.

Functions are instantaneous transformations on
the data. For example, the definition of a signal Yt

by the function f : ∀t, Yt = f(X1t
, X2t

, . . . , Xnt
) is

written in Signal: Y := f{ X1, X2,..., Xn}. The
signals Y, X1,. . . , Xn are required to have the same
clock.

Selection of a signal X according to a boolean con-
dition C is: Y := X when C. If C is present and true,
then Y has the presence and value of X. The clock of
Y is the intersection of (i.e., included in) that of X and
that of C at the value true.

Deterministic merge noted: Z := X default Y

has the value of X when it is present, or otherwhise
that of Y if it is present and X is not. Its clock is the
union of (i.e., includes or contains) that of X and that
of Y.

Delay gives access to past values of a signal. E.g.,
the equation ZXt = Xt−1, with initial value V0 de-
fines a dynamic process. It is encoded by: ZX := X$1

with initialization ZX init V0. X and ZX have equal
clocks.

Composition of processes is noted “|” (for process-
es P1 and P2, with parenthesizing: (| P1 | P2 |)).
It consists in the composition of the systems of equa-
tions; it is associative and commutative. It can be
interpreted as parallelism between processes; instan-
taneous communication between them is carried by
the broadcasting of signals.

Derived features and design environment.

Derived processes have been defined on the base
of the primitive operators, providing programming
comfort. E.g., the instruction synchro{X,Y} specifies
that signals X and Y are synchronous (i.e., have equal
clocks); when B gives the clock of true-valued occur-
rences of B; X cell B memorizes values of X and also
outputs them when B is true; the expression C := #

E is a counter of the occurrences of event E. Arrays of
signals and of processes have been introduced as well.
Hierarchy, modularity and re-use of the definition of
processes are supported by the possibility of defining
process models that can be invoked by instanciation.

The design environment features a block-diagram
graphical interface, a formal verification tool based on
the equational model of Signal, and a compiler that
establishes a hierarchy of inclusion of logical clocks
(representing the temporal characteristics of discrete
events), checks for the consistency of the inter-depen-
dencies, and automatically generates optimized exe-
cutable code ready to be embedded in environments
for simulation, test, prototyping or the actual system.

Task preemption in SignalGTι̇.

A recent extension to Signal handles tasks execut-
ing on time intervals and their sequencing and pre-
emption [11]. Data flow and sequencing aspects are
both encompassed in the same language framework,
thus relying on the same model for their execution
and analysis.

A time interval I has the value inside between the
next occurrence of event B and the following occur-
rence of event E, and outside otherwise. It is written:
I := ]B, E] init I0 with initial value I0 (inside
or outside). The operator compl I defines the com-
plement of an interval I (inside when I is outside

and reciprocally). The opening and closing occur-
rences of the bounding events are given by open I

and close I. Occurrences of a signal X inside I are
selected by X in I, and those outside by X out I

(e.g., open I is B out I, and close I is E in I).

Tasks consist in associating a process with an inter-
val on which it is executed. Inside the task interval,
the task process is active i.e., present and executing,
and out of it, it is absent and its internal state is u-
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(| Defect := Ext_Defect default Def_Conf default (not (when not (PH or H or W)))

| I_PH := ] First_Defect, when Defect ]

| (| End_Delay_PH := when ((#Time) = Delay_PH)

| Def_Conf := (when PH when End_Delay_PH) default (when PH in I_H) default Def_Conf_H

| I_H := ] (when (not PH) when End_Delay_PH), Def_Conf_H ]

| (| End_Delay_H := when ((#Time) = Delay_H)

| Def_Conf_H := (when H when End_Delay_H) default (when H in I_W) default Def_Conf_W

| I_W := ] (when (not H) when End_Delay_H), Def_Conf_W ]

| (| End_Delay_W := when ((#Time) = Delay_W)

| Def_Conf_W := when W when End_Delay_W

|) each I_W

|) each I_H

|) each I_PH

|)

Figure 2: Code for the Confirmation process.

navailable (in some sense it is out of time, its clock
being cut). A suspensive task is written P on I: it
re-starts at its current state when re-entering I. An
interruptible task is written P each I: it re-starts at
its initial state (as defined by the declarations of its
state variables). Processes can themselves be decom-
posed into sub-tasks: this way, the specification of
hierarchies of preemptive behaviors is possible.

Task sequencing and preempting make it possible to
specify general hierarchical parallel place-transition
systems. Sequencing tasks is achieved by constraints
on bounding events of task intervals (the end of the
one equals the beginning of the other). Parallelis-

m between several tasks is the composition of tasks
sharing the same or overlapping intervals.

The encoding of time intervals and tasks into the
Signal kernel [10] is implemented as a pre-processor
to the Signal compiler, called SignalGTι̇ [11]. Ap-
plications other than the one discussed in this paper
concern an interactive reflex game and the sequenc-
ing of visual servoing tasks in a robot vision system
[7].

4 Design in Signal and Sig-

nalGTι̇

The confirmation phase: an interruption hier-

archy.

Figure 3 illustrates the Confirmation process
specified in SignalGTι̇ in Figure 2. The three cons-
tant parameters Delay PH, Delay H, and Delay W cor-
respond to each of the three kinds of electrical defects.
The input event Time is the base clock i.e., it is the
clock of the logical inputs PH, H, and W (presence of the

Figure 3: Confirmation phase: interruption hierar-
chy.

defects) and contains the clocks of the two other input
events Ext Defect and First Defect. The process
emits the output event Def Conf when the defect is
confirmed and the output logical signal Defect which
gives the state of the cell. This latter is true when an
external defect is detected (reception of Ext Defect)
or when the defect is confirmed (Def Conf), other-
wise it is false when a defect is not present (i.e.,
when the disjunction of the three logicals is false).
When a defect is detected (First Defect), the inter-
val I PH is entered. It is closed by the occurrence of
Defect at the value true, causing the interruption of
the confirmation task executed each I PH (and also
of its sub-tasks) until the next defect.

The interruption hierarchy, illustrated in Figure 3,
is as follows. Each time I PH is entered, a counter
of Time is fired during Delay PH. At the end of this
delay:

• If the logical PH is true, or if PH becomes true

during the sub-interval I H or if the defect is
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confirmed at a lower level (Def Conf H), then
the defect is confirmed at this level (Def Conf).
This causes I PH to close, thereby terminating
the confirmation task.

• In the other case (PH is false), I H (sub-interval
of I PH) is entered, with a sub-task behaving in
a quite similar way: a counter of Time is fired,
and at Delay H:

– if H is true, or becomes so during interval
I W, or if the defect is confirmed at a lower
level (Def Conf W), the defect is confirmed
at this level (Def Conf H) causing the inter-
val to close.

– In the other case (H is false), I W (sub-
interval of I H) is entered, and a last sub-
task counts Delay W and tests for W.

The treatment phase is another task [8], we will on-
ly sketch it here. Its sequencing with the confirma-
tion phase is done simply by specifying that the latter
is a task with an interval beginning on the occur-
rence of a defect confirmation Def Conf, which also
causes exiting the confirmation task (schematically:
Treatment each ]Def Conf,End Treat]). The spe-
cific feature of the treatment phase is its cyclical as-
pect: the same circuit-breaking procedure is applied
starting with the request to open and ending with the
reception of Closed; the only changing feature is the
value of the delay fired on reception of Open. These
two remarks suggest to have a signal carrying the se-
ries of values of the delay at a clock synchronous with
Open, and to have a sub-task on a series of intervals,
as in: One Cycle each ]Req Open,Closed].

Validation by graphical simulation.

We validated the specification by graphical simula-
tion for the aspects of the functionality involving the
correct scheduling of events, . . .

The simulation environment is built using a generic
built-in graphical simulation tool for Signal specifi-
cations. It performs the automatic construction of
graphical input acquisition buttons and output dis-
play windows, for the signals of the interface of a
program, in an oscilloscope-like fashion, as illustrat-
ed in Figure 4. We want to display the presence and
values of some of the intervals of the behavior, and of
some events. In order to display them on oscilloscope-
like windows, we embed the controller into a process
encoding them in integers present at every instant.
Intervals are encoded as 1 when inside, −1 when
outside and 0 when absent. Events are encoded as
1 when present (which lasts only one instant and ap-
pears graphically as a peak), and 0 when absent. The

Figure 4: Simulation of the confirmation phase.

input logicals are always present, and are displayed
as 1 when true and 0 when absent.

The simulation of the confirmation phase is illus-
trated in Figure 4. Its left column describes the trace
of the different inputs (i.e. the three kinds of logi-
cal defects PH, H and W, and the event Ext Defect).
The right column shows the intervals of the hierarchi-
cal tasks of the confirmation phase, and output event
Def Conf. In the particular simulation trace illustrat-
ed in Figure 4, the first event occurs at time 20: the
logical input W becomes true. Consequently, the in-
terval Int PH (corresponding to I PH) is opened, and
Int H is in its initial state outside. At the end of
Delay PH (for this simulation: 40) i.e. at time 60,
open Int H occurs, and the interval Int W is in its
initial value outside. At the end of Delay H (for this
simulation: 30) i.e. at time 90, open Int W occurs.
Before the end of Delay W, at time 110, the defect PH
becomes true: it causes interruption of the confirma-
tion on other defects, and emission of B Def Conf.

Validation by verification.

Athough there is no space for a detailed presenta-
tion in this paper, we can give pointers to and a very
brief outline of the formal verification technique asso-
ciated to Signal [6, 4] and its use in the case of this
study [8]. Let us first note that the compiler itself,
with its calculus on clock relations (inclusion, ...), is a
proof tool for statical properties i.e., those that hold
for all instants (e.g. “the two events E1 and E2 can

never occur together”).
The verification of dynamical properties uses a

model-checking technique based upon the equation-
al model of Signal in polynomial dynamic systems
over ZZ/3ZZ. The proof method is based on the theo-
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ry of algebraic geometry: the systems of polynomial
equations caracterize sets of solutions, which are s-
tates and events. The techniques used in the method
consist in manipulating the equation systems instead
of the solutions sets, which avoids the enumeration
of the state space. Operations involving ideals, vari-
eties, and morphisms are used to define liveness and
safety properties, the reachability of a set states, the
invariance of a set of states by transitions, its invari-
ance under control, and its attractivity. With this,
one can express and evaluate properties like: “the s-

tate where X is true is reachable from the initial state

of the system”.

5 Conclusion

This paper presents the synchronous approach to the
specification and validation of discrete event control
systems, applied to the preemptive controller of a
circuit-breaker for a power transformer station.

The specification, validation and implementation
of complex control systems, implying permanent in-
teraction with an environment, is treated by the
data-flow language Signal in a discrete event sys-
tem framework. The possibility of formal verification
makes it particularly suited for safety-critical appli-
cations. Transitions between different modes of such
an activity, i.e. the sequencing of hierarchical data-
flow tasks, is the purpose the extension SignalGTι̇
[10]. It makes a language-level integration of the data
flow and task preemption frameworks. This way, the
whole application can be specified in Signal, from
the discrete event driven state-based behavior down
to the servoing loops. The Signal approach to the
specification and verification of control systems has
also been experimented on other applications, such
as a robotic production cell [1], a speech processing
system [6] or a robotic vision system [7]. The per-
spectives around the Signal approach concern for-
mal methods, hybrid systems, hardware-software co-
design, distributed implementation, etc ...

Among these perspectives, the automatic synthe-
sis of discrete event controller systems is also stud-
ied: given constraints between the different signals
and tasks, an automaton-like behavior can be syn-
thetized automatically [4, 9]. This technique will be
applied to the synthesis of a controller of the interac-
tions between communicating cells in a transformer
station.
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