
A Family of Languages for Architecture
Constraint Specification

Chouki Tibermacine a Régis Fleurquin b,c and Salah Sadou c

aLIRMM, CNRS and Montpellier-II University, France
Chouki.Tibermacine@lirmm.fr

bIRISA, INRIA Rennes, France
Fleurquin@irisa.fr

cVALORIA, University of South Brittany, France
Salah.Sadou@univ-ubs.fr

Abstract

During software development, architecture decisions should be documented so that
quality attributes guaranteed by these decisions and required in the software specifi-
cation could be persisted. An important part of these architectural decisions is often
formalized using constraint languages which differ from one stage to another in the
development process. In this paper, we present a family of architectural constraint
languages, called ACL. Each member of this family, called a profile, can be used to
formalize architectural decisions at a given stage of the development process. An
ACL profile is composed of a core constraint language, which is shared with the
other profiles, and a MOF architecture metamodel. In addition to this family of
languages, this paper introduces a transformation-based interpretation method of
profiles and its associated tool.

Key words: Architecture Constraint, Constraint Language, ADL, Software
Component, MOF, OCL, Constraint Transformation

1 Introduction

Software architectures deal, at a relatively coarse granularity, with the decom-
position of a system into its major components, the mechanisms and rules by
which these components interact and the global properties of the system that
emerge from the composition of its pieces. Documenting software architectures
produces major benefit such as early analysis, system visibility and complexity
management, design discipline and global conceptual integrity management. It
received in the last two decades a lot of attention by the software engineering

Preprint submitted to Journal of Systems and Software November 24, 2009

community. With the ever more widespread use of components, these high-
level models have now a central role in all the stages of most software develop-
ment processes. This led to the emergence of development processes driven by
architectures supported by numerous languages, tools and methods (20; 44).
Nowadays, at analysis/design time, one can describe software architectures
using an Architecture Description Languages (ADLs). After that, she/he can
produce straightforwardly component implementations (46) using an existing
industrial technology, like OMG’s CORBA Component Model (CCM (37)),
Sun’s Enterprise JavaBeans (EJB (45)) or Microsoft’s COM+ (29). For a
smooth transition, she/he can first shift to a UML 2 component model (35)
and then to one of its profiles for the technologies previously cited (UML
profile for EJB (40) or UML profile for CCM (39)).

Any time we need to evolve a given architecture model, and before applying
changes, we must gain a deep knowledge of the rationale behind the design
decisions upon which the model was created. This can help, for instance, in
understanding the reasons of the choice of a particular architectural style (43)
or design pattern (12). Usually, this knowledge takes the form of a set of what
we call architecture decisions. An architectural decision identifies, at least,
some of the key structural elements in the system and their externally visi-
ble related properties (their rationale). But, properly documenting and using
decisions may involve many other fields (53; 16; 19). Building this necessary
knowledge is a big time-consuming task because most models do not capture
it. In fact, at certain stages of the development process there is no mean al-
lowing to document that knowledge. Even if it exists, often developers have to
deal with a variety of languages that make the task complex and cumbersome.
Under cost and schedule constraints, they generally choose to not use them.
Without any documentation of architectural decisions any evolution of the sys-
tem becomes risky. Indeed, the evolution maybe in contradiction with some
previously taken decisions, which lead the system to loose some of its quality
attributes (maintainability, portability, performance, etc.). When a problem
appears, a rework is needed. It is a sequence of iterations, that undoubtedly
increases the costs.

There are some approaches that help the practitioners to automatically gather
some parts of design knowledge (using for instance pattern detection) and
present them in a manner that highlights relevant information (18). But these
approaches cannot find all important knowledge behind the design. Even if
we identify a particular pattern, it is not obvious to know its rationale. So,
an explicit documentation remain the best way in order to preserve the link
between the choices made by the designer and their rationale. For this aim,
we propose an approach which encourages the documentation of the taken
decisions directly in the models and throughout the development process. This
requires to provide developers with a complete set of dedicated languages
covering all the software process. These languages must be both simple to

2

learn and powerful enough to automate some tasks of a high value added
(such as, the detection of the violation of some properties during evolution,
the detection of the lost of consistency between the documentation and the
architecture designs/code, the decreasing of the costs of regression testing,
etc.). This is vital for ensuring a sufficient return on investment to motivate
developers to adopt them.

In this paper, we present a family of languages designed to help for an im-
portant and time consuming part of the decision documentation process: the
description of the structural elements of a model related to a given decision.
We call this part of a decision an architectural choice (49). This includes the
description of coarse-grained structures (such as styles or patterns) or more
fine-grained ones (such as design rules). In this paper, we do not deal with
the other parts of an architectural decision such as the documentation of the
context and assumptions. In fact, there is no standard recommending what to
document and especially how to document (15). Our approach can be used, as
it is or with extensions, in order to document any specific architectural deci-
sions. In (50; 52), we provided an example of the use of this family of languages
to document certain kind of architecture decisions for the purpose of software
evolution assistance. In these languages, an architectural choice is expressed
defining an invariant condition that must hold for the system being modeled
over elements described in a model. In these languages, an architectural choice
is expressed using invariant conditions on elements describing the model. The
formal aspect of theses languages makes it possible to provide a tool which
automatically analyze and/or evaluate the invariants. It can be used through-
out the development process to check if the architectural decisions remain
preserved.

In order to reduce their learning cost, all these languages use the same core
constraint-level description language (CCL) based on the well-known UML
Object Constraint Language (OCL). The choice of OCL is based on the fact
that traditional formal languages are useable by persons with a strong mathe-
matical background, but difficult to use by average business or system model-
ers. OCL has been developed to fill this gap. OCL is a formal language, which
remains easy to learn, read and write, so is CCL (our constraint-) language.
The variable part of each language is encapsulated in a MOF (Meta-Object
Facility (38)) model. These (meta-)models encapsulate the concepts issued
from the modeling domain of the concerned process stage. Thus, an expert of
the domain uses the same concepts when she/he specifies architectural choices
in the same way as when she/he defines architecture/component descriptions.

The outline of the remaining of the paper is as follows. In the next section we
illustrate the problem that is dealt with in this paper in more depth by using
an example. In section 3, we present ACL, the family of languages introduced
above to solve this problem. Section 4 details a method for the evaluation

3

of constraints described by ACL. The dedicated tool using this method is
presented in section 5. It allows the preservation of architectural choices during
a model evolution. Before concluding and highlighting the perspectives in the
last section, we make a state of the art of the related work in section 6.

2 Problem Situation by an Example

To better situate the problem, let us consider a fictional example illustrating
the development of a simplified Access Control System (ACS). The different
parts of figure 1 provide an overview of its architecture, which is organized as
a pipeline (43) of four components. This system receives as input the necessary
data for user authentication (Authenticator component). After identification,
the data is sent to the AccessController component which checks whether the
user is authorized to enter into the controlled area or not. If the access is
granted, the Logger component adds to the data the entrance date and hour,
and stores it locally (for the controlled area). It then sends these logs to the
Transmitter component, which adds information about the controlled area
and transmits all this data for a global storage.

The development of such an application may follow a classical process in three
stages: architectural design, component design and component implementa-
tion. Transiting from one stage to another can be done manually or auto-
matically by using model transformation techniques. Indeed, the choice of the
means to transform from one model to another has no effect on our approach.
Below we briefly present the development process of ACS in order to describe
the raised problems.

2.1 Architectural Design Stage

Suppose at this stage that the architecture of the system was described using
xAcme (56) 1 . The architecture designer chooses a pipeline style aiming at a
high level of maintainability. To make the evolution of the model easier, this
important decision should be documented. The need for this documentation
is represented in Figure 1 by the label AD1 (AD1 stands for Architectural
Decisions specific to the stage 1).

In this stage, it is possible to precisely document an important part of this
decision: its associated architectural choice (the compliance with the pipeline
style). One can use a dedicated language: the Armani language (32). This lan-
guage provides constructs for capturing architectural design expertise such as
design rules and architectural styles. Moreover, this is a formal language. Thus,

1 xAcme is the XML representation of Acme ADL (14)

4

Authenticator Access
Controller Logger Transmitter

AccessControlSystem

Transmitter

EncrypterLogEncap

AccessControlSystem

Architecture Design Stage: Acme Representation of ACS

Component Design Stage: UML 2 Representation of ACS

AD1

AD2

AD3

AccessControlSystem

TransmitterControllerAccessAuthenticator Logger
login
password
authenticate()
encrypte()

connectionType

decrypte()
checkUser()
sendLogging()controlRequest()

connectionParam visitedGalleryId
entranceDate
userId

serverLog()

connectionType
connectionParam

sendTransmission()
setNewAccess()

Authenticator

Component Implementation Stage: CCM Representation of ACS

Decrypter

AccessController

Encrypter UserChecker
InfoLoggerUserIdent

UserDB UserX

UserLDAP AccessDB

BInfoIdent DBLogger

Logger

Figure 1. Decisions documentation in a classical component-based software devel-
opment process

5

one can expect to benefit from an automated design rule checking engine, em-
bedded in the used modeling tool, such as the AcmeStudio environment.

Using graph theory, we enumerate the structural properties that guarantee this
architectural style. These properties are defined using the Armani language
as follows 2 :

(1) The first constraint introduces the definition of vertices and arcs, such
that each arc must be connected to two vertices:
(a) A vertex is a component with input or output ports (represented by

the keywords inputT and outputT):

i n va r i an t f o r a l l comp : Component
in s e l f . Components |

f o r a l l p : Port in comp . Ports |
s a t i s f i e sTyp e (p , inputT)
or s a t i s f i e sTyp e (p , outputT)

(b) An arc represents a connector with exactly two roles (one sink and
one source):

i n va r i an t f o r a l l conn : Connector
in s e l f . Connectors |

s i z e (conn . Roles) == 2
and e x i s t s r : Role in conn . Roles |
s a t i s f i e sTyp e (r , sinkT)
and e x i s t s r : Role in conn . Roles |
s a t i s f i e sTyp e (r , sourceT)

(c) Each connector (arc) binds two components (vertices): the input port
to a sink role and the output port to a source role:

i n va r i an t f o r a l l conn : Connector
in s e l f . Connectors |

f o r a l l r : Role in conn . Roles |
e x i s t s comp : Component
in s e l f . Components |

e x i s t s p : Port in comp . Ports |
attached (p , r)
and ((s a t i s f i e sTyp e (p , inputT)
and s a t i s f i e sTyp e (r , sinkT))
or (s a t i s f i e sTyp e (p , outputT)
and s a t i s f i e sTyp e (r , sourceT)))

(2) The second constraint implies two sub-constraints:
(a) The graph should be connected:

2 Concretely in xAcme constraint descriptions are decomposed into many XML
elements. For the sake of brevity, we present the constraints as they are described
originally in the Armani Language.

6

i n va r i an t f o r a l l c1 , c2 : Component
in s e l f . Components |

c1 != c2 −> reachab l e (c1 , c2)

(b) It should contain n-1 arcs (connectors), n being the number of vertices
(components):

i n va r i an t s i z e (s e l f . Connectors)
== s i z e (s e l f . Components)−1

(3) The last constraint stipulates that the tree must be a list. It may be
expressed as following:

i n va r i an t f o r a l l comp : Component
in s e l f . Components |

s i z e (comp . Ports) == 2
and e x i s t s p : Port in comp . Ports |
s a t i s f i e sTyp e (p , inputT)
and e x i s t s p : Port in comp . Ports |
s a t i s f i e sTyp e (p , outputT)

Henceforth, the pipeline architectural choice is documented. This documen-
tation will facilitate in the future the understanding of the Acme model and
therefore its evolution. Moreover, using the constraints described above, some
tools can automatically check the compliance of the model with this choice af-
ter its evolution. Suppose that for performance reasons, during an evolution, a
developer decides to send some data (whose logging is not necessary) directly
from the AccessController component to the Transmitter component. Under
time pressure, the developer does not take the necessary time in order to read
and understand this somewhat complex documentation. Thus, she/he gener-
ates a direct link between two non-adjacent components. This change and the
resulting component configuration affect the pipeline style chosen previously,
and this consequently weakens the maintainability of the system. Using the
constraint above, a tool can notify the attempt of breaking the architectural
choice. It is the developer’s responsibility, fully aware of the consequences, to
maintain or not the modification.

Although the example provided here is simple and obvious, the same problems
emerge in complex real-world systems as discussed in (3). One can notice that
the documentation of this architectural choice, although possible using the
Armani language, is far from being straightforward. Accordingly, it is not sure
that developers make such an effort. This may discourage them, despite the
gains that this documentation will provide later. The existence of a dedicated
language is necessary but not a sufficient condition. The language must provide
sufficient power while allowing descriptions, as simple and concise as possible.
The previous example shows that sometimes the Armani language does not
lead to an easily readable solution.

7

2.2 Component Design Stage

Before implementing ACS, using CORBA components, developers decided to
establish an intermediate UML model for a smooth transition 3 . Additional
decisions, specific to this UML diagram, may be added at this stage. This is
represented by the AD2 label on Figure 1. For example, to meet a maintain-
ability requirement, we may specify in AD2 that the ACS component should
provide no more than two interfaces.

Unfortunately, the AD2 decision cannot be specified using the UML language.
This is due to the fact that its constraint language (Object Constraint Lan-
guage (OCL)) cannot express this type of information. OCL is a formal lan-
guage used to describe invariant conditions associated with a type appearing
in a model (such as a particular Component or Class). But an invariant is a
condition that must be true for all instances of that type at any time. Thus,
an invariant is evaluated on the model’s instances, not on the model itself.
But, writing AD2 directly on the UML metamodel implies its evaluation on
all UML components in all models and not just on the ACS component.

At this stage, there is no means to precisely document the architectural choice
associated to AD2, in order to be explicit and possibly checkable. The existing
constraint language (OCL) is not fully adapted to document some architec-
tural choices. Consequently, there is an important risk to affect some important
architectural decisions during an evolution of the model.

2.3 Component Implementation Stage

As in the previous stages, developers could add other decisions on the CORBA
Component Model (CCM) architecture at this stage. These decisions are noted
as AD3. These could include, for example, a restriction on the number of Ac-
cessController ’s sub-components. In contrast to the previous two stages, there
is no language dedicated to the description of all or part of an architectural
decision in CCM models. For this purpose, programmers may use comments
directly in the source code. Good comments can make the source code easier
to understand. But, the flexibility provided by comments often allows for a
wide degree of variability, and potentially useless information inside source
code. Moreover, architecture decisions involve, by definition, several regions
of the source code. This raises the problem of the localization of these com-
ments. Anyway, informal comments limit the possibilities for an automatic
control. Thus, at this stage, there is no dedicated means to help developers to

3 Recent experiments (41) showed that some ADLs and UML can be used in com-
plementarity, in order to make better analysis of software architectures

8

document or check architectural decisions. Consequently, when shifting from
one version of a model to another, modifications may affect the architectural
decisions.

This example highlighted the importance of documenting architectural deci-
sions. It also shows that it is not always possible to document them through-
out a development process. Depending on the case, this difficulty is related
to either the lack of dedicated languages, or the non suitability of the offered
languages, in terms of expressiveness and/or simplicity of use.

3 ACL: a Family of Architectural Constraint Languages

This section introduces ACL, a family of languages which allows the spec-
ification of architectural choices associated to decisions at any stage of a
component-based software development process, in a convenient way. We will
first introduce the requirements that our proposal aims to fulfill. Then, we
will present the two-level structure that all these languages share. The first
level allows the expression of basic first-order logic predicates in the context
of MOF-based models. The second level takes the form of a set of MOF meta-
models. We will describe successively each of these levels. We will conclude
this section by giving two examples of ACL languages: one for xAcme models
and the other for CCM models.

3.1 Requirements for an Architectural Constraint Language

In our approach, an architectural choice is described as a set of constraints
that must be respected by a model. An architectural choice is respected by
a model if all its related constraints are evaluated to be true on the model.
Of course, it is difficult to identify all types of constraints that developers
would have to express. Nevertheless, it is obvious that constraints enforcing
architectural styles, design patterns, modeling and coding rules stipulated in
quality plans should be expressed.

Besides, we should be able to define "scalable" or simple constraints. Two dif-
ferent constraints are given here for a better understanding of the difference
between these two kinds of constraints: "the three sub-components should re-
spect a pipeline style" and "whatever the number of sub-components, they
should conform to a pipeline style". The first constraint cannot be checked
(and should be adapted), if we add a fourth sub-component to the archi-
tecture, the second one remains checkable and valid. The last constraint is
a scalable constraint, because it can be checkable for any number of archi-
tectural elements (we can check the presence of the pipeline style within a
configuration of three components or more).

9

Architectural constraints can also relate to, either the current version (the
most frequent case), or both the previous and the current versions. In the sec-
ond case, we deal with "pure" evolution constraints which are generally present
when some architectural constraints would regulate the acceptable structures
in a differential mode. For example, for development reliability reasons, we
would like to prohibit that a given component can be changed by adding to it
more than one interface during an evolution. We should thus be able to eval-
uate differences between two consecutive versions of this component. These
constraints which are real evolution constraints are of great interest as precised
in (54).

The other difficulty encountered when proposing a language for describing
architecture constraints is related to the fact that this language should be able
to be used at each stage of an application life-cycle (need introduced in the
previous section). We should have a language which can be applied either on
high-level models or on implementation ones. A high-level model represents an
abstract definition of the concrete runnable software system. In practice, it is a
model provided by an Architecture Description Language (ADL). However, an
implementation model represents a concrete definition for the software which
corresponds to a model depending on a particular technology, such as EJB,
COM+/.net or CCM. It is not desirable that developers have to deal with
a variety of too different languages. The use of numerous different syntaxes
and semantics make the documentation task quite challenging and if these
languages are complex it becomes even more complicated. Under cost and
schedule constraints, developers generally choose not to use them. To respond
to this problem, it is important to propose a family of languages as simple as
possible, that share the maximum syntactical and conceptual elements.

3.2 ACL Language Structure

ACL has a bicephalous structure. The first level allows the expression of basic
first-order logic predicates in the context of MOF-based models. It thus pro-
vides navigation operations required in this type of models, set operators and
usual quantifiers. It is ensured by a slightly modified version of UML’s Ob-
ject Constraint Language (36), called CCL (Core Constraint Language). The
second level takes the form of a set of MOF metamodels. These metamod-
els represent the structural abstractions to be constrained, found in the main
modeling languages used at each stage in the life-cycle. These abstractions
are introduced during upstream stages by architecture description languages
(ADLs and UML), and in coding stage by component technologies.

Each couple composed of CCL and a particular metamodel represents what
we called an ACL profile. Each profile is used in a particular stage in the

10

development process. For example, we can use the ACL profile for xAcme
in order to specify architectural constraints in the architectural design stage
where we used xAcme ADL. After that, we can formalize other architectural
constraints in the coding stage, where we implement the application in CCM,
using the profile dedicated to CCM. The xAcme profile is composed of CCL
and the xArch metamodel established for xAcme. The CCM profile is com-
posed of CCL and our CCM MOF metamodel. In this way, at each stage in the
life-cycle, a developer uses a particular profile to specify her/his architectural
constraints. The expression of these constraints is made easy because the same
abstractions, as those present in the language the developer is accustomed to
use at this stage, are manipulated in this language.

ACL separates clearly two aspects which are interlaced in the architecture
constraint languages existing in literature (like Armani). Indeed all these lan-
guages have grammars with terminal vocabulary which mixes constraint oper-
ators (navigation, predicate, etc.) and architectural abstractions (component,
connector, interface, etc.). These languages can be used only in the context
related to the architecture modeling language on which they apply. However
the separation of these two aspects allowed us to have a modular language, of
a reduced size, which can be applied in all stages of the life-cycle. In addition,
the expressiveness of the language can be enhanced by simple modifications on
the concerned metamodel. Indeed, these metamodels are parameters provided
on input to the ACL compiler. They can be changed without rewriting the
compiler.

To understand how this two-level structure is articulated, it is necessary to go
back to the usual mode of expression of OCL constraints in a class diagram.
In this type of diagrams, OCL is generally used to specify class invariants,
pre/post conditions of operations, constraints on cycles between associations,
etc. These constraints restrict the number of valid object diagrams instan-
tiable from a class diagram. They mitigate the lack of expressiveness of UML
graphical notation which, employed alone, can authorize in some cases the
instantiation of object diagrams incompatible with reality that we wish to
model. OCL constraints are described relative to a context. This context is an
element of the class diagram, generally a class, an operation or an association
present on this diagram. The followings are two examples of OCL constraints.

-- Constraint on the paper size
context Journal_Article inv:

self.size > 10

-- Constraint on the number of authors
context article: Journal_Article inv:

article.writtenBy->size() >= 1

In both cases, the context is a class (Journal_Article). The two constraints

11

are related to any instance of the context (here, an object instance of the class
Journal_Article). It is the approach adopted for every OCL constraint. The
first constraint references this instance using the keyword self, while the sec-
ond introduces an ad-hoc identifier article. These two modes for referencing
instances allowed by OCL are semantically equivalent. Every OCL constraint
is made up of elements present either in the OCL language (->, size(), etc),
or in the class diagram reachable from the context (the attribute size and
the association-end writtenBy).

It is interesting to consider what might be the meaning of OCL constraints
written on a metamodel rather than on a model. A metamodel exposes the
concepts of a language and the links between them. It describes an abstract
syntax. Thus, a constraint having for context a meta-class limits the expres-
sion power of the grammar’s production rules and thus the number of the
derived phrases (i.e. models). Some phrase structures are dismissed. If this
metamodel describes the abstract grammar of a language dedicated to archi-
tecture description, then, a constraint expresses that only some architectures
(i.e. models) are derivable (i.e. can be instantiated) in this language. So, the
language is voluntarily restricted in its capacity of expression because we do
not allow the description of some types of architectures. For example, we can
impose that every component in the model must have less than 10 required in-
terfaces, by putting this constraint in the context of the meta-class Component.
This constraint is exactly of the type we wish to express. Unfortunately it has
a global scope. It applies to all components and not to a particular one, as we
would wish it to be. To achieve our goals, we slightly modified OCL syntax
and semantics as explained in the following section.

3.3 ACL Predicate-Level: the CCL language

CCL language is an OCL dialect; more particularly a dialect of the 1.5 version
whose grammar and semantics are available on OMG’s website. OCL presents
in fact many advantages. It is with UML the well-known standard adopted
in industry and academia, and is implemented by many commercial and/or
open-source tools. It provides besides a satisfactory expressiveness in a simple
and intuitive format. Moreover, its efficiency has been proved in the context
of maintenance (4). Briand et al. demonstrated in their work that OCL has
great benefits in understanding and maintaining object models. In addition,
the reuse of an existing standard language allows us to avoid the phenomenon
of "yet another language" and thus makes easy ACL training for new users.

At the syntactic level, CCL is hardly a subset of OCL. The only production

12

rules of OCL language that are not supported by CCL are those related to
pre- and post-conditions. Moreover, in order to limit a constraint scope to
a particular architectural element, we modified the syntax and semantics of
the context part in OCL. On the syntactic level, we impose that each context
introduces necessarily an identifier (as the word article shown in the pre-
vious example). This identifier should be the name of one instance or many
particular instances of the meta-class cited in the context. At the semantic
level, we interpret the constraint with the meaning it has in the context of a
meta-class, but limiting its scope to the instance cited in the context.

According to this principle, the constraint which follows, applied to a given
MOF architecture metamodel (presented in the following sections), states that
in the context of the ACS component (and only in this component) the prim-
itive component of name AccessController must be bound to only one com-
ponent using its required (out) interface Archiving.

context ACS:ComponentInstance inv:
ACS.subArchitecture.archInstance.linkInstance

->select(l|l.endPoint.anchorOnInterface
.componentInstance.description = ’AccessController’
and l.endPoint.anchorOnInterface.direction = ’out’
and l.endPoint.anchorOnInterface
.description = ’Archiving’)

->size() = 1

One addition to the OCL syntax is a mark which allows us to reference the
previous version of an architectural element to which it apply: the @old mark.
Consider the following example applied on a given metamodel.

context AccessController:ComponentInstance inv:
AccessController.interfaceInstance->size() <
(AccessController@old.interfaceInstance->size()+2)

This constraint stipulates that we could not add to the set of interfaces of
the component AccessController more than one unit from one version to
another. Note that this constraint does not tell anything about the possible
changes undergone by the old interfaces of this component. In addition to the
previous constraint, if we would like to impose that at most only one of its old
interfaces could be changed from one version to another, we should compare
the structures before and after evolution of all these interfaces. This type of
constraints is hard to write only with OCL and the @old mark. Thus, we
introduced the collection operators: modified:Collection(T) which returns
the elements from the collection which have undergone changes between the
current and the previous version (only to those which exist in the two versions),
added():Collection(T) which returns the elements which do not exist in the
previous version, and deleted():Collection(T) which returns the elements

13

ArchInstance
+id[1]: Identifier
+description[1]: Description

ComponentInstance
+id[1]: Identifier
+description[1]: Description

ConnectorInstance
+id[1]: Identifier
+description[1]: Description

LinkInstance
+id[1]: Identifier
+description[1]: Description

Group
+id[1]: Identifer
+description[1]: Description
+member[*]: ArchInstance

* * * *

InterfaceInstance
+id[1]: Identifier
+description[1]: Description
+direction[1]: Direction

SubArchitecture

InterfaceInstanceMapping
+outerInterfaceInstance[1]: InterfaceInstance
+innerInterfaceInstance[1]: InterfaceInstance

* 0..1

*

Point
+anchorOnInterface[1]: InterfaceInstance

2

+componentInstance +connectorInstance +linkInstance +group

1 +ownedArchInstance

+endPoint

+interfaceInstanceMapping

+archInstance

1

1

<<Enumeration>>

Direction
+none
+in
+out
+inout

1

* 0..1

Figure 2. A MOF metamodel of xArch

from the collection omitted from the previous version. The previous constraint
could be written as following:

context AccessController:ComponentInstance inv:
(AccessController.interfaceInstance
->added()->size()<2)
and
(AccessController.interfaceInstance
->modified()->size()<2)

3.4 Architecture-Level Description

As stated previously an ACL profile is composed of CCL and a given meta-
model. A metamodel embeds all architectural abstractions to be constrained
by ACL and the relationships between these abstractions. The metamodel is
described using MOF. MOF is the OMG’s standard language which allows
the specification of metamodels.

For instance, Figure 2 represents a MOF metamodel of xArch. xArch is an
XML representation, which contains the primitive elements that compose an
xAcme architecture description from a structural perspective. An xArch ar-
chitecture instance is composed of a set of component instances, connector
instances, link instances and logical groups of these architectural elements.
Component or connector instances define a set of interface instances and op-
tionally a sub-architecture for a hierarchical description. The sub-architecture
defines a set of architecture instances and a list of mappings between inner
and outer interface instances. Link instances bind two end points, each one
references an interface instance.

14

SubArchitecture
+diameter: Integer

+areNeighbors(c1:Component,c2:Component): Boolean
+degree(c:Component): Integer
+distance(c1:Component,c2:Component): Integer
+existsChain(c1:Component,c2:Component): Boolean
+existsCircuit(): Boolean
+existsCycle(): Boolean
+existsPath(c1:Component,c2:Component): Boolean
+inDegree(c:Component): Integer
+isComplete(): Boolean
+isConnected(): Boolean
+isRegular(): Boolean
+isSimple(): Boolean
+isStronglyConnected(): Boolean
+neighborhood(c:Component): set of Component
+outDegree(c:Component): Integer
+predecessors(c:Component): ordered set of Component
+successors(c:Component): ordered set of Component

Figure 3. Graph properties on the SubArchitecture metaclass of the Xarch meta-
model
We defined many profiles of ACL in order to provide a constraint language for
several technologies used at design or implementation time in the development
process. The profiles we developed are the following: ACL profile for xAcme
(APxAcme), for UML 2 (APUML2), for CCM (APCCM), for EJB (APEJB) and
for Fractal (6) (APFractal).

3.5 Examples of architectural choices in two ACL Profiles

Among these profiles, we present here some architectural choices expressed
using two representative profiles: APxAcme and APCCM profiles. We choose
the first profile because xAcme makes a synthesis of abstractions from several
ADLs. The second language is a representative of the class of implementation
technologies.

3.5.1 Architectural choices in xAcme

The previous examples of ACL constraints have been described in APxAcme.
We present here another example of a constraint expressed also in APxAcme.
Consider the example presented in section 2 which involved a pipeline architec-
ture. The pipeline structural constraints defined in Armani can be expressed
in APxAcme as follows:

context ACS:ComponentInstance inv:
ACS.subArchitecture.archInstance
.componentInstance.interfaceInstance

15

->forAll(i:InterfaceInstance|(i.direction = ’in’)
or (i.direction = ’out’))

and
ACS.subArchitecture.archInstance.connectorInstance
->forAll(con:ConnectorInstance|

(con.interfaceInstance->size() == 2)
and
((con.interfaceInstance.direction = ’in’)
or

(con.interfaceInstance.direction = ’out’))
)

and
ACS.subArchitecture.archInstance.connectorInstance
->forAll(con:ConnectorInstance|con.interfaceInstance

->forAll(iCon:InterfaceInstance|ACS.subArchitecture
.archInstance.componentInstance
->exists(com:ComponentInstance|com.interfaceInstance
->exists(iCom:InterfaceInstance|(iCon in ACS

.subArchitecture.archInstance.linkInstance

.point.anchorOnInterface)
and ((iCom.direction = ’in’)

and (iCon.direction = ’out’))
or ((iCom.direction = ’out’)

and (iCon.direction = ’in’))))))
and
ACS.subArchitecture.isConnected()
and
ACS.subArchitecture.archInstance.connectorInstance
->size() = ACS.subArchitecture.archInstance

.componentInstance->size() - 1
and
ACS.subArchitecture.archInstance.componentInstance
->forAll(comp:ComponentInstance|

(comp.interfaceInstance->size() = 2)
and (comp.interfaceInstance

->exists(i:InterfaceInstance|i.direction = ’in’))
and (comp.interfaceInstance

->exists(i:InterfaceInstance|i.direction = ’out’)))

In one of the invariants, we make use of the operation isConnected(). In this
ACL profile, this operation is associated to the type SubArchitecture of the
xArch metamodel (as shown in Figure 3). Indeed, we introduced many graph
operations, in the different metamodels, which make the constraint expression
easier. Actually, we need only their signature, because their implementation
is made only once for an intermediate meta-model (see section 4 for more
details).

16

Component
+id
+name
+kind: ComponentKind

Port
+kind: PortKind

+component

+port
*

1

Interface
+id
+name

+used +provided0..1 0..1
+home
1

+derivedComponent*1

<<enumeration>>

PortKind
+Facet
+Receptacle
+Event

ComponentAssembly
+id
+derivedFrom

Connection
*

+connection

1

2+connection
1

1 1

+emitted

Event
+name
+type
+policy

+published

+consumed

0..1
0..1

<<enumeration>>

ComponentKind
+Session
+Service
+Process
+Entity
+Unclassified

Operation
+id
+name

*

+operation 1

+interface

+ports

+supported
*

11

0..1

1 1 1

2

+interfaces

+connection 1

Attribute
+name
+type

*+attribute

1

Figure 4. A MOF metamodel of CORBA Component Model (CCM)

With ACL, we can thus express constraints involving some graph properties,
such as connected graphs (in the constraints above), regular graphs, simple
graphs, etc. In addition, we are able to query, for example, for the predecessors
and the successors of a vertex (component), the in- and out-degrees of a vertex,
the distance between two vertexes or the graph diameter.

3.5.2 Architectural choices in CCM

APCCM is composed of CCL and a MOF metamodel of CCM. The latter
is illustrated in Figure 4. This metamodel represents the elements used to
describe the structure of CCM applications. A ComponentAssembly defines
Connections between Ports and/or Interfaces. A Port can represent a Facet, a
Receptacle or one or many Events. A Facet defines the set of services provided
by the component. A Receptacle describes the services required by the com-
ponent. Events can be emitted, consumed or published for many clients. A
Port can be represented in the form of required or provided interfaces, which
export a set of operations. A Component can define attributes and be of dif-
ferent types: session, entity, service-oriented, process-oriented or none of these
types. However, CCM is a flat component model: a component could not be
hierarchically designed on the basis of other components.

The first constraint introduced previously in section 3.3 can be described using
APCCM as following:

context ACS:ComponentAssembly inv:
ACS.connection->select(c|c.component

.name = ’AccessController’
and c.component.port.used
.name = ’Archiving’)

->size() = 1

17

In this constraint, we navigate to a set of all connections which bind the
component AccessController to other components by the means of its used
(out) interface Archiving. This set should contain only one element.

The following example represents the constraint, which illustrated the use of
the @old mark in APxAcme in the previous section. This time, we describe it
in APCCM :

context AccessController:Component inv:
AccessController.port.interface->size()
<
(AccessController@old.port.interface->size()+2)

We navigate in this ACL constraint to all the interfaces of the component
AccessController before and after evolution (in the previous and the current
architecture description). When comparing these two collections of interfaces,
the difference of sizes should be less than 2 from the previous to the current
version.

Constraints formalizing the pipeline style which were expressed above in APxAcme
can be described using APCCM as following:

context ACS:ComponentAssembly inv:
ACS.connection.port
->forAll(p:Port|(p.provided->size() = 1)

or (p.used->size() = 1))
and
ACS.connection->forAll(con:Connection|

(con.port.provided->size() = 1)
and (con.port.used->size() = 1))

and
ACS.isConnected()
and
ACS.connection->size()
= ACS.connection.port.component-AsSet()->size() - 1
and
ACS.connection.port.component->asSet()
->forAll(com:Component| com.port->size() = 2

and com.port->exists(p:Port|p.provided->size() = 1)
and com.port->exists(p:Port|p.used->size() = 1))

As in the previous constraints specified in APxAcme, we use the graph oper-
ation isConnected() in the constraints above. This operation and all graph
properties are associated to the ComponentAssembly type in this profile.

Note that the invariant that checks for the existence of only two roles per
connector has not been maintained in this constraint specification, because

18

the connector abstraction does not exist in CCM metamodel.

4 Evaluation of Architectural Constraints

In this section, we show how to evaluate the constraints whatever the cho-
sen profile. In this evaluation approach, each software architecture model and
its associated constraints (written in the profile dedicated to the used mod-
eling language) are first transformed to an intermediate representation. This
intermediate representation is defined by a particular ACL profile we have
developed. This profile is called the Standard ACL Profile (APStd). It is com-
posed of CCL and a generic architecture metamodel, called ArchMM. The
software architecture model is transformed into an equivalent abstract syntax
which conforms to ArchMM. Constraints are also transformed in APStd. This
intermediate representation is then used to evaluate the obtained constraint
specification on the transformed software architecture model. The interest of
this approach is that we need only one evaluator (for APStd) instead of one for
each profile. Of course, for each profile we have to define transformation rules
to generate intermediate models and constraints. But, we have observed that
the used modeling languages share many common points. Subject to choose a
correct standard profile, it is often easier to write such transformations than
coding one evaluator for each specific profile.

We will first present the chosen standard ACL Profile, then we introduce the
used transformation mechanisms.

4.1 Standard ACL Profile

As stated previously, APStd is composed of CCL and ArchMM. We developed
ArchMM on the basis of three types of metamodels. The first is a representa-
tive of architecture description languages, the second is related to the Unified
Modeling Language and the last type of metamodels represents component
implementation technologies.

We studied many ADLs such as Acme, Koala, xADL (8), and others. This
state of the art 4 conducted us to the elaboration of a set of metamodels which
abstract each architectural model described by these ADLs. These metamod-
els take into account the static aspect of architectures modeled using these
languages. They thus represent the manner in which these languages struc-

4 We started our study from the state of the art of Medvidovic and Taylor estab-
lished in the end of the nineties (27).

19

Classifier

StructuredClassifier

EncapsulatedClassifier

Class

Component
+isIndirectlyInstantiated: Boolean

Connector
+kind: ConnectorKind

ConnectorEndConnectableElement Association

Property

Interface
+name: String [0..1]

StructuralFeature

+/role

*

*

0..1

+ownedAttribute

*+/part

* 0..1

+/required

+/provided

**

*

*
*

* +redefinedPort

+ownedPort

*0..1

0..1

+ownedConnector

*

*
+redefinedConnector

1

2..* +end

0..1

+role +end

*

+type0..1

*

*

<<enumeration>>

ConnectorKind
+assembly
+delegation

Realization

Classifier

+abstraction

0..1
*

+realization

1+realizingClasifier

Port

Figure 5. A flattened excerpt of the UML 2 component metamodel

turally describe software architectures 5 . The second category of metamodels
was developed starting from the UML 2 superstructure specification. The last
type of metamodels was designed for the Sun’s EJB (Enterprise JavaBeans)
and OMG’s CCM (CORBA Component Model) component technologies. We
considered that it is interesting to extend our study to the "hierarchical" com-
ponent model Fractal of the ObjectWeb Consortium (6) and to define a meta-
model for this technology.

In the first step, we elaborated MOF metamodels for each stage (architecture
design, component design and component implementation). This task was rel-
atively simple since standards have already emerged at all levels, like ADML
for ADLs and CCM for component implementation technologies. Then, we
designed ArchMM which summarizes all concepts present at the same time
in component-based software abstract and concrete infrastructures. The in-
tersection of abstractions represented by the different metamodels provides a
minimal metamodel that does note take into account all architectural con-
cepts and properties. So, ArchMM represents some abstractions which unify
abstractions from other metamodels. More details are given in section 4.1.4.
Before that, let us see what are the architectural abstractions represented in
the different ADLs, in the UML 2 metamodel and in component technologies.

4.1.1 Architectural Abstractions at Architecture Design Level.

In theory, an ADL should be able to describe a software architecture in the
5 Note that the behavioral aspect is not taken into account in these metamodels.

20

C2SADEL, SADL, Acme)
Connector (Aesop, UniCon, Wright,

Module (Rapide)
Component

Hierarchical binding (Darwin)
Binding(Wright, Fractal)
Bind (UniCon)
Rep!map (Acme)
Delegation Connector (UML2.0)

External Interface (Fractal)
External Player (UniCon)

Internal Interface (Fractal)
Internal Player (UniCon)

Player (UniCon)

Service (Darwin)

Binding (Darwin, Fractal)
Assembly Connector (UML2.0)

Port (Aesop, Wright, SADL, Acme, UML2.0, CCM)

Connection (Rapide, CCM)

Role (Aesop, UniCon, Wright, Acme)
Port (C2SADEL)

Primitive Component (UniCon, Darwin, Fractal)
Part (UML2.0)

Darwin, C2SADEL)
Composite Component (Fractal, UniCon,

Hierarchical Component (Aesop)
Compound Component (Koala)

Attachment (Wright, Acme)
Connect (UniCon, Koala)

Interface (C2SADEL, Fractal, Koala)

Figure 6. Graphical representation of architectural abstractions in ADLs, in UML 2
and in component technologies

form of the three Cs: Components, Connectors and Configurations (27). Com-
ponents represent units of processing and storing data. The interaction be-
tween these components is encapsulated in connectors. In a configuration,
the architect instantiates a number of components and a number of connec-
tors. She/He binds them together to build the system. A part of ADLs an-
swers to this description. However, the other part diverges. Some ADLs like
Rapide (24), Darwin (25) or Koala do not make connectors as explicit entities.
Others allow hierarchical descriptions of components. In this case, components
are seen as white boxes and can have an explicit internal structure. In some
ADLs, like Rapide, components are considered as black boxes. In UniCon (42),
WRIGHT (2) or Acme we can define composite connectors, whereas this is
impossible in the other ADLs.

The majority of ADLs have particular goals and answer to the concerns of
their designers. Darwin and Koala target the dynamic reconfiguration of ar-
chitectures. Rapide aims at describing architectures of event-based systems.
SADL (33) focuses on the refinement of architectures. C2SADEL models archi-
tectures in the C2 style (26), etc. However, there are some ADLs, like ADML,
Acme or WRIGHT who have a general objective. Indeed, WRIGHT meta-
model is generic enough to be mapped on several other ADLs in spite of its
objective to formalize software architectures. It is thus completely justified to
take this metamodel like a reference for ADLs. However this metamodel con-
tains several meta-classes which are not interesting for describing structural
constraints. For example WRIGHT distinguishes types of components or con-
nectors from their instances. This distinction is not interesting in our case for
the main reason that a particular occurrence of a component or connector can
be identified by its name using only one meta-class with a simple attribute

21

name. The same observations can be made on Acme and its extensions ADML
and xAcme. We presented an example of a MOF metamodel of one of these
ADLs in section 3.4.

4.1.2 Architectural Abstractions at Component Design Level.

UML provides a unified vocabulary for modeling object-oriented software and
a standard supported by many CASE tools. In its 2.1.1 version (35), it provides
the necessary elements to describe at the same time, the abstract architectures
and component-based implementations 6 . A component is considered as a real
modeling element (like a class) and not just a deployable entity. However, UML
is a general purpose modeling language. Thus, there exist several concepts
in its metamodel, which make it relatively complex. Our aim is to provide a
metamodel which serves to describe architectural constraints. This metamodel
should contain simple concepts known by developers.

Figure 5 presents an excerpt of the UML 2 metamodel for the description
of components. A component inherits from the meta-class Class. So, it can
define attributes, operations and participate in generalizations. It also inher-
its from EncapsulatedClassifier. It can thus define ports, typed by their
required and provided interfaces. The meta-class EncapsulatedClassifier
inherits from StructuredClassifier. Consequently, a component can have
an internal structure and can define connectors between its internal parts.

For the description of constraints, the meta-classes EncapsulatedClassifier
and StructuredClassifier and many others are not necessary. There exist
several abstract classes, whose presence is particularly relevant to the unifi-
cation aspect of the UML 2, and which make the description of constraints
complicated (we should make many navigations to reach a given architecture
concept). The same remarks are made on UML profiles 7 for the description
of software architectures (17) and those for EJB and CCM.

4.1.3 Architectural Abstractions at Component Implementation Level.

Component technologies provide abstract models for developing component-

6 Chapter 8: Components. UML 2.1.1 superstructure specification (35), page 159.
7 A UML profile is a well-formed extension of the UML metamodel. A well-formed
extension is an extension which conforms to the UML specification. More concretely,
it is an extension based on stereotypes, tagged values and constraints.

22

Component
+id: String
+name: String

Connector
+id: String
+name: String

Port
+id: String
+name: String
+kind: PortKind

Role
+id: String
+name: String
+kind: RoleKind

PrimitiveComponent CompositeComponent PrimitiveConnectorCompositeConnector

Configuration
+id: String

Binding
+id: String

+interface

1..*
1 +interface

2..*

1

1 1
+configuration+configuration

1 1

1

*

Interface
+id: String
+name: String
+kind: InterfaceKind

1 1..*

0..2 0..2

*
*

+port

+superComponent 1

+subComponent*

+connector

*

0..2

Service
+id: String
+name: String

1

*
+attribute

1

1..*
+service

Property
+id: String
+name: String
+type: String
+value: String

1

* +attribute

1

*
+attribute

<<enumeration>>

PortKind
+Input
+InputOutput
+Output

<<enumeration>>

InterfaceKind
+Consumed
+Emitted
+Home
+Provided
+Published
+Required

<<enumeration>>

RoleKind
+Adapted
+Adaptee
+Callee
+Caller
+Listener
+Sink
+Source
+Trigger

Figure 7. ArchMM: A generic architecture MOF metamodel

based applications and concrete infrastructures for their deployment. These
infrastructures provide the necessary framework for the execution of applica-
tions, in terms of transactions, security, distribution services, etc. The abstract
models defined by these technologies allow the definition of an application as a
set of components providing some services (interfaces) and expliciting their de-
pendencies with their environment. On the basis of the UML profiles for EJB
and CCM, we established our own MOF metamodels for these two technolo-
gies. As stated in the previous sub-section, we defined our own metamodels
because the original metamodels are not the ideal solution.

We presented in section 3.5 the CCM metamodel. We note that this meta-
model includes all concepts found in the EJB metamodel. In other words, an
EJB model can easily be mapped into CCM. We can deduce from this obser-
vation that the CCM metamodel can play the role of a generic metamodel for
implementation component technologies. However, CCM is a flat component
model where it is impossible to describe hierarchical components. Neverthe-
less, there exist some models of hierarchical implementation components, like
Fractal. The latter allows the definition of composite components having an
explicit internal structure. The resulting metamodel of this study abstracts
component-based implementations like those in CCM, but with hierarchical
features like in Fractal.

4.1.4 ArchMM: A Generic MOF Architecture Metamodel.

A synthesis of the architectural elements supported by the models discussed
above is illustrated in Figure 6. In some of these models, we distinguish be-
tween internal and external interfaces. An internal interface is the interface
of a composite component to which a hierarchical connector is attached. An
external interface is an interface to which an assembly connector of the same
level is attached, or the interface of a sub-component to which a hierarchical
connector is attached.

23

Figure 7 represents the generic metamodel (ArchMM) described in MOF. In
this metamodel, a system is described by a set of components (ComponentInst-
ance in xAcme and Component in CCM), which represents units of data pro-
cessing and storage. The communication and coordination modes between
these components are encapsulated by connectors (ConnectorInstance in
xAcme and Connector in CCM). The configuration of the system (SubArchite-
cture in xAcme and ComponentAssembly in CCM) is represented by an as-
sembly of components by the means of connectors. This metamodel proposes
the following concepts:

• A component defines one or many ports. These ports represent the interac-
tion points of components with their environment. A port can be of several
kinds: i)Input, when it receives incoming calls, ii) Output, when it receives
out-coming calls, iii) or InputOutput, when it receives the two kinds of calls
(incoming and out-coming). A port can support one or many interfaces of
different kinds: i) required by the component (in interfaces in xAcme
and used interfaces in CORBA Component Model), ii) provided (out
interfaces in xAcme and provided interfaces in CCM), etc. Events in
CCM and other ADLs are considered as interfaces in ArchMM. These in-
terfaces can be of different kinds: emitted, published or consumed. These
interfaces define a set of services, which correspond to CCM operations.
• A connector defines a number of roles. These roles correspond to connector

interfaces in xAcme. A role can be of different kinds: i) Adapted or Adaptee,
when the connector is an adapter, ii) Callee or Caller in the case of a
connector of type method invocation, iii) Listener or Trigger, when the
connector is of type event broadcast (or multicast), iv) and Sink or Source
in the case of a pipe connector. If a connector is empty, it represents a simple
association between two components (Binding in Fractal).
• A configuration represents several bindings. These attachments which corre-

spond to Connections in CCM and LinkInstance or InterfaceInstance-
Mapping in xAcme are defined between: i) interfaces of two components re-
quired and provided), ii) the interface of a component and the role of a
connector, iii) the port of a composite component and the interface of one
of its sub-components, iv) or the roles of two connectors. We note that, in
order to be generic, an interface or a role in this metamodel can participate
in multiple bindings.
• A hierarchical description associates to a composite component or connector

an internal structure. This internal structure is described by a configuration
of sub-components and connectors. Delegations from ports of the compo-
nents to their sub-components are performed by delegation connectors. In
this manner, no direct association between interfaces of components’ ports
and interfaces of their sub-components is allowed.
• Properties are associated to components, connectors and interfaces. These

properties are named and have typed values. The attributes of CCM com-
ponents and the xAcme properties are mapped to these properties.

24

Some abstractions exist in several metamodels, like components and provided
or required interfaces. However, some concepts present in ArchMM do not exist
in the other metamodels. These concepts like ports, bindings, connectors and
roles can be inferred during the transformation to ArchMM. For example, in
CCM there are no connectors. During the transformation of a CCM description
to ArchMM, connectors are generated with two roles. The generated roles
are Caller, Callee and Listener or Trigger depending on the types of
the connected components (Facet, Receptacle or Event). The distinction
between events of type Published or Emitted is done at the interface level.

4.1.5 Examples in the Standard Profile.

The first example presented in sections 3.3 and 3.5 can be expressed in APStd as
in the listing below. This example states that the component AccessController
should have only one binding through its required (out) interface Archiving.

context ACS:CompositeComponent inv:
ACS.configuration.binding

->select(b|b.interface.port.component.name = ’AccessController’
and b.interface.kind = ’Required’
and b.interface.name = ’Archiving’)

->size() = 1

The following example represents the constraint, which illustrated previously
the use of the @old mark in APxAcme and APCCM . We describe it now in
APStd.

context AccessController:PrimitiveComponent inv:
AccessController@old.port.interface->size <
(AccessController.port.interface->size()+2)

As illustrated in section 2, ACS subcomponents are organized as a pipeline.
This pattern can be structurally described using APStd as following:

context ACS:CompositeComponent inv:
ACS.subComponent.port
->forAll(p:Port|(p.kind = ’Input’)

or (p.kind = ’Output’))
and
ACS.configuration.binding.role.connector->AsSet()
->forAll(con:Connector|(con.role->size() = 2)

and ((con.role.kind = ’Source’)
or (con.role.kind = ’Sink’)))

and
ACS.configuration.binding.role.connector->AsSet()
->forAll(con:Connector|con.role

25

->forAll(r:Role|ACS.subComponent
->exists(com:Component|com.port
->exists(p:Port|(r in ACS.configuration.binding)

and ((p.kind = ’Input’)
and (r.kind = ’Sink’))

or ((p.kind = ’Output’)
and (r.kind = ’Source’))))))

and
ACS.configuration.isConnected
and
ACS.configuration.binding.role.connector
->AsSet()->size() = ACS.subComponent->size()-1
and
ACS.subComponent->forAll(com:Component|

(com.port->size() = 2)
and (com.port->exists(p:Port|

p.kind = ’Input’))
and (com.port->exists(p:Port|

p.kind = ’Output’)))

We notice that this time the graph operation isConnected() is associated in
this profile to the Configuration meta-class. All the other graph properties
are associated to this meta-class.

We remark, in the examples presented in sections 3.5.1, 3.5.2 and those above,
that the CCL part of these constraints remains mainly unchanged. The differ-
ences are globally observed at the architectural level. So, whatever the stage,
the designer needs to deal with only CCL and the current meta-model (the
language used to design one’s model). Thus, this approach greatly simplifies
the documentation of architectural choices throughout the development pro-
cess (51).

4.2 Transformation of Architectural Constraints

In order to transform constraints written in the different profiles to APStd, we
defined necessary mappings between the different metamodels and ArchMM.
We present first what are the architectural concepts that are concretely mapped
from the different metamodels to ArchMM. After that we introduce the method
proposed to describe and evaluate transformation rules.

4.2.1 Mappings from Profiles to APStd

Transformation rules between profiles are classified into three categories:

26

Textual ACL constraint

Abstract Syntax Tree

XML Serialized Constraint

Constraint written in X ACL Profile Constraint written in Y ACL Profile

Textual ACL constraint

XML Serialized Constraint
XSLT Transformation
 between profiles

Constraint Compilation

Constraint Serialization Constraint Deserialization

Constraint Compilation

Abstract Syntax Tree

Figure 8. XML-based solution to constraint transformation

(1) Mappings between architectural abstractions, which are represented at
the metamodel level by meta-classes and their properties (attributes and
operations).
The following itemization lists some mappings between xArch meta-

model and ArchMM in this category.
• ComponentInstance in xAcme represents Component in ArchMM,
• ConnectorInstance in xAcme represents Connector in ArchMM,
• InterfaceInstance in xAcme represents Interface in ArchMM,
• SubArchitecture in xAcme represents Configuration in ArchMM,
• LinkInstance in xAcme represents Binding in ArchMM,
• Direction in xAcme represents PortKind, RoleKind or InterfaceKind

in ArchMM (this special case will be detailed at the end of this section),
(2) Mappings of relationships between architectural abstractions, which are

represented at the metamodel level by navigation between meta-classes.
The mappings below represent projections between xArch and ArchMM

abstractions.
• In xAcme, ComponentInstance.interfaceInstance represents the in-

terfaces of a given component instance. In ArchMM it is represented
by Component.port.interface,
• ConnectorInstance.interfaceInstance represents all interfaces of a

given connector. It is mapped in ArchMM as Connector.role,
• ComponentInstance.subArchitecture.archInstance.componentIns-

tance in xAcme navigates to all the subcomponents of a given compo-
nent. In ArchMM, we write it as CompositeComponent.subComponent,
• ComponentInstance.subArchitecture.archInstance.connectorIns-

tance in xAcme represents all connectors defined in the sub-architecture
of a component. It is mapped in ArchMM as CompositeComponent.confi-
guration.binding.role.connector

27

(3) Mappings between complex architecture queries which represent patterns
of navigation in the metamodel. For example, Component.inter-
faceInstance->select(i:InterfaceInstance | i.direction = in)
represents all provided (in) interface instances defined for a given xAcme
component instance. This is translated into Component.port.interface
->select(i:Interface | i.kind = ’provided’) in ArchMM.

4.2.2 Transformation Method

In order to transform constraints, we defined an XML-based method which is
illustrated in Figure 8. This method is composed of the following primitives:

(1) Constraint Compilation: We first get ACL constraints in their textual
form to compile them. This compilation generates an Abstract Syntax
Tree (AST) for each constraint.

(2) Constraint Serialization: At this level, we serialize the generated ASTs
into an XML document. This XML document contains mainly the infor-
mation extracted from the leaves (terminal tokens) of the AST and their
types. This represents a sufficient information, which can be used in the
next primitive.

(3) XSL Constraint Transformation: Mappings illustrated in the previ-
ous section are implemented in the form of XSLT (55) statements. These
style-sheets are used to transform the XML documents resulted from
the previous primitive into other XML documents representing the same
constraints in APStd.

(4) Constraint Deserialization: The XML documents resulted in the pre-
vious primitive are then deserialized to extract the constraint (in its tex-
tual form) in the APStd. This constraint is ready to be compiled and then
evaluated.

During the transformation, first navigation patterns are sought in the source
constraint in order to apply the corresponding transformation rule. If a pattern
is matched, this part of the constraint is replaced by its equivalent (specified
in the transformation rule) in ArchMM. If no pattern is found, relationships
between abstractions are looked for. In this case, if a relationship is found, it is
replaced by the corresponding part of the constraint in APStd. If no relation-
ship is found, during analysis, researching architectural abstractions starts.
Each abstraction found is replaced by the equivalent concept in ArchMM. If
no case of the previous ones is found, no rule is applied and the syntactic
unit remains unchanged. It is the case, for example, for the context identifier
AccessController or the collection operation size().

Note that some of the mappings mentioned previously are ambiguous. They
have the same condition part, like Direction in the last item of the mappings

28

between abstractions. Concretely in transformation rules, we use the applica-
tion context of the mapping to distinguish the different cases. In the previous
example, the application context can be Port, Role or Interface. The rule
generates respectively, PortKind, Rolekind and InterfaceKind.

Some type checking is performed on collection operations during the trans-
formation. If a collection operation is found in the transformed constraint
and if this operation cannot be applied to the generated collection type, the
operation is transformed into its equivalent for that type or is removed. For
example, if a transformation rule generates a set starting from a bag, and that
the transformed operation is asSet(), this operation is replaced by an empty
token. Indeed, this operation serves to transform a bag into a set and thus has
no meaning in this case.

5 Tool Support & Underlying Technologies

In order to interpret ACL expressions, we developed ACE (Architectural Con-
straint Evaluator). This prototype tool allows the edition and the evaluation
of architectural constraints specified in different stages. To validate the feasi-
bility of our approach, we implemented in ACE the evaluation of two profiles:
xAcme and Fractal.

5.1 ACE Architecture

The core component of ACE (the component AD_DescEvaluator) interprets
only the APStd. This means that, it evaluates the intermediate description
of the architectural constraints on the intermediate architecture description.
Before performing this task, ACE automates the following transformations:

• from one specific architectural description (eg. xAcme) to the intermediate
model,
• from ACL profile architectural constraints (eg. APxAcme) to intermediate

architectural constraints (APStd).

If we want to change the ADL (in order to change the stage), we only have
to provide ACE with the descriptor files of the new architecture description
language or component technology (eg. Fractal).

Structurally, ACE is organized as in figure 9 and is composed of an:

• AD_Description Editor: Once the profile chosen (eg. xAcme or Fractal
metamodel), this component uses the XMI format of the metamodel to guide

29

ACE

<<artifact>>

Intermediate_Model.xml
<<artifact>>

IntermediateAD_Description.nfs

ArchDescTransformerAD_DescTransformer

AD_DescEvaluator

ACL_Compiler

ACL_Evaluator

AD_AST_Input

ArchDescInput

<<artifact>>

XXX_2ArchMM.xsl

<<artifact>>

ArchMM.xsd

<<artifact>>

XXX_MM.xsd

<<artifact>>

XXX_MM.xmi

<<artifact>>

ArchMM.xmi

<<artifact>>

XXX_AD_Description.nfs

AD_DescEditor

Figure 9. ACE: A prototype tool for editing and evaluating ACL constraints

the developer in editing his/her architectural constraints, by proposing the
different navigation alternatives (through an auto-completion mechanism).
• AD_Description Transformer: Once the constraints are edited using the

ADL corresponding profile 8 , they are transformed to be compliant with
ArchMM, in order to be evaluated. This component produces constraints
that navigate in ArchMM expressed in the APStd. The transformation is
performed on the basis of the mapping rules between the used ADL meta-
model and ArchMM.
• ArchDesc Transformer: Using XSL scripts, this module generates an in-

termediate model from the used ADL descriptions. This pivot model is a
specific instance of the metamodel ArchMM. We defined ArchMM as a set
of XML schemas that extend xArch schemas. Thus the intermediate model
is an XML-based ADL.
• AD_Description Evaluator: This component uses the intermediate model

and ArchMM to evaluate the intermediate architectural constraints (see
figure 9). It is composed of an ACL Compiler, which is an extension of
the OCL Compiler (10). It generates abstract syntax trees for each archi-
tectural constraint. The metamodel is used to check if these constraints
navigate well in its structure. If there are no syntactic or type errors, then
the evaluation process starts. If the constraints are evaluated to be true,
the architecture or component description is considered as in conformity
with the constraints. Otherwise, the developer should correct either his/her
architectural constraints or the architecture description. The latter must
conform to the constraints so that ACE validates them. Note that, at this
stage, only constraints involving one version of the architecture are evalu-
ated (not those with the @old mark). Constraints involving two versions of
the same architecture are evaluated once the descriptions of the two versions
are available.

8 It is also possible to edit constraints directly in APStd.

30

Following this architecture, ACE can be extended easily to support other
ADLs or component technologies, like those discussed in this paper (CCM or
UML 2).

5.2 Handling New ADLs or Component Technologies

To handle a new ADL or component technology, the following actions should
be performed:

• a new ACL profile should be defined which includes only the MOF meta-
model of this language or technology,
• the transformation rules for architectural descriptions should be elaborated

(XSL transformation scripts between the new metamodel and ArchMM),
• and the transformation rules for architectural constraints should be enu-

merated (XSL scripts).

On the tool-level no changes should be performed. One should only create a
new metamodel by precising the different elements composing the new profile
(the XMI and XSD documents of the metamodel, and the two XSL scripts
to transform architecture descriptions and architecture constraints). The nec-
essary changes are then done automatically to take into account the new
features.

6 Related Work

Some existing ADLs provide constraint languages, which allow the formal-
ization of architectural decisions. In WRIGHT (2) as in Acme, constraint
languages are provided. In Acme (or xAcme) architectural constraints are ex-
pressed using the Armani predicate language. All these languages have in
common the same basis as with ACL. They are based on FOL (First Order
Logic), manipulate collections of architectural elements and provide collection
operations. In these languages, the architectural elements, to be constrained,
are part of the language as syntactic constructs. The approach that we pro-
posed disconnects these elements through the architecture metamodels. Thus,
it becomes possible to cover all the development process with the same family
of constraint languages. ACL also allows the specification of pure evolution
constraints, whereas the ADLs focus only on design constraints.

In (28), Medvidovic et al. propose three approaches to support modeling soft-
ware architectures in UML 1.5. In the second approach, the authors suggest to
extend UML through stereotypes, tagged values and OCL constraints in order

31

to define architectural styles. In this work, the constraints are considered as
general rules that apply to all modeled architectural elements. However, in our
approach the constraints are considered as specific rules that apply only to
specific architectural elements of the current model. They stipulate particular
choices of the developer. We think that the two approaches are complemen-
tary. The first provides capabilities to define common rules for several projects,
while the second can be used to specify rules for a specific project.

In addition to these languages some other ADLs provide capabilities to de-
fine some other kinds of decisions like the choice of architectural styles. In
Aesop (13) it is possible to graphically represent architectures according to
a particular style. This environment provides a set of tools (for edition and
analysis) related to the style in question. Behind the architecture descriptions,
the formalization of styles is represented by a library of modules in the C lan-
guage. The main difference between the approach presented in this paper and
the Aesop system is that the first provides capabilities to formalize styles as
high-level constraints and the second provides the same capabilities but at
the code level. In addition, the goal of Aesop is to introduce an ADL which
allows the design of systems in particular styles. The focus in our work is on
providing a set of languages for architecture constraint description and not on
designing architectures and on supporting style analysis and evaluation.

In the literature, there are many works on the documentation of architec-
ture design decisions. Clements et al. in (7) present an approach which pro-
vides a framework for documenting different views of a software architec-
ture. The authors propose a template for architecture description encompass-
ing the documentation of architectural decisions. In (53), Tyree and Aker-
man discuss the importance of documenting architecture decisions and their
specification as first-class entities in architecture description. They present a
template specifically designed for architecture decision documentation, which
embeds interesting information characterizing architecture design decisions
(status, assumptions, implications, related artifacts, constraints,
...). Philippe Kruchten in (19) introduced a taxonomy of design decisions. He
presents a model for describing architecture decisions, including rationale,
scope, state, history of changes, categories, cost and risk. He iden-
tifies the different possible relationships between design decisions and links
between design decisions and design artifacts in this ontology. In (23), the au-
thors present a tool support for visualizing all these elements. In (16), Jansen
and Bosch present a new way of building software architectures. They propose
to define these design models as a composition of architecture design decisions.
The authors introduce a model for architecture design decisions, including a
description, the rationale, the design rules, the design constraints,
the consequences, the pros and cons. Archium is a method proposed in
conjunction with this model in order to connect this model to software ar-
chitecture descriptions. Starting from a given documented design problem, a

32

solution should be chosen among multiple other solutions. Once the decision
is made, the solution is defined as an architectural change, represented by
deltas to be integrated to the software architecture model through a compo-
sition model. de Boer et al. presented in (9) a core model of architectural
knowledge. This complete and voluntarily minimalistic model is based on the
ISO/IEC 42010:2007 and ANSI/IEEE Std 1471-2000 standard (15). It en-
riches this standard and adapts it by taking into account the results of some
experiments conducted with four industrial partners. An alignment of the dif-
ferent organizations’ models of architectural knowledge has been performed
to extract the common concepts and build the core model. This core model
embeds the concept of Architectural Design Decision, which is a specialization
of the concept of Decision that influences the Architectural Design. Rationale
is not an explicit concept in the model, but is orthogonal. An architecture de-
sign is the result of all architectural decisions. The validated model introduces
the concepts of Role and Activity, inspired from SPEM.

Lago and van Vliet (21) introduced the concept of Design Assumption. They
presented an approach to make explicit assumptions made during design in or-
der to enrich architecture models. The authors defined design assumptions as
the rationale of decisions made on-the-fly during architecture design (issued,
for example, from the developer’s experience). These elements, which are often
implicit, represent invariabilities that should be documented to better under-
stand a given software architecture before its evolution. They proposed a tool
to describe these assumptions and to define their relationships to the corre-
sponding architectural elements (F-impacts for the functional impact of an
assumption on an architectural element, S-impacts for structural impact, and
Realizes for a realization relationship, (reversely) between an architectural
element and a design assumption). It is also possible to define relationships
between assumptions in order to build hierarchies of assumptions.

In all of these works, the authors proposed models to document design deci-
sions (assumptions), with a textual or graphical notations. The authors iden-
tified fine-grained elements to specify decisions or relationships between these
decisions or their links to architectural design elements. In our paper, the focus
was on the specification and interpretation of a part of this documentation,
which corresponds to design rules and constraints in (16), to existence deci-
sions (“ontocrises”) in (19) and to constraints in Tyree and Akerman’s model.
This is documented using a formal language (ACL), for which an interpreta-
tion tool-support has been developed. Our approach is complementary to all
of these approaches. As pointed out in this paper’s introduction, ACL can be
used to document the most important decisions, related to the critical parts
of the system, and for which automatic checking is indispensable. The formal
specification of (ACL) constraints can be enriched with information related
to the decisions (rationale, state, cost, ...) issued from the models previously
cited. The other (less critical, but not less important) decisions could comple-

33

ment formal decisions and be textually or graphically documented using the
previous models.

Other research works focus on the specification of some particular kinds of
design decisions, which are the choices of design patterns. In (22), the au-
thors present an approach which aims at modeling design patterns in a formal
manner by proposing extensions to the UML metamodel 9 . They use OCL
to describe (structural and behavioral) constraints representing two examples
of design patterns (the visitor and the observer (12)). These constraints are
defined at the metamodel level and are specified in the form of collaboration
meta-diagrams. Some association mechanisms of these diagrams of meta level
and their instance (occurrences of design patterns) are then defined. This al-
lows to model design patterns with the UML language in a precise manner.
Like in this work, we use the OCL language at the meta-model level. However,
in our case, the constraints’ context is not an element of the metamodel, but
an entity at the model level. The goal of the work referenced here is to provide
UML developers with a means to describe a design pattern in a precise way.
In our work, we focus on the documentation of a design decision which can
be eventually a design pattern that we would like to preserve throughout a
development process.

There are many other works on formal description of design patterns. The goal
of these approaches vary from pattern application (31) to code generation (1).
Some approaches aim at detecting patterns (1) in design documents or in the
code, whereas some others target a better comprehension of patterns in order
to choose the one that better resolves the encountered design problem (47;
22). Other works target pattern composition and deal with their temporal
aspects (30). The aims of these works are different from ours. However, our
approach is complementary to these works in order to build a safe software
development process.

In the literature, only functional constraints have been addressed in compo-
nent implementation technologies, like for CCM in (48) and for EJB in (5).
Architectural issues have not been explored yet. We think that the work pre-
sented in this paper has a main contribution in this part of the development
process.

9 The UML version taken into account is the 1.3 one. The authors also discuss the
applicability of the approach in the UML 2 metamodel.

34

7 Conclusion & Future Work

Bridging the gap between software architectures and component implementa-
tions (defined by component technologies) can be dealt with in an MDA-like
approach. These two models can be treated as complementary first-class en-
tities within a component-based software development process. In this paper,
this was the starting point. Then the discussion focused on the specification
and evaluation of the constraint part of architecture decisions made on these
models. These constraints are defined, throughout the development process,
using a FOL-based family of languages called ACL, proposed in our work. At
each stage, it is possible to describe and then evaluate architectural constraints
using the different members of the ACL family. This family of languages is
based on well known and widely used technologies, which are OCL and MOF
(“UML-like language”).

Using ACL profiles to define architectural constraints provides a means to
make available one of the important parts of architecture documentation
throughout the software life-cycle. This ensures easy and safe evolution (main-
tenance) activities on the software. Indeed, among the maintenance activities,
understanding the software architecture before its evolution, and iterations
between regression testing and applying concrete changes on the software, are
by far the most expensive (52). By making the most important architectural
choices explicit and formal, on the one hand, we facilitated the architecture
comprehension (through knowledge documentation) and on the other, we au-
tomated some checking that allows an assistance to the evolution activity. This
assistance notifies developers on-the-fly, whenever an architectural change af-
fects the documented architectural choices. This contributes in reducing the
costs related to the software evolution activity by anticipating some regression
tests, as detailed in (52).

It is true that often developers performing maintenance and evolution tasks are
less skilled than developers performing the initial design. Indeed, the violation
of a constraint alerts the maintainer, but it is up to another person (architect)
to rewrite (if it is needed) the constraint if the maintainers are unable to do it.
The definition of this role is a methodological problem within the development
team. Also, it is observed that frequently the design models and code are not
effectively synchronized; only the code is evolved by the system evolvers, and
updates are not made on design artifacts. Indeed, we made here a technological
assumption where we consider that developers use existing tools performing
round-trip engineering to ensure model-code consistency.

Even if there exist many tools for round-trip engineering, we would like to
be able to detect constraint violations on the source code. To do this, we are
adopting a component-oriented programming language, called SCL (11), for

35

which we are adding reflection capabilities. We are implementing the trans-
formation of ACL constraints to SCL (reflective) code. This will inevitably
help the developers (performing maintenance and evolution tasks) to better
understand the architecture constraints.

Besides, we started recently an investigation on model constraint transforma-
tion. This work aims at using MOF/QVT-compliant (34) languages dedicated
to model transformations to transform constraints. The final goal is to trans-
form architecture descriptions using rules defined by these languages, and then
study the possible reuse of the same rules to transform architecture constraints
associated to these models (descriptions).

We validated one ACL profile with an industrial partner in (52). We experi-
enced the use of this profile in the development of a part of a GIS (Geographic
Information System). The main goal of this work was to test the documenta-
tion of architecture choices and its potential benefit during software evolution.
For this aim, we developed an Eclipse plugin version of the ACE tool in or-
der to ease its use by the company’s developers. The company implements
its information system projects in Eclipse and uses its own ADL (close to
UML) which is specific to GIS. We had thus described its metamodel and the
necessary transformation files to ArchMM (model + constraints).

The main lesson learned from this experimentation is that we should not
try to describe all the knowledge using architectural constraints. Otherwise,
the amount of information is detrimental to its usability. Some architectural
choices are obvious and do not require formal documentation. The best strat-
egy is that the developers first identify the most significant choices which
are fundamental and important in the domain and then document only these
choices.

Some interviews conducted after the experiment, for a qualitative goal, showed
that the developers found the profile easy to grasp. This is mainly due to the
fact that the profile is based on OCL, which is a standard that respects the
well-known object concepts. In addition, we obtained a good feedback on the
usefulness of this language in the maintenance activities. So, we are convinced
that the use of the different ACL profiles in different contexts can be an added
value for a reliable software development.

References

[1] Albin-Amiot, Hervé and Guéhéneuc, Yann-Gaël: Meta-Modeling Design
Patterns: Application to Pattern Detection and Code Synthesis. In pro-
ceedings of ECOOP Workshop on Automating Object-Oriented Software
Development Methods (2001)

36

[2] Allen, Robert: A Formal Approach to Software Architecture. PhD thesis
of Carnegie Mellon University, Pittsburgh, PA, USA (1997)

[3] Bass, Len and Clements, Paul and Kazman, Rick: Software Architecture
in Practice, 2nd Edition. SEI Series in SW Eng. Addison-Wesley (2003)

[4] Briand, Lionel C. and Labiche, Yvan and Di Penta, Massimiliano and Yan-
Bondoc, Han (Daphne): An Experimental Investigation of Formality in
UML-Based Development. In IEEE Transactions on Software Engineering,
vol. 31, num. 10, IEEE Computer Society (2005) 833–849

[5] Brucker, Achim D. and Wolff, Burkhart: Checking OCL Constraints in Dis-
tributed Systems Using J2EE/EJB. Technical report of Albert-Ludwigs-
Universität Freiburg (2001) 1–46

[6] Bruneton, Eric and Coupaye, Thierry and Leclercq, Matthieu and Quéma,
Vivien and Stefani, Jean-Bernard: An Open Component Model and its
Support in Java. In Proceedings of the International Symposium on
Component-Based Software Engineering (CBSE’04), Edinburgh, Scotland
(2004)

[7] Clements, Paul and Bachmann, Felix and Bass, Len and Garlan, David
and Ivers, James and Little, Reed and Nord, Robert and Stafford, Judith:
Documenting Software Architectures, Views and Beyond. SEI Series in
Software Engineering. Addison-Wesley (2003).

[8] Dashofy, Eric M. and van der Hoek, André and Taylor, Richard N.: A Com-
prehensive Approach for the Development of Modular Software Architec-
ture Description Languages. ACM Transactions On Software Engineering
and Methodology, vol. 14, num 2 (2005) 199–245

[9] de Boer, Remco C. and Farenhorst, Rik Lago, Patricia and van Vliet, Hans
and Clerc, Viktorand Jansen, Anton: Architectural Knowledge: Getting to
the Core. A book chapter in Software Architectures, Components, and
Applications. Springer LNCS, vol. 4880, (2008) 197–214

[10] Technische Universitat Dresden: OCL Compiler web site. http://dresden-
ocl.sourceforge.net/ (2002)

[11] Fabresse, Luc and Dony, Christophe and Huchard, Marianne: Founda-
tions of a Simple and Unified Component-Oriented Language. In Journal
of Computer Languages, Systems & Structures, vol. 34, num. 2-3, Elsevier
(2008) 130–149.

[12] Gamma, Erich and Helm, Richard and Johnson, Ralph and Vlissides,
John: Design Patterns: Elements of Reusable Object-Oriented Sofware.
Addison-Wesley Professional Computing Series. Addison Wesley Longman,
Inc. (1995)

[13] Garlan, David and Allen, Robert and Ockerbloom, John: Exploiting Style
in Architectural Design Environments. In proceedings of the SIGSOFT
Symposium on the Foundations of Software Engineering (1994) 175–188

[14] Garlan, David and Monroe, Robert T. and Wile, David: Acme: Ar-
chitectural Description of Component-Based Systems. In Foundations of
Component-Based Systems, Cambridge University Press, Gary T. Leavens
and Murali Sitaraman (2000) 47–68

37

[15] ISO/IEC 42010:2007 and ANSI/IEEE Std 1471-2000, Recommended
Practice for Architectural Description of Software-Intensive Systems
(2007)

[16] Jansen, Anton and Bosch, Jan: Software Architecture as a Set of Architec-
tural Design Decisions. In Proceedings of of the 5th IEEE/IFIP Working
Conference on Software Architecture (WICSA’05), Pittsburgh, Pennsylva-
nia, USA (2005)

[17] Kandé, Mohamed Mancona and Strohmeier, Alfred: Towards a UML Pro-
file for Software Architecture Descriptions. In proceedings of UML’2000 -
The Third International Conference on the Unified Modeling Language:
Advancing the Standard - (2000)

[18] Karahasanovic, Amela and Levine, Annette Kristin and Thomas,
Richard: Comprehension strategies and difficulties in maintaining object-
oriented systems: An explorative study. In Journal of Systems and Software
Volume 80 , Issue 9 (Sept 2007) 1541–1559

[19] Krutchen, Philippe: An Ontology of Architectural Design Decisions in
Software Intensive Systems. In Proceedings of the 2nd Groningen Work-
shop Software Variability (2004) 54–61

[20] Kruchten, Philippe and Obbink, Henk and Stafford, Judith: The past,
present, future of Software Architecture. In IEEE Software, vol. 23, num.
2 (2006) 22–30

[21] Lago, Patricia and van Vliet, Hans: Explicit Assumptions enrich Archi-
tectural Models. In Proceedings of the 27th International Conference on
Software Engineering (ICSE’05), St. Louis, Missouri, USA, (2005) 206–214

[22] Le Guennec, Alain and Sunyé, Gerson and Jézéquel, Jean-Marc: Precise
Modeling of Design Patterns. In proceedings of the third International
Conference on the Unified Modeling Language (2000)

[23] Lee, Larix and Kruchten, Philippe: A Tool to Visualize Architectural
Design Decisions. In Proceedings of the Fourth International Conference
on the Quality of Software Architectures (QoSA’08), Karlsruhe, Germany,
Springer-Verlag LNCS (2008) 43–54

[24] Luckham, David C. and Kenney, John L. and Augustin, Larry M. and
Vera, James and Bryan, Doug and Mann, Walter: Specification and Anal-
ysis of System Architecture Using Rapide. IEEE Transactions on Software
Engineering, vol. 21, num. 4 (1995) 336–355

[25] Magee, J. and Kramer, J.: Dynamic Structure in Software Architectures.
In proceedings of the fourth ACM SIGSOFT Symposium on Foundations
of Software Engineering, San Francisco, USA (1996) 3–14

[26] Medvidovic, Nenad: Architecture-Based Specification-Time Software
Evolution. PhD thesis of the University of California, Irvine (1999)

[27] Medvidovic, N. and Taylor, N R.: A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Trans-
actions on Software Engineering, vol. 26, num. 1 (2000) 70–93

[28] Medvidovic, Nenad and Rosenblum, David S. and Redmiles, David F.
and Robbins, Jason E.: Modeling Software Architectures in the Unified

38

Modeling Language. In ACM Transactions On Software Engineering and
Methodology, vol. 11, num. 1 (2002) 2–57

[29] Microsoft: COM: Component Object Model Technologies. Microsoft Web
Site: http://www.microsoft.com/com/ (2005)

[30] Mikkonen, Tommi: Formalizing Design Patterns. In proceedings of the
20th International Conference on Software Engineering (1998) 115–124,
IEEE Computer Society Press

[31] Mili, Hafedh and El-Boussaidi, Ghizlaine: Representing and Applying
Design Patterns: What is the Problem. In proceedings of the ACM/IEEE
8th International Conference on Model Driven Engineering Languages and
Systems (2005) Springer-Verlag

[32] Monroe, Robert T.: Capturing Software Architecture Design Expertise
with Armani. PhD thesis of the School of Computer Science, Carnegie
Mellon University, Pittsburgh, Pennsylvania, USA (2001)

[33] Moriconi, Mark and Qian, Xiaolei and Riemenschneider, R. A.: Correct
Architecture Refinement. IEEE Transactions on Software Engineering, vol.
21, num. 4 (1995) 356–372

[34] Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation, version 1.0: formal/08-04-03. Object Man-
agement Group Web Site: http://www.omg.org/spec/QVT/1.0/PDF/
(2008)

[35] Object Management Group: Unified Modeling Language: Superstructure,
version 2.1.1, formal/2007-02-03. Object Management Group Web Site:
http://www.omg.org/docs/formal/07-02-03.pdf (2007)

[36] Object Management Group: OCL 2.0 Specification, version 2.0,
Document ptc/2005-06-06. Object Management Group Web Site:
http://www.omg.org/docs/ptc/05-06-06.pdf (2005)

[37] Object Management Group: CORBA Components, v3.0, Adopted Spec-
ification, Document formal/2002-06-65. Object Management Group Web
Site: http://www.omg.org/docs/formal/02-06-65.pdf (2002)

[38] Object Management Group: Meta Object Facility (MOF) 2.0 Fi-
nal Adopted Specification, Document ptc/03-10-04. Object Management
Group Web Site: http://www.omg.org/docs/ptc/03-10-04.pdf (2003)

[39] Object Management Group: UML Profile for Corba Components Fi-
nal Adopted Specification, Document ptc/04-03-04. Object Management
Group Web Site: http://www.omg.org/docs/ptc/04-03-04.pdf (2004)

[40] Rational Software Corporation: UML/EJB (TM) Map-
ping Specification. Java Community Process, JSR-000026:
http://jcp.org/aboutJava/communityprocess/review/ jsr026/ (2001)

[41] Roshandel, Roshanak and Schmerl, Bradley and Medvidovic, Nenad and
Garlan, David and Zhang, Dehua: Understanding tradeoffs among different
architectural modeling approaches. In Proceedings of the Working IEEE/I-
FIP Conference on Software Architecture (WICSA’04) (2004) 47–56

[42] Shaw, Mary and DeLine, Robert and Klein, Daniel V. and Ross, Theodore
L. and Young, David M. and Zelesnik, Gregory: Abstractions for Software

39

Architecture and Tools to Support Them. IEEE Transactions on Software
Engineering vol. 21, num. 4 (1995) 314–335

[43] Shaw, Mary and Garlan, David: Software Architecture: Perspectives on
an Emerging Discipline. Prentice Hall (1996)

[44] Shaw, Mary and Clements, Paul: The Golden Age of Software Architec-
ture. In IEEE Software, vol. 23, num. 2 (2006) 31–39

[45] Sun-Microsystems: Enterprise JavaBeans(TM) Specification, version 2.1.
Sun-Microsystems Web Site: http://java.sun.com/products/ejb (2003)

[46] Szyperski, C.: Component Software: Beyond Object-Oriented Program-
ming (2002)

[47] Taibi, Toufik and Ngo Chek Ling, David: Formal Specification of Design
Patterns - A Balanced Approach. In the Journal of Object Technology,
vol. 2, num. 4 (2003)

[48] Teiniker, Egon and Lechner, Robert and Schmoelzer, Gernot and Kreiner,
Christian and Kovacs, Zsolt and Weiss, Reinhold: Towards a Contract
Aware CORBA Component Container. In proceedings of the 29th Annual
International Computer Software and Applications Conference (2005) 545–
550, IEEE Computer Society Press

[49] Tibermacine, Chouki and Fleurquin, Régis and Sadou, Salah: Preserv-
ing Architectural Choices throughout the Component-based Software De-
velopment Process. In proceedings of the 5th IEEE/IFIP Working Con-
ference on Software Architecture (WICSA’05), Pittsburgh, Pennsylvania,
USA (2005) 121–130

[50] Tibermacine, Chouki and Fleurquin, Régis and Sadou, Salah: NFRs-
Aware Architectural Evolution of Component-based Software. In proceed-
ings of the 20th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE’05), Long Beach, California, USA (2005) 388–391

[51] Tibermacine, Chouki and Fleurquin, Régis and Sadou, Salah: Simplifying
Transformations of Architectural Constraints. In Proceedings of the ACM
Symposium on Applied Computing (SAC’06), Track on Model Transfor-
mation (2006) 1240–1244

[52] Tibermacine, Chouki and Fleurquin, Régis and Sadou, Salah: On-
Demand Quality-Oriented Assistance in Component-Based Software Evo-
lution. In Proceedings of the 9th ACM SIGSOFT International Symposium
on Component-Based Software Engineering (CBSE’06) (2006) 294–309

[53] Tyree, Jeff and Akerman, Art: Architecture Decisions: Demystifying Ar-
chitecture. IEEE Software, vol. 22, num.2 (2005) 19–27

[54] van Ommering, Rob and van der Linden, Frank and Kramer, Jeff and
Magee, Jeff: The Koala Component Model for Consumer Electronics Soft-
ware. In IEEE Computer, vol. 33, num. 3 (2000) 78–85

[55] The Extensible Stylesheet Language Family (XSL). W3C Web Site:
http://www.w3.org/Style/XSL/ (2005)

[56] xAcme: Acme Extensions to xArch. School of Computer
Science Web Site, Carnegie Mellon University: http://www-
2.cs.cmu.edu/∼acme/pub/xAcme/ (2001)

40

	Introduction
	Problem Situation by an Example
	Architectural Design Stage
	Component Design Stage
	Component Implementation Stage

	ACL: a Family of Architectural Constraint Languages
	Requirements for an Architectural Constraint Language
	ACL Language Structure
	ACL Predicate-Level: the CCL language
	Architecture-Level Description
	Examples of architectural choices in two ACL Profiles

	Evaluation of Architectural Constraints
	Standard ACL Profile
	Transformation of Architectural Constraints

	Tool Support & Underlying Technologies
	ACE Architecture
	Handling New ADLs or Component Technologies

	Related Work
	Conclusion & Future Work

