
Aspect-Oriented Modeling to Support

Dynamic Adaptation?

Brice Morin1, Franck Fleurey2, Olivier Barais1,3, and Jean-Marc Jézéquel1,3

1 INRIA, Centre Rennes - Bretagne Atlantique
Brice.Morin@inria.fr

2 SINTEF, Oslo, Norway
Franck.Fleurey@sintef.no
3 IRISA, Université Rennes1

barais@irisa.fr | jezequel@irisa.fr

Abstract. Since software systems need to be continuously available under
varying conditions, their ability to evolve at runtime is increasingly seen
as one key issue. Modern programming frameworks already provide sup-
port for dynamic adaptations. However the high-variability of features in
Dynamically Adaptive Systems (DAS) introduces an explosion of possible
runtime system con�gurations (often called modes) and mode transitions.
Designing these con�gurations and their transitions is tedious and error-
prone, making the system feature evolution di�cult. This demo presents
a tool-chain developed by the DiVA project, which combines AOM and
Model-Driven Engineering to tame the combinatorial explosion of DAS
modes. Using AOM techniques, we derive a wide range of modes by weav-
ing aspects into an explicit model re�ecting the runtime system. We use
these generated modes to automatically adapt the system using MDE
techniques.

1 A Brief Introduction of DiVA

DiVA is a European project that aims at providing a new tool-supported method-
ology with an integrated framework for managing dynamic variability in adaptive
systems. DiVA addresses this goal by combining Aspect-Oriented and Model-
Driven techniques in an innovative way.

DiVA mobilizes leading players within the domains of model-driven engineer-
ing, aspect-oriented analysis and modeling, variability modeling and partners that
provide advanced end user systems and applications where the demand for adap-
tation is a major concern. There are 3 academic partners in DiVA: SINTEF
(Norway), Lancaster (UK) and INRIA (France), and 3 industrial partners: pure-
systems GmbH (Germany), Thales (France) and CAS Software AG (Germany).

2 An Overview of the Demo

The demonstration illustrates the model-based and aspect-oriented DiVA tool-
chain on a simple case study. It basically presents the tools associated with pre-
vious publications [1,2,3].
? The research leading to these results has received funding from the European
Community's Seventh Framework Program FP7 under grant agreements 215412
(DiVA, http://www.ict-diva.eu/)



2.1 DiVA Metamodels

In the context of the DiVA European project, we have modeled four dimension-
s/aspects of an adaptive system [2]:

� Variability Model: The Variability model is a feature model, describing
the variability of the system. Feature models are commonly used in the SPL
community [4]. It allows to describe hierarchies of features with mandatory
features, options, alternatives, n among p choices, etc, as well as constraints
(require, exclude) among features. The Variability model is a regular feature
diagram model, with a naming convention to refer to architectural fragments
(aspect models) re�ning the features. This way, we can exploit any existing
feature model tools (graphical editors, checkers, etc) with no modi�cation.

� Context Model: The context model speci�es the environment of the system.
A set of context variables speci�es the aspects of the environment which are
relevant to adaptation. At runtime, the values of the variables are provided
by context sensors and these may trigger a recon�guration of the system.

� Reasoning Model: The reasoning model describes how the features of the
DSPL are selected according to the context. There exist several formalisms
such as Event-Condition-Action (ECA) rules [5], or Goal-Based Optimiza-
tion rules [2]. An ECA model will typically describe, for particular contexts,
which features to select: when context choose features. A Goal-Based model
will typically describe how features impact QoS properties, using for example
help and hurt relationships [6], and specify when QoS properties should be
optimized (e.g., when a property is too low).

� Architecture Model: This model allows the designer to describe component-
based architectures. We can use any metamodel, such as the UML 2 compo-
nent diagrams or SCA (Software Component Architecture), or any Architec-
ture Description Language (ADL), to describe architecture. Since our dynamic
adaptations are (currently) recon�gurations, we are concerned with compo-
nents and bindings. These concepts are present in the above mentioned meta-
models. In practice, we have de�ned our own minimal metamodel [7] to reduce
the memory overhead at runtime. Other metamodels are simply mapped to
our metamodel via model transformations written in Kermeta [8]. Each (leaf)
feature of the DSPL model is re�ned into a fragment of architecture. We
use Aspect-Oriented Modeling (AOM) techniques to design and compose fea-
tures into a core model containing the mandatory elements. We leverage these
models at design-time to perform validation and simulation tasks, as well as
runtime to fully automate the dynamic adaptation process.

These models are built at design-time and will be leveraged at runtime to drive
the dynamic adaptation process. The quality and the correctness of these models
are crucial and have to be checked as early as possible. Tools are provided so that
the designer can execute scenarios (sequences of contexts) in order to simulate the
adaptation logic of the system [9] and check the produced con�gurations [3]. These
con�gurations have to ensure the constraints (cardinalities, requires/excludes)
de�ned in the DSPL model, and will be composed of suitable features selected
according to the reasoning model.



2.2 Re�ning Features as Aspect Models

In DiVA, we leverage Aspect-Oriented Modeling techniques to re�ne features and
automatically build complete con�gurations, before the actual adaptation. A base
model re�nes the commonalities (elements present in all the con�gurations) of the
system as an architecture made of components and bindings (connections between
components). Aspect models re�ne the variants of the system by specifying their
precise architectures. More speci�cally, each aspect model is an architecture frag-
ment that contains all the information needed so that it can easily be plugged into
the base architecture. An aspect model is composed of three parts, as illustrated
in Figure 1:

� Advice model. An architecture fragment specifyingwhat is needed to realize
the associated variant. A graft model does not need to be fully consistent.
The elements that are missing to make the graft model consistent should be
brought by the base model, when weaving the aspect.

� Pointcut model. An architecture fragment specifying the components and
bindings that the aspect expects from the base in order to be woven i.e.,
where the aspect should be woven. The most precisely de�ned is the pointcut
model, the smallest is the set of potential places where the aspect can be
woven, and conversely. For example, if the type of a component is not speci�ed
in the pointcut model, this component would be matched by any component
of the base architecture, irrespectively of its real type.

� Composition protocol. It describes how to integrate the advice model into
the pointcut model. When weaving the aspect, the composition protocol is
automatically contextualized in order to actually weave the aspect into the
base model at all the places matching the pointcut model.

DrivingNotifier

Forward
Telephony

VoiceChannel

Advice model

AddressDB

Pointcut model

Calendar

Fig. 1. An Aspect Model

2.3 MDE to automate the Dynamic Recon�guration

Modern adaptive execution platforms like OSGi [10] propose low-level APIs to
recon�gure a system at runtime. It is possible to dynamically recon�gure appli-
cations running on these platforms by executing platform-speci�c recon�gura-
tion scripts specifying which components have to be stopped, which components



and/or bindings should be added and/or removed. These scripts have to be care-
fully written in order to avoid life-cycle exceptions (e.g, when a component is
removed while still active), dangling bindings (e.g., when a component is removed
while it is still connected to other (client) components).

To prevent errors in writing such error-prone scripts, we leverage MDE tech-
niques to generate safe recon�guration scripts [3,11,1], as illustrated in Figure 2.

Architecture 
Metamodel

Reflection
model

Running 
System

Component-based execution platform

Target
model

Generated platform-specific
reconfiguration commands

Causal
connection

validation

M2

M1

M0

1

2

3

4

conforms to

Fig. 2. Leveraging MDE to generate safe recon�guration scripts

The key idea is to keep an architectural model synchronized with the running
system [3]. This re�ection model, which conforms to the architecture metamodel,
is updated (Figure 2, 1) when signi�cant changes appears in the running system
(addition/removal of components/bindings). It is important to note that the re-
�ection model can only be modi�ed according to runtime events. Still, it is possible
to work on a copy of this re�ection model and modify it: model transformation,
aspect model weaving, manipulation by hand in a graphical editor, etc.

When a target architectural model is de�ned, it is �rst validated (Figure 2, 2)
using classic design-time validation techniques, such as invariant checking [3] or
simulation. This new model, if valid, represents the target con�guration the run-
ning system should reach. We automatically generate the recon�guration script,
which allows to switch the system from its current con�guration to the new tar-
get. We �rst perform a model comparison between the source con�guration (the
re�ection model) and the target con�guration (Figure 2, 3), which produce an
ordered set of recon�guration commands. This safe sequence of commands is then
submitted (Figure 2, 4) to the running system in order to actually recon�gure it.
Finally, the re�ection model is automatically updated and becomes equivalent to
the target model (Figure 2, 1).

3 A Video of the Demo

A preliminary video of the demo can be found at:
https://transfert.inria.fr/fichiers/6af7a145966fa5ba154a569a448177c8/

video.zip



References

1. Morin, B., Barais, O., Jézéquel, J.M., Fleurey, F., Solberg, A.: Models at runtime
to support dynamic adaptation. Computer 42(10) (October 2009) 46�53

2. Fleurey, F., Solberg, A.: A Domain Speci�c Modeling Language supporting Speci�-
cation, Simulation and Execution of Dynamic Adaptive Systems. In: MODELS'09:
ACM/IEEE 12th International Conference on Model-Driven Engineering Languages
and Systems, Denver, Colorado, USA (oct 2009)

3. Morin, B., Barais, O., Nain, G., Jézéquel, J.M.: Taming Dynamically Adaptive
Systems with Models and Aspects. In: ICSE'09: 31st International Conference on
Software Engineering, Vancouver, Canada (May 2009)

4. Clements, P., Northrop, L.: Software product lines: practices and patterns. Volume
0201703327. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
(2001)

5. David, P., Ledoux, T.: An Aspect-Oriented Approach for Developing Self-Adaptive
Fractal Components. In: SC'06: 5th Int. Symposium on Software Composition.
Volume 4089 of Lecture Notes in Computer Science., Vienna, Austria (2006) 82�97

6. Goldsby, H., Sawyer, P., Bencomo, N., Cheng, B., Hughes, D.: Goal-Based Modeling
of Dynamically Adaptive System Requirements. In: ECBS'08: 15th IEEE Interna-
tional Conference on the Engineering of Computer Based Systems, Belfast, Northern
Ireland, IEEE Computer Society (2008) 36�45

7. Morin, B., Barais, O., Jézéquel, J.M.: K@rt: An aspect-oriented and model-oriented
framework for dynamic software product lines. In: 3rd International Workshop on
Models@Runtime, at MoDELS'08, Toulouse, France (oct 2008)

8. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-oriented
meta-languages. In L. Briand, S.K., ed.: Proceedings of MODELS/UML'2005. Vol-
ume 3713 of LNCS., Montego Bay, Jamaica, Springer (October 2005) 264�278

9. Fleurey, F., Dehlen, V., Bencomo, N., Morin, B., Jézéquel, J.M.: Modeling and Val-
idating Dynamic Adaptation. In: 3rd International Workshop on Models@Runtime,
at MODELS'08, Toulouse, France (oct 2008)

10. The OSGi Alliance: OSGi Service Platform Core Speci�cation, Release 4.1 (May
2007) http://www.osgi.org/Speci�cations/.

11. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.M., Solberg, A., Dehlen, V., Blair,
G.: An aspect-oriented and model-driven approach for managing dynamic variabil-
ity. In: MODELS'08: ACM/IEEE 11th International Conference on Model Driven
Engineering Languages and Systems, Toulouse, France (October 2008)


