
Good Practices as a Quality-Oriented Modeling
Assistant

Vincent Le Gloahec
Alkante SAS, France

Email: v.legloahec@alkante.com

Regis Fleurquin
INRIA/Triskell,

Campus Universitaire de Beaulieu, France
Email: regis.fleurquin@irisa.fr

Salah Sadou
Valoria laboratory,

Université de Bretagne-Sud, France
Email: salah.sadou@univ-ubs.fr

Abstract—In order to ensure the quality of their software
development, companies incorporate best practices from recog-
nized repositories or from their own experiences. These good
practices are often described in software quality manuals that,
in this form, do not guarantee their implementation. In this
paper, we propose a framework for the implementation of best
practices. We treat the case of modeling activities because they are
becoming the main activity of software development processes.
Our framework enables on the one hand to describe the good
practices and on the other hand to check their application by the
designers. We present an implementation of our framework in
the Eclipse platform and some examples of use of our approach
in the modeling of UML Class diagrams.

I. INTRODUCTION

Good Practices (GPs) are proven processes or techniques
that organizations (or persons) have found to be productive
and useful to ensure a good level of production quality. Some
GPs are found in research papers, reports, guides, books or
standards. In the current context, modeling becomes the main
activity of the software development process using more and
more domain-specific modeling languages (DSML). Software
modeling activity, like any other activity, can take advantage
of GPs. At every step of the modeling activity, GPs can
provide help to build good models faster. As stated by Gratton
and Ghoshal [1] and process improvement programs such as
CMMI-DEV [2]: the capacity of an enterprise to prosper is
based on its ability to capture, use, and assess good practices.

Due to a lack of an adequate formalism to document their
knowledge, companies that try to capitalize on their knowledge
for a particular DSML and activity end up making use of
informal documents, often incomplete, poorly referenced, and
sometimes scattered. This leads to an inadequate and an
ineffective use and sometimes loss of Good Modeling Prac-
tices (GMPs). Moreover, documenting GMPs by themselves
is not sufficient. If the documented GMPs are not supported
by modeling tools, their implementation still depends only
on developer skills and good will. Unfortunately, most of
modeling tools provide no means to support GMPs. Some tools
enforce modeling styles using for example the OCL language.
Few modeling tools allow some form of parameterization
through adhoc scripting languages (e.g., the J language for
the Objecteering platform). Some work [3], [4], and [5]
also propose grafting on modeling tools, such as Eclipse or
Rational, with extensions allowing the interception of the

designer’s actions and inspecting the tool’s information system
to detect some kinds of methodological inconsistencies. But,
their expressiveness is still limited, depending on the format
of the tool’s information system. Consequently, the GMPs
expressed using a given modeling language under a given
modeling tool are unusable and lost when switching to another
modeling tool that supports the same modeling language.

In this paper, we propose tackling the problem of docu-
mentation and enactment of GMPs. From identified GMPs
common characteristics, we propose a list of requirements to
be fulfilled by a language dedicated for GMP specification.
We then introduce the abstract syntax and semantic of our
GMPs specification language, called GooMod (Sect. 2). This
language is usable for GMPs associated with any type of
DSML whose abstract syntax is described in a MOF model.
Using the Eclipse platform, we developed an editor for this
language allowing thus GMP description and a GMP checker
that work with any modeler based on the Eclipse platform
(Sect. 3). This tool has been designed as a modeling assistant
to help designers to build quality models.

II. GOOD MODELING PRACTICES DESCRIPTION
LANGUAGE

Based on a wide range of well-known good practices,
we have identified a list of several required properties for
a language that allows the description of good modeling
practices. In this section we first show which properties have
been identified and then we describe the abstratc syntax and
semantic of our GMPs description language, called GooMod.

A. Identified Properties

To identify the required properties for a GMPs description
language, we conducted a study on best practices in modeling
activity. Through literature, we observe three types of good
modeling practices: those that are concerned only with the
form (style) of produced models, those that describe the
process of their design, and those that combine both. As the
third type is only a combination of the first two, we limit
our study to examples covering the former types. For the
first type we found that the best practices for Agile Modeling
given in [6] are good examples. In [7], Ramsin and Paige
give a detailed review of object-oriented software development

methods. From this review we extracted properties concerning
the process aspect of BPs. Here are the identified properties:

1) Identification of the context: to identify the context of a
GP, the language must be able to check the state of the model
to determine whether it is a valid candidate for the GP or not.

2) Goal checking: to check that a GP has been correctly
applied on a model, the language must be able to check that
the status of the latter conforms to the objective targeted by
the GP. At the GP description language level, this property
highlights the same need as the one before.

3) Description of collaborations: a CASE tool alone is able
to achieve some parts of a GP’s checking. However, some GP
cannot be checked automatically and the tool would need the
designer’s opinion to make a decision. In case of alternative
paths, sometimes the tool is in a situation where it cannot
determine the right path automatically. Thus, a GP description
language should allow interactions with the designer.

4) Process definition: a process defines a sequence of steps
with possible iterations, optional steps, and alternative paths. A
GP description language should allow processes to be defined
with such constructs.

5) Restriction of the modeling language: several good
practices based on modeling methodologies suggest a gradual
increase in the number of manipulated concepts (e.g., each step
concerns only a subset of the modeling language’s concepts).
Thus, the GP description language should allow the definition
of this subset for each step.

The documentation of a GP associated with a modeling
language requires a description that is independent of any tool;
indeed, a GP is specific to a language. It describes a particular
use of its concepts. It should not assume modes of interaction
(buttons, menus, etc.) used by an editor to provide access to
these concepts. Therefore, a GP must be described in a way
that can be qualified as a Platform Independent Model (PIM)
in Model-Driven Engineering (MDE) terminology. Ignoring
this rule would lead Quality Assurance Managers (QAM) to
redocument the GPs at each new version or tool change. The
language we introduce in this section, called GooMod, offers
a way to document GPs independently of any editor (language
of PIM level).

B. Abstract syntax of the GooMod Language

The abstract syntax of the GooMod language is given in
Fig. 1. The process part of a GP is described as a weakly-
connected directed graph. In this graph, each vertex represents
a coherent modeling activity that we call a step. Arcs (iden-
tified by Bind in our metamodel) connect pairs of vertices.
Loops (arcs whose head and tail coincide) are allowed, but
not multi-arcs (arcs with the same tail and same head).

A step is associated with four elements: its context, its
associated modeling style, the set of language concepts usable
during its execution, and a set of actions. The context is a
first-order formula evaluated on the abstract syntax graph of
the input model before the beginning of the step. We call
this formula a pre-condition. The modeling rule is a first-
order formula that is evaluated on the abstract syntax graph

Fig. 1: GooMod Meta-model

of the current model to allow designer to leave from the step.
We call this formula a post-condition. The set of the usable
language concepts is a subset of the non-abstract metaclass of
the asbtract syntax (described in a MOF Model) of the targeted
modeling language.

Because some GP require the establishment of a collabora-
tion between the system and the designer, we have included
the ability to integrate some actions at the beginning (Entry)
and/or at the end (Exit) of a step. The possible actions are:
output a message, an input of a value and the assignment of
a value to a local variable. Indeed, at each step, it may be
necessary to have additional data on the model that only the
designer can provide (goal of Input action). Conversely, it is
sometimes useful to provide designers information that they
can not deduce easily from the visible aspect of the model
but the system can calculate (goal of Output action). Hence,
the usefulness of variables associated with steps to hold this
data. Thus, actions allow interaction with the designer using
messages composed of strings and calculated values.

Steps are also defined by two boolean properties: isInitial
and isFinal. At least one step is marked as initial and one as
final in a graph. Finally, an arc can be marked as optional,
meaning that its head step is optional.

C. Semantic of the GooMod Language

Semantically, the graph of a GP is a behavior model
composed of a finite number of states, transitions between
those states, and some Entry/Exit actions. Thus, a GP is
described as a finite and deterministic state machine with states
corresponding to the steps of the process part of a GP.

At each step, the elements that constitute it, are used as
follows:

1) Before entering the step, the preconditions are checked
to ensure that the current model is in a valid state
compared with the given step. Failure implies that the
step is not yet allowed.

2) If the checking succeeds, then before starting model
edits a list of actions (Entry Action), possibly empty,
is launched. These actions initialize the environment

associated with the step. This may correspond to the
initializing of some local variables or simply interactions
with the designer.

3) A given step can use only its associated language
concepts. In fact, each concept is associated with use
type (create, delete, or update).

4) When the designer indicates that the work related to the
step is completed, a list of actions (Exit Action) will be
launched to prepare the step’s environment to this end.
With these actions the system interacts with the designer
to gain data that it can not extract from the model’s state.

5) Before leaving the step, the postconditions are checked
to ensure that the current model is in a valid state
according to the GP rules.

Leaving a step, several transitions are possible. These tran-
sitions are defined by the Binds whose tail is this step. A
transition is possible only if the precondition of the head step
of the concerned Bind is verified by the current state of the
model. If several next steps are possible, then the choice is
left to the designer. A Bind can also be defined as optional. In
this case, its tail step becomes optional through the transition
it defines. Thus, the possible transitions of the tail step are
added to those of the optional step, and so on.

III. AN IMPLEMENTATION EXAMPLE OF THE GOOMOD
LANGUAGE

To implement the GooMod language, we developed a com-
plete platform for the management of GMPs, starting from
their definition at the PIM level up to their enactment at
the PSM level. This section describes both levels and their
associated tools.

A. The GooMod Language PIM-level Implementation

In our platform, we first propose a PIM level implementa-
tion of the GooMod language described in the previous sec-
tions. Thus, GMPs described with GooMod are independent
of any CASE tool.

The GMP Definition Tool is designed for QAM in charge of
the definition of GMPs that should be observed in a company.
Our first graphical editor, designed using the Eclipse Graphical
Modeling Framework1 (GMF), allows the representation of
GMPs in the form of a process. Such a process is represented
by a path in a graph. Each node of the path is a step. At each
step of the process, the GMP Definition tool allows for the
selection of a subset of manipulated concepts from the target
language (the one used by modelers to design their systems,
UML for example), as well as the definition of a set of OCL
pre- and postconditions, as well as entry and exit actions.

B. PSM-level of the Proposed Platform

At the PSM level, the platform is composed of two parts:
1) GMP Activation Tool: it aims to link a modeling process

defined with the GMP Definition tool to a target modeling tool.
It applies a given process during the final modeling stage to
control the enforcement of GMP.

1See Eclipse Modeling Project (http://www.eclipse.org/modeling)

2) Targeted Modeling Tool: this is the end-user modeling
tool where the GMP will be performed. This tool is not in-
tended to be modified or altered directly, but will be controlled
by an external plugin, which in our case is the GMP Activation
Tool.

In our case, the targeted modeler is the GMF UML2.0
editor embedded in the Eclipse Model Development Tools
(MDT) project. However, our approach is not limited to UML
modelers or more generally speaking to the UML language.
Indeed, as the GMP Definition tool uses a target meta-model
(the one of the targeted modeling tool) as its input, the
definition of the OCL constraints and the selection of editable
concepts will be dedicated to the modeling language (any kind
of MOF-compliant DSML).

The GMP Activation tool has been designed to interact
with GMF-generated editors. If the first feature of GMP
Activation is to enact a process and check the elaboration
of models, the second feature consists of controlling some
parts of the targeted CASE tool. At each step of modeling,
only the editable concepts of the current step are active. The
Activation tool dynamically activate/deactivate GMF creation
tools according to the editable concepts allowed for each step.
With this approach, we are able to control any GMF editor
within the Eclipse platform.

C. Example: UML Class Diagram Modeling with GooMod

To demonstrate how our proposed platform could be used,
consider the following situation: in a company, some develop-
ers are not used to UML and when they need to design UML
Class diagrams, it takes a significant amount of time and it
also often leads to incorrect diagrams. To tackle this problem,
the QAM of the company has already identified some good
practices that she wants the developers’ follow.

With the help of the GooMod language and the GMP
Definition tool, the QAM has defined its own methodology
using an OMT-based process and for each step of the process,
he associated some pre- and post-conditions, entry and exit
actions, and editable concepts. A brief description of the
method is given hereafter. The process part of the method
consists of five steps, with their associated context, actions,
and concepts. For the sake of brevity, several details such as
OCL pre- and postconditions have been omitted:

1) Create packages: during this initial step, only packages
should be created. So, only the concept Package from
the UML metamodel will be available.

2) Create classes: at this step, only the concept Class will
be made available. Before to enter this modeling step,
it must be verified that at least one package has been
added to the diagram. To do so, a pre-condition is added:
Package.allInstances()->notEmpty().

3) Adding attributes and operations: for each class, design-
ers should consider adding attributes and maybe some
operations if needed. The selected UML concepts for
this step are Property and Operation.

4) Adding relationships: as this modeling step is not nec-
essarily required, the transition that leads to this step is

marked as optional; thus, designers are allowed to skip
this step and reach the final step. Designers are allowed
to create Association, Generalization, Dependency, and
Realization relationships.

5) Refactoring: in the final step of modeling, all the
concepts manipulated in the preceding steps are made
available, thus enabling the refactoring of all elements
in the diagram. As a last verification, some metrics can
been defined as post-conditions, such as for instance that
there should not be more than 20 classes per package:
Package.allInstances()->forAll(p:Package

| p.ownedElement->select(e:Element |

e.oclIsTypeOf(Class))->size() <= 20).
Even if this example is rather straightforward, its purpose is

to show how QAM can use the GooMod language to define, in
an independent manner of any tool, their practices. The process
part of the presented method has bee build using the graphical
notation of the GMP Definition tool (steps and binds), whereas
non-graphical properties of the language are defined with the
help of editing assistants (pre- and postconditions, entry and
exit actions, and editable concepts). Once a good practices
description is finished, the model is stored in a XMI format
to be used by other tools.

In this example, the UML modeler used by the designers is
the standard UML2 modeler provided in the Eclipse platform.
As this editor is based on GMF, our GMP Activation tool
is able to automatically adapt itself to this modeler. When
developers start designing UML Class diagrams, they first
load the GooMod model defined by the QAM, and launch
the controlled editing process. The full case study presented
in this paper is provided as a screencast at http://www-valoria.
univ-ubs.fr/SE/goomod.

IV. RELATED WORK

Several works suggest introducing processes and tools that
facilitate storage, sharing, and dissemination of GP within
companies (e.g. [8], [9]). They advocate in particular the use of
real repositories allowing various forms of consultation, thus
facilitating research and discovery of GPs. However, the GP
referred to by these systems are documented and available
only through textual and informal. It is therefore impossible
to make them productive in order to control their use within
CASE tools.

To the best of our knowledge, there is no other work
on the definition of rigorous languages for documenting the
modeling GP. However this field can benefit from works
concerned with method engineering [10] and software devel-
opment process [11]. With CASE tools, several works suggest
encouraging, even requiring, the respect of certain GP. The
domain that had produced good results in recent years is
the one that focuses on the automation of GP concerning
detection and correction of inconsistencies. These include, in
particular, the work presented in [5], [4], and [12]. They
propose adding extensions to modeling tools, such as Eclipse
or Rational, that are able to intercept the actions of developers
and inspect the information system of the tools in order to

detect the occurrence of certain types of inconsistency. These
works involve GP with a much smaller granularity than those
we are dealing with.

V. CONCLUSION

The quality of a software system is highly influenced by
the quality of the process used to develop and maintain it. The
belief in this premise is seen worldwide in quality movements,
as evidenced by the ISO/IEC body of standards or by the
CMMI process improvement maturity model. The latter model
describes an evolutionary improvement path, from immature
processes to disciplined, mature processes with improved qual-
ity and effectiveness. All our works tackle the requirements
emphasized in those quality models, in a limited but more
and more important scope in today development processes:
modeling activities.

This paper is a first step in this direction. A language
(GooMod), that can be used by quality engineers, allowing
the rigorous documentation of a high variety of good modeling
practices in a formalism independent of any “CASE Tools” is
described. To control and facilitate the use of these practices
in projects, the framework we proposed is easily adaptable for
any editor based on GMF (because most of the used modeling
editors are Eclipse plug-ins). Thus, designers build models
that comply with these good practices. Moreover, the GooMod
language is powerful enough to define practices dedicated to
collect valid data at some points of the modeling activities.

REFERENCES

[1] L. Gratton and S. Ghoshal, “Beyond best practices,” Sloan Management
Review, no. 3, pp. 49–57, 2005.

[2] SEI, “CMMI for Development, Version 1.2,” Software Engineering
Institute, Tech. Rep., 2006. [Online]. Available: http://www.sei.cmu.edu

[3] A. G. Cass and L. J. Osterweil, “Process support to help novices
design software faster and better,” in ASE ’05: Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing. ACM, 2005, pp. 295–299.

[4] A. Egyed, “Uml/analyzer: A tool for the instant consistency checking
of uml models,” Software Engineering. ICSE 2007. 29th International
Conference on, pp. 793–796, 2007.

[5] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in ICSE
’08: Proceedings of the 30th international conference on Software
engineering. ACM, 2008, pp. 511–520.

[6] S. W. Ambler, The Elements of UML(TM) 2.0 Style. New York, NY,
USA: Cambridge University Press, 2005.

[7] R. Ramsin and R. F. Paige, “Process-centered review of object oriented
software development methodologies,” ACM Comput. Surv., vol. 40,
no. 1, pp. 1–89, 2008.

[8] G. Fragidis and K. Tarabanis, “From repositories of best practices to
networks of best practices,” Management of Innovation and Technology,
2006 IEEE International Conference on, pp. 370–374, 2006.

[9] L. Zhu, M. Staples, and I. Gorton, “An infrastructure for indexing
and organizing best practices,” in REBSE ’07: Proceedings of the
Second International Workshop on Realising Evidence-Based Software
Engineering. IEEE Computer Society, 2007.

[10] B. Henderson-Sellers, “Method engineering for OO systems develop-
ment,” Commun. ACM, vol. 46, no. 10, pp. 73–78, 2003.

[11] OMG, “Software Process Engineering Meta-Model, version 2.0
(SPEM2.0),” Object Management Group, Tech. Rep., 2008. [Online].
Available: http://www.omg.org/docs/formal/08-04-01.pdf

[12] A. Hessellund, K. Czarnecki, and A. Wasowski, “Guided development
with multiple domain-specific languages,” in MoDELS, 2007, pp. 46–60.

