
F4Plan: An Approach to build Efficient Adaptation
Plans?

Francoise André2, Erwan Daubert1, Grégory Nain1, Brice Morin??1, and Olivier Barais2

1 INRIA, Centre Rennes - Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes, France
{Erwan.Daubert | Gregory.Nain}@inria.fr — Brice.Morin@sintef.no

2 University of Rennes1, IRISA, Campus de Beaulieu, 35042 Rennes, France
{Francoise.Andre | Olivier.Barais}@irisa.fr

Abstract. Today’s society increasingly depends on software systems subject to
varying environmental conditions imposing that they continuously adapt. A dy-
namic adaptation reconfigures a running system from a consistent state into another
consistent state. To achieve this goal, a reconfiguration consists in executing a set
of actions leading from source to target configuration. The planning of actions has
often been neglected in adaptation mechanisms, leading to naive sequential sched-
ules statically predefined. EnTiMid, a ubiquitous software system for assisted liv-
ing, is one of these adapting systems using basic adaptation plan. This situation
may cause problems when considering adaptations involving large set of actions
and/or devices, particularly for distributed service-based applications. We propose
a framework to ease the integration of different planning algorithms that produce
more efficient adaptation plan than an ad-hoc algorithm.

1 Introduction
Large companies, banks, airports, buildings and even houses increasingly depend on soft-
ware systems. These systems are continuously impacted by changes in their execution
environment (infrastructural variation or a modification of the user requirements).

In this domain, EnTiMid is a home-automation software system to assist elderlies
in their everyday life. Typically the system has to deal with dozens of devices, different
needs per user or frequent changes in the ubiquitous environment. To address the combi-
natorial explosion of the number of potential configurations, engineers can develop such
Dynamically Adaptive Systems (DASs) as Dynamic Software Product Lines (DSPLs) [5]
by defining several variation points. Depending on the context, the system dynamically
chooses suitable variants to realize those variation points. These variants may provide bet-
ter quality of service, offer new services that did not make sense in the previous context,
or discard some services that are no longer useful.

In previous work [9] using Aspect-Oriented Modeling (AOM) techniques, we can
explicitly build a model of the configuration which is suitable for the current context,
with no need for the designers to specify the whole set of configurations in extension.
Using Model-Driven Engineering (MDE) techniques (model comparison) we were able to
infer safe but sub-optimal migration plans to dynamically adapt the system. In particular,
the simple heuristic we used tend to maximize the unavailability of services when some
components have to be stopped and restarted to achieve a safe adaptation.
? The research leading to these results has received funding from the European Community’s

Seventh Framework Program FP7 under grant agreements 215412 (DiVA, http://www.ict-
diva.eu/) and 215483 (S-Cube, http://www.s-cube-network.eu/).

?? Now at SINTEF ICT, Oslo, Norway



2 F. André, E. Daubert, G. Nain, B. Morin, O. Barais

In this paper we propose to improve adaptation systems by the use of planning algo-
rithms to build more efficient reconfiguration plans than already existing ones. We illus-
trate this work on the EnTiMid system.

This paper is structured as follow. Section 2 starts with a presentation of EnTiMid and
discusses our previous model-driven approach for designing and executing DAS. Then
Section 3 details F4Plan, our proposal for designing and developing an efficient plan-
ning phase. Section 4 illustrated our approach on EnTiMid and demonstrates its benefits.
Section 5 concludes this article and presents our future works.

2 Background
EnTiMid [10] is an ubiquitous software system built over an OSGi execution platform
and developed in an assisted living context. The aim of this system, is to offer a level-
sufficient abstraction of the devices in the home, making it possible for highlevel services
to interact with physical devices (such as lights, heater or temperature sensors)

To address the problems of heterogeneity and dynamicity encountered in such an ubiq-
uitous system, we proposed an Aspect-Oriented and Model-Based approach to tame the
complexity of Dynamically Adaptive Systems (DAS) [8, 9]. The overall approach is il-
lustrated in Figure 1.

Architecture 
Metamodel

Reflection
model

Running System

Component-based execution platform

Target
model

Generated platform-specific
reconfiguration commands

build and validation

M2

M1

M0

1

2

3

4

conforms to

5

Fig. 1: Overview of our Approach to Dynamic Adaptation

The key idea is to keep an architectural model synchronized with the running system.
This reflection model, which conforms to the architecture metamodel, is updated (step
1) when significant changes appears in the running system (addition/removal of compo-
nents/bindings). It is important to note that the reflection model can only be modified ac-
cording to runtime events. When a change has been made, a copy of this reflection model
is used to build a target architectural model using model transformation or aspect model
weaving. When a target model is derived, it is validated (step 2) using classic design-
time validation techniques. This new model, if valid, represents the target configuration
the running system should reach. Then, the adaptation plan to switch from the current to
the target configuration is automatically generated. To do so, we first perform a model
comparison between the source configuration (the reflection model) and the target con-
figuration (step 3). This comparison produces an ordered set of adaptation actions. This
safe sequence of actions is then submitted (step 4) to the running system in order to ac-
tually reconfigure it. Finally, the reflection model is automatically updated and becomes
equivalent to the target model (step 5).



F4Plan: An Approach to build Efficient Adaptation Plans?? 3

The sequence of atomic actions is ordered according to the following plan description:
(1) components (that should be stopped) are stopped, according to the client/ server depen-
dencies (clients are stopped before the servers), (2) bindings are removed, (3) components
are removed, (4) attributes of already present components are updated, (5) components are
added and their attributes are set, (6) bindings are added, (7) components are (re-)started,
according to the client/server dependencies (servers are started before the clients).

In case of a large number of actions, this simple heuristic tends to maximize the un-
availability of components, since the “ Stop Component” actions are always executed at
the beginning of the adaptation, and the “Start Component” actions are always executed
at the end. To allow more efficient scheduling of actions we propose a new methodology
based on general purpose planning algorithms. Our objective is to fit different possible
needs concerning the planning phase. The next section concentrates on that proposal.

3 A generic approach for planning adaptation actions
3.1 Motivations
The MAPE[6] model defines four steps to do dynamic adaptation at runtime: the Moni-
toring, the Analysis, also called Decision, the Planning and the Execution. We define the
semantic of these steps as follow. First, the Monitoring is used to detect changes inside the
application or in its execution context (step 1 in Figure 1).When significant changes are
detected, the Monitoring triggers the Analysis. This phase consists in deciding if adap-
tation is necessary to maintain the functionalities of the system. If adaptation is needed,
the Decision also chooses the adaptation strategy that should be used (step 2). Once done,
the Planning phase selects actions to execute and schedule them according to the chosen
strategy (step 3). The execution of the selected actions is the last phase of the model (step
4). In this paper, we focus on the Planning phase.

As adaptation is performed at run-time, the time needed to actually perform the adap-
tation have to be minimized. Therefore, Planning is an important step of the MAPE model.
It defines the actions necessary to properly apply the adaptation strategy, and orders the
actions to ensure the consistency of the adaptation execution and minimize the time. In-
deed some actions may be dependent of some others. For example, it is not possible to
start component if its bindings are not already set and its attributes changed. At the oppo-
site some actions can be independent, leading to a partial order between them (e.g.: two
components can be started at the same time).

In our preliminary planning method described in the section 2, a static total order
is defined on the different types of actions. This order can only lead to build a sequential
schedule. Thus considering a distributed EnTiMid platform, whatever the number of com-
ponents involved in an adaptation and their location, all the necessary “stop component”
commands should be performed before to execute all the “remove binding” commands
and so on.

Such an adaptation method consumes more time than needed because for example,
the adaptation engine have to wait for all the “component stop” commands to be executed
before launching the “component start” commands. Moreover, in a distributed and asyn-
chronous system, synchronization operations between the different platforms should be
added to enforce the sequentiality. Also, in this preliminary planning implementation it is
not possible to add information or constraints on actions or on sequence of actions to give
useful indications for the execution phase(e.g.: non-functional data as the execution time
of an action or the among of resources used).

Research works on planning methods such as Artificial Intelligence planning, Motion
planning or Control theory, have produced some algorithms that overcome these limita-



4 F. André, E. Daubert, G. Nain, B. Morin, O. Barais

tions. In this paper, we propose an architecture for the planning phase to use, according to
the needs, one of these algorithms in adaptation system for Service-Oriented Architecture.
Most of times a planning phase using one of these algorithms is executed as follow.

It takes the strategy issued from the decision phase as input. This strategy consists of
a source configuration and a target configuration (i.e. the current and the desired state of
the system).

An initial state and a goal state, both given to the planning algorithm, are deduced
from the strategy. These states are described in a language that depends on the planning
algorithm used. The domain of actions, last input needed by the planning algorithm, rep-
resents all the possible actions.

In the following we describe our design proposition for the planning phase.

3.2 Our proposition: F4Plan (Framework for Planning)
As previously said, several planning algorithms exist, each one has its own characteristics.
Therefore, to design an adaptation system, a planning algorithm has to be chosen among
all existing ones according to the planning objectives. These objectives can be about mini-
mizing the time spend in the planning phase and in that case choose a very simple planning
algorithm, even if the resulting schedule is not the best one. In case there exists only one
processor to execute the adaptation actions, it is not useful to select an algorithm that may
exhibit some parallelism in the schedule. At the opposite it may be preferable to choose an
algorithm that will spend some time to obtain the most efficient schedule if the adaptation
actions are long and some of them may be executed simultaneously.

Each planning algorithm has its own dedicated language to express the initial/goal
states and the domain of actions. In order to keep a coherent chain from the source and
target configurations to the initial and goal states (i.e.: from the decision algorithm outputs
to the planning algorithm inputs), a language translation is necessary.

We do not want to impose the choice of a specific decision algorithm nor a specific
planning algorithm because this choice may depend on changing environmental con-
straints. For instance sometimes adaptation can concern only few elements, geographi-
cally closed, with the objective to quickly adapt. In that case, a simple planning/decision
algorithm will be chosen. Sometimes the objective can be to perform proactive adapta-
tion, involving a large set of distributed elements. The preference will then be for a more
powerful planning/decision algorithm.

Thus, to ease the work of the final developer, we offer a set of translators from a
description language to another. To face the combinatorial explosion of the number of
translators, we propose to use a very common and powerful planning language, PDDL
[4], as a pivot language.

At the end of the planning phase, the algorithm returns a schedule (a plan) that is used
by the last phase of the MAPE model (the execution) to concretely realize the strategy.

An illustration of the benefits of using an efficient planning algorithm and a coherent
chain of translation between decision and planning phases is given in section 4 to adapt
the Ambient Assisted Living Application based on EnTiMid previously presented in 2).

4 Illustration
This section illustrates the use of F4Plan with a simple example into the EnTiMid system.

In the following, the changes operated on the EnTiMid platform located on the elderly
person’s house when the night comes will be depicted.

During the day the elderly person, in case of major problem, has to his/her disposal
a remote control with a single button (the SOS component), that will send an emergency



F4Plan: An Approach to build Efficient Adaptation Plans?? 5

message via SMS using the SMS component. In addition, to confirm the person that the
SMS has been sent, a Text-To-Speech component emits a message. To connect these three
components a dispatcher1 component is involved to trigger in parallel the SMS sending
and the vocal message emitting.

At night, when the person signals a problem, the house will be enlighten so that the
person can realize what happened and get back its landmarks. As a consequence, lights
must be manageable by the system in this configuration and N light components are
added. These lights are bound with the remote control with the dispatcher1 already avail-
able into the platform. A component, here called central lights command, is also added
to enable the elderly person to switch off the lights when everything get back to normal.
A new dispatcher (called dispatcher2) is needed to connect lights with the central lights
command.

The target configuration to reach is obtained using the mechanism described in sec-
tion 2. In this scenario, a small subset of actions available to reconfigure the EnTiMid
platform is considered. Only, add component, add binding, start component and stop
component are used.

In this use case F4Plan uses a planning algorithm called GraphPlan [1]. This algorithm
uses a PDDL subset called STRIPS [3] as input language.

Therefore, a translation between the decision output language, in our case the ART
home made language and STRIPS is needed. Using our implementation, this translation
is done with two translators automatically found, communicating through the PDDL pivot
language. When the translation is done, the planning algorithm is executed.

At the end GraphPlan returns a partial ordered set of actions (Figure 2).

Step 1 :
Add Component ” c e n t r a l l i g h t s command”

/ / . . . / / Add Component ” l i g h t N ”
/ / Stop Component ” d i s p a t c h e r 1 ”

S t ep 2 :
Add Binding ” d i s p a t c h e r 1 T o l i g h t 1 ”

/ / . . . / / Add Binding ” d i s p a t c h e r 2 T o l i g h t N ”
S tep 3 :

S t a r t Component ” d i s p a t c h e r 1 ”
/ / . . . / / S t a r t Component ” l i g h t N ”

Fig. 2: partial-order set of actions

To sum up, GraphPlan is well adapted for our Ambient Assisted Living use case,
showing a substancial gain on the resulting plan reducing the number of steps (from 4N+6
to 3). Meanwhile, some other recent algorithms can provide the same kind of result with
better performance.

The translation mechanism, associated with our proposition also implies a cost.
In all cases, the use of such not trivial planning algorithms has a cost. A tradeoff

between this cost and benefit during the execution of plans needs to be done. Here we
choose more complex planning algorithms to build more efficient plans and reduce their
execution.

5 Conclusion
Nowadays, most software developments should consider the issue of their adaptation to
the dynamism of the execution environments. However current solutions for adaptation
are most often ad hoc and in consequence are not satisfying as long term solutions.

In this paper, we focus on the planning phase which has till now received little atten-
tion whereas it is an important phase especially in distributed environments. Most adap-



6 F. André, E. Daubert, G. Nain, B. Morin, O. Barais

tation systems use a very simple ordering of actions even though many general purpose
planning algorithms exist.

F4Plan allows the use of already developed planning algorithms. In that way, it is
possible to take advantage of research works already done on planning methods such as
Artificial Intelligence planning, Motion planning or Control theory. Such general purpose
algorithms have already been applied in contexts close to our, in particular in applications
for components deployment on computational Grids [7, 2]. Contrary to these approaches,
our proposal does not impose a specific algorithm for the adaptation system and is self-
adaptable, so that a choice between different planning algorithms, for example an algo-
rithm looking for parallelism and a much simpler one, is always possible. So we are able
to compute an efficient, coherent and valid plan to apply the decision strategy according
to the constraints like time duration or resource consumption. The characteristics of the
environment, in particular the distribution of all resources, either software or hardware,
can also be taken in consideration to schedule and parallelize the actions.

F4Plan also provides an automatic way to translate the decision output into the plan-
ning input, offering several translators around a pivot language.

In our future work, we intend to study the distribution of the planning algorithms. This
could be interesting to reduce the computation time of the schedule. Moreover in some
cases, part of the schedule can be locally computed when it only involves local actions in
a distributed environment.

Another subject of interest is the dynamic discovery of available adaptation actions.
Indeed we currently use statically defined types of actions but in a large scale world of
services, some actions can only be identified dynamically.

References

1. Avrim L. Blum and Merrick L. Furst. Fast Planning Through Planning Graph Analysis. Artifi-
cial Intelligence, 90:1636–1642, 1995.

2. E. Deelman, G. Singh, M.H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G.B.
Berriman, J. Good, et al. Pegasus: A framework for mapping complex scientific workflows
onto distributed systems. Scientific Programming, 13(3):219–237, 2005.

3. R. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of theorem proving to
problem solving. Artificial intelligence, 2(3/4):189–208, 1971.

4. Malik Ghallab, Craig K. Isi, Scott Penberthy, David E. Smith, Ying Sun, and Daniel Weld.
PDDL - The Planning Domain Definition Language. Technical report, CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Control, 1998.

5. S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dynamic Software Product Lines. IEEE
Computer, 41(4), April 2008.

6. Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. Computer,
36(1):41–50, 2003.

7. T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained component deployment in wide-area
networks using AI planning techniques. In Int’l. Parallel and Distributed Processing Sympo-
sium, 2003.

8. Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey, and Arnor Solberg. Models@
Run.time to Support Dynamic Adaptation. Computer, 42(10):44–51, 2009.

9. Brice Morin, Olivier Barais, Grégory Nain, and Jean-Marc Jézéquel. Taming Dynamically
Adaptive Systems with Models and Aspects. In 31st International Conference on Software
Engineering (ICSE’09), Vancouver, Canada, May 2009.

10. Grégory Nain, Erwan Daubert, Olivier Barais, and Jean-Marc Jézéquel. Using MDE to Build
a Schizofrenic Middleware for Home/Building Automation. In In ServiceWave’08: Networked
European Software & Services Initiative (NESSI) Conference, Madrid, Spain, December 2008.


