
 Achieving Process modeling and Execution through the
Combination of Aspect and Model-Driven Engineering

Approaches1

Reda Bendraoua , Jean-Marc Jezéquélb,c, and Franck Fleureyd

a University Pierre & Marie Curie

4, Place Jussieu, Paris F-75005, France
{firstname.lastname@lip6.fr}

b INRIA-Rennes Bretagne Atlantique, Campus de Beaulieu
F-35042 Rennes Cedex, France

{firstname.lastname@inria.fr}
c IRISA, Université Rennes 1

Campus de Beaulieu
F-35042 Rennes Cedex, France

d SINTEF, Oslo Franck.Fleurey@Sintef.no

Abstract. One major advantage of executable software process models is that
once defined, they can be simulated, checked and validated in short incremental
and iterative cycles. This also makes them a powerful asset for important
process improvement decisions such as resource allocation, deadlock
identification and process management. In this paper, we propose a framework
that combines Aspect and Model-Driven Engineering approaches in order to
ensure process modeling, simulation and execution. This framework is based
upon UML4SPM, a UML2.0-based language for Software Process Modeling
and Kermeta, an executable metaprogramming language.

Keywords: Executable models, process modeling and execution, UML.

1 Introduction

Complementary to the use of traditional Verification and Validation
(V&V) based approaches, it has been widely recognized that the quality
of the software development process also has a direct impact on the
quality of the software. By capturing team’s best practices, task
ordering, flows of artifacts, agent coordination and communications,
process models become nowadays an important asset to ensure
repeatability and quality in building software.

1 This work is partially supported by the French ANR Project Galaxy (ref. ANR-09-SEGI-005) and the MOPCOM-I

project from the Competitiveness Cluster of Brittany.

Recently, driven by the pressure for more accurate results and shorter
time-to-market, a demand for executable process models emerged.
Executable process models are process models that can be used not
only for documenting processes and methods but also for the support of
their execution. Indeed, executable process models can be used to
coordinate between agents, to enforce artefacts routing between
process’s steps, to ensure rules and constraints integrity and process
deadlines. They can also be of an effective aid since they can be used
for simulation and testing. Simulation results can be used as a basis for
important improvement decisions such as resource allocation, deadlock
identification, estimation of the project duration and many other aspects
that have a direct impact on the process and thus on the quality of the
delivered software.

During the last two decades, the need for executable Software
Process Modeling Languages (SPML) has been widely recognized.
Osterweil opened the way with his seminal work "Software Processes
are Software Too" (Osterweil 1987). He introduced the notion of
Process Programming, which consisted in representing software
processes in terms of computer-readable programs. The main goal
behind this was to ensure agent coordination and the automation of
process's repetitive and non-interactive tasks through the execution of
process programs. The process programming trend stimulated many
research works and had as an impact, the emergence of a multitude of
SPMLs. These SPMLs were based on some well-known programming
languages (e.g., Ada, LISP) or formal formalisms such as Petri Nets
and put a strong emphasis on the executability aspect.

One of the lessons learned from these first-generation languages is
that comprehensibility and communication of process's agents around
process models is at least as important as their degree of formality
(Fuggetta 2000). The use of low-level formalisms by some process
description languages, the lack of flexibility and the impossibility for
non-programmers to use them, were among the main causes of their
limited adoption.

Another fact that became manifest to the software process modeling
community was the critical need of having a standard formalism for
representing and exchanging software processes. Instead of reinventing
the wheel, many industrial and research teams were attracted by the
success of UML (Unified Modeling Language) and explored the
possibility of using it as a process modeling language (Chou and Chen

2000) (Di Nitto et al. 2002) (OMG SPEM1.0 2002) (Franch and Rib
1998). UML is standard, provides a rich set of notations and diagrams,
extension mechanisms and whatever its advantages and drawbacks, it is
undeniably one of the most adopted modeling languages of this decade.
Experiences with UML were not restricted to the software process
community but covered other areas such as the business process and the
workflow domains (OMG WFMS 2000). However, these experiences
faced in their turn a major barrier. Despite the expressiveness of the
language, UML models are not executable. Process models were used
as contemplative rather than productive assets. An example of such
propositions in the industry is the OMG's SPEM standard (Software
Process Engineering Metamodel) (OMG SPEM1.0 2002). While
execution was out of the scope of the first version of SPEM (i.e.
SPEM1.1), it has been established as a mandatory requirement in its
second revision (i.e. SPEM2.0). Unfortunately, the recently adopted
standard still fails in ensuring this requirement.

In this paper we propose to deal with the executability issue in the
context of UML-based process modeling languages. At this aim, we
propose a framework and an approach for modeling and executing
software processes. This framework is based on our dedicated language
for software process modeling called UML4SPM (UML-based
Language for Software Process Modeling) (Bendraou et al. 2005) and
an execution support. UML4SPM comes in form of a MOF (Meta
Object Facility)-compliant metamodel (OMG MOF 2006), a notation
and semantics that extend the UML2.0 standard. For the execution
support of UML4SPM, the semantics of the metamodel is defined in
terms of operations and instructions in order to form what we call the
Execution Model. The Execution Model is then used as a basis for the
realisation of the execution support. In this paper we have experienced
two approaches for implementing the Execution Model. The first one
consists of a Java implementation using the Visitor design pattern. The
second one is based on a metaprogramming language called Kermeta
(Muller et al. 2005) and the use of aspect oriented modeling techniques.
We will discuss both process execution approaches, give advantages
and inconvenient of each one and finally discuss the suitability of UML
in general for the definition of executable process models. In a previous
work (Bendraou et al. 2007), not presented here, we also explored the
possibility of transforming UML4SPM process models into BPEL

(Business Process Execution Language) (OASIS BPEL 2007) in order
to execute them and we highlighted the limitations of such approach.

It is worth noting that the approach described in this paper for
building an executable environment for UML4SPM models (i.e. the
Execution Model) can be generalised to any other MOF-instance
language and is not restricted to UML-based languages.

The paper is organized as follows. Section 2 starts by motivating the
use of UML 2.0 as a process modeling language. It highlights its
strengths in terms of expressiveness but also its weaknesses such as the
lack of an execution support and the inability of the standard to express
some primary elements proper to process modeling. To overcome these
limitations, an extension to UML is proposed through UML4SPM, our
process modeling language. The executability issue is addressed by
introducing the notion of the Execution Model in Section 3. Two
realizations of the Execution Model in the context of UML4SPM are
presented in section 4. Section 5 discusses the results of these
realisations, gives the advantages and limitations of each one and
synthesises the outcome of our experimentations. Related work is
addressed in Section 6. Finally, section 7 sketches some perspectives
and concludes this work.

2 UML as a Basis for Software Process Modeling

In UML2.0, Activities have changed radically from UML1.x. In its
version 2.0, UML goes beyond graphical representations by offering a
high potential for expressing a large variety of processes (Bendraou et
al. 2005). Thanks to Activity and Action packages, it provides concepts
for expressing proactive and reactive controls, conditional branches,
loops, exception handling as well as a numerous actions with
computational semantics. It also supports a large number of Workflow
patterns, a taxonomy of generic, recurring constructs originally devised
to evaluate workflow systems, and more recently used to successfully
evaluate process modeling and execution languages in general (see
(Dumas et al. 2001), (Van der Aalst et al. 2003) and (White 2004). In
accordance with Jablonski and Bussler’s original classification
(Jablonski and Bussler 1996) , these patterns span the control-flow,
data and resource perspectives, the two later perspectives being more
specific to business processes rather than to software processes. In

(Wohed et al. 2005), authors evaluated the capacity of UML2.0 in
modeling twenty control-flow patterns that commonly recur in process
models. Examples of such patterns are parallel split, multiple merge,
deferred choice, etc. UML2.0 succeeded in representing all of them
except for four patterns, which makes it more expressive than some
business process formalisms (e.g. BPEL: Business Process Execution
Language) (Wohed 2005). Data patterns mainly deal with data
visibility, data interaction and data transfer and routing. Examples of
such patterns are the multiple instances data pattern, the database task
trigger patterns and so on. In (Russel 2005a), it has been demonstrated
that eighteen of the forty data patterns were supported by UML2.0,
which remains quite satisfactory. As for resource patterns, they address
all the issues about work allocation to process's resources, the ability
for resources to see the work status, resources allocation conflicts, work
distribution and so on. According to (Russel 2005b) however, UML2.0
only satisfies six of the forty-three resource patterns, which reduces its
suitability for modeling the resource perspective. Still, many of these
perspectives can be addressed at a lower level by the execution support.

All these points, added to the fact that UML is a widely used
standard and provides a rich set of notations, make UML a good
candidate as process modeling language. However, apart the notion of
Activity, it has been demonstrated that UML lacks of some primary
process elements, which constitute the vocabulary necessary for
modeling software processes (OMG SPEM1.0 2002) (Bendraou et al.
2005). This set of concepts was identified by many initiatives in the
literature and regroups elements such as Role, WorkProduct, Agent,
Tool, Guidance and Team (Lonchamp 93). In the next section we
propose an extension to UML2.0 in order to provide the standard with
such concepts. This is done in the context of our language, UML4SPM.

UML4SPM

Our extension, namely UML4SPM, aims in first place at introducing
primary process elements to the UML2.0 standard. This is obtained by
extending the UML2.0 metamodel and more precisely, the Activity and
Artifact metaclasses. This extension comes in form of a MOF-
compliant metamodel (OMG MOF 2006) and is presented in fig. 1.
White boxes represent the UML metaclasses we extended.

The UML4SPM metamodel aims at defining the minimal subset of
concepts for software process modeling while relying on the advanced
constructs and activity coordination mechanisms offered by UML2.0.

By making UML4SPM Software Activity extending the UML2.0
Activity metaclass, we take advantage of all its properties and
associations. Thus, a Software Activity can be composed of other
Software Activities and may contain Actions. An UML2.0 Activity
being indirectly a Classifier, the ability to specify new properties and
new operations, as well as pre and post conditions on the execution of a
Software Activity is also made possible. The UML4SPM WorkProduct
element extends UML2.0 Artifact. It represents any physical piece of
information consumed, produced or modified during the software
development process. An Artifact being a Classifier, WorkProducts can
be defined as InputPins and OutputPins of Software Activities and
Actions. It is also possible to specify composite WorkProducts thanks
to the reflexive "nested artifact" association (not shown in the figure).

ActivityExecutionKind

machineExecution
humanExecution

<<enumeration>>

complexityKind

easy
Medium
Difficult

<<enumeration>>
priorityKind

Low
Medium
High

<<enumeration>>

Agent

skills : String
isAvailable : Boolean

ProcessElemen
tKind

name : String

ProcessElement

description : String 0..11

+kind

0..1

+processElement

1

Tool

description : String
isBatch : Boolean
version : String

Team
TimeLimit

milestone : String
Guidance

RolePerformer

name : String
1..n

+performers

1..n

SoftwareActivity

isInial : Boolean = false
executionKind : ActivityExecutionKind
priority : priorityKind
complexity : complexityKind
duration : String

0..1

+endsAt

0..1 0..1

+startsAt

0..1
0..n

+guidance

0..n

WorkProduct

idWorkProduct : String
isDeliverable : Boolean
created : String
lastTimeModified : String
uriLocalization : String
version : String

0..n

+impacts

0..n

ResponsibleRole

responsability : String
qualifications : String
rights : String

1..n

0..n

+rolePerformer 1..n

+Role 0..n

1..n

0..n

+responsibleRoles

1..n

+activities

0..n

0..n

0..n

+workProducts
0..n

+performer

0..n
SoftwareActivityKind

WorkProductKind

ResponsibleRoleKind

Activity
(from IntermediateActivities)

Artifact
fileName : String

isInitial : Boolean = false

Fig. 1. UML4SPM Metamodel

Since the aim of this paper is to present the executability aspect of
UML4SPM and not the language itself, the interested reader can refer
to (Bendraou et al. 2005) for more details on the metamodel.

We also enriched the UML2.0 activity diagram notations in order to
take into account some new properties and aspects specific to software
process modeling that we introduced by our extension. It is important

to note that this extension do not affect neither the comprehensibility of
people already familiar with the UML2.0 Activity constructs nor their
semantics. One that makes use of Activity diagrams can easily use the
UML4SPM notation. This notation is given in fig. 2. Looking to the
figure, one can identify the activity's name, its input and output
parameters (and possibly their current state), its priority in the process,
its duration, the assigned roles, the tools used for performing the
activity, accepted and triggered events, if it's machine or human-
oriented, etc. Post and pre conditions can be expressed using OCL2.0
constraints (Object Constraint Language). These constraints have to be
expressed upon process's constituents (i.e., properties and states of
WorkProducts, activities, roles, etc.). Of course, it is not mandatory that
all these features appear on the activity representation.

Exception Parameter

A a

Inputs
Outputs

Exception Handler

Exception Type

-Kind-
Activity Name

{ Optional: Priority, Complexity, Duration}

Role Performer (s): x Tool (s): xx

{Accepted Events}

{Triggered Events}

Pre-Condition:

Post-Condition:

 *
[State]

IsInitial=true

Fig. 2. The UML4SPM Software Activity Notation

Process Example

Fig. 3, gives a simple yet representative example of a portion of a
software process modelled using the UML4SPM notation. This process
example was provided by our industrial partners within the IST

European Project MODELPLEX2. We will use it throughout the paper
to demonstrate our approach.

Fig. 3. Software Process Example

The "Inception Phase" activity represents the context of this process
(i.e., container for all process's activities). This is indicated by the start-
blob in the top-left corner. It is used to coordinate between different
process's activities and WorkProducts. The "M" letter is to indicate that
the activity is machine-executable (H for Human execution). One
important aspect is the use of CallBehaviorActions in order to
initiate/call process's activities (e.g., "Elaborate Analysis Model" call).
In the call, one has to precise 1) whether the call is synchronous (use of
a complete arrow in the top-left corner) or asynchronous (half arrow,
e.g., "Construction Phase" call); 2) the parameters of the call, which
represent WorkProducts inputs/outputs of the activity. Another aspect

2 Modelplex, IST European Project contract IST-3408, at http://www.modelplex-ist.org/

Elaborate Analysis Model

Pre-Condition: Work Specifications available

Post-Condition: UML Analysis Model Created

Role (s): Analyst Tool (s): UML Editor

Elaborate UML
Analysis Model

UML Analysis
Model

[Created]

Requirement *
documents

- H -

Inception Phase

Pre-Condition: Requirement Documents available

Post-Condition: UML Analysis Model Validated

Role (s): Analyst

 Validate Analysis Model
 (in: UML Analysis Model)

UML Analysis
Model

[Created]

Requirement
documents

 Elaborate Analysis Model
 (in: Requirement Document)

 Construction Phase
 (in: UML Analysis Model)

Validation
Report

[Created]

[Else] [Validation Ok]

SendMessage
(Start Construction Phase)

SendMessage
(Rework Analysis Model)

- M -

is the use of Decision and Merge nodes. The Decision Node allows for
the expression of a choice of actions to perform depending on a
condition (in this case, if the analysis model is valid or not). Conditions
have to be expressed on activity edges (i.e., object flows) and will be
evaluated at runtime. The merge node here is used to express that the
"Elaborate Analysis model" activity may be triggered by one of the two
possibilities. The first one is when the "Inception Phase" activity is
launched. The second one is when the analysis model validation fails.

At this level, UML4SPM is used only for modeling purposes. Since
it is UML-based, there is no direct support for executing UML models.
Even if UML2.0 provides execution semantics for each activity's
constructs and actions, no implementation or virtual machine is
provided. In the next section, we will see how to deal with this issue by
introducing what we call the Execution Model. That latter specifies the
operational semantics of each element of the UML4SPM metamodel
and particularly of the UML2.0 Activity and Action elements. We will
then present two realizations of the Execution Model as the basis of the
UML4SPM’s execution support (cf. section 4). The running example
described above will be used to explain the approach.

3 The Execution Model

The Execution Model tends to bring life to elements of the
UML4SPM metamodel. By life, we mean a precise specification of the
runtime behaviour of each element of the metamodel. Therefore, a
UML4SPM process model once edited can be straightforward executed
without any additions or intermediate steps. The only condition is that
the process model is well formed. By well formed, we mean that the
model should respect the structure and constraints defined in the
metamodel. It also supposes that the process model is complete in the
sense that it specifies a coherent sequence of actions, control nodes,
object nodes, etc that allows its execution. For instance, a software
activity, without an initial node and without activity parameter nodes
can never be started. A process model containing several software
activities with no one with its "isInitial" attribute set to "true" also will
never be launched since we need one and only one initial software
activity within the process.

The approach we propose for defining executable models requires
two main steps. The first one consists in defining the Execution Model,

which aims at specifying how each element of the metamodel should
react at runtime and the set of operations it has to perform. In the
context of UML4SPM for instance, this means to specify how the
activity starts its execution, how roles are assigned to activities, how
WorkProducts are automatically routed between activity's actions, how
activities react to events, and so on.

The second step is to formalise this execution semantics at the
metamodel level. In UML4SPM, the operational semantics was
implemented using two different approaches. The first one consisted in
implementing the Execution Model using Java and the Visitor pattern,
the second one by combining a metaprogramming language called
Kermeta and aspect modeling techniques.

Execution Model: Rational

The idea of the Execution Model is inspired from the RFP (Request
For Proposal) issued by the OMG called: Executable UML Foundation
(OMG fUML 2009). The objective of this initiative is the definition of
a compact subset of UML 2.0 to be known as “Executable UML
Foundation”, along with a full definition of its execution semantics.
Since that the building blocks of UML4SPM are UML2.0 Activity and
Action packages, we found it interesting to take advantage of this
specification, while focusing on the UML2.0 elements we reused in our
SPML. In UML4SPM, Activity and Action elements are used for
sequencing the process's flow of work and data, for expressing actions,
events, decisions, concurrency, exceptions, and so on. Thus, the
implementation of the execution behavior of these concepts will be
used as the core of the UML4SPM engine.

The UML4SPM Execution Model comes in form of a class diagram;
each class represents the executable semantics of a UML4SPM
element. An executable class is a class having a set of operations
aiming at describing the execution behavior of the UML4SPM element
at runtime. If the element is an UML element reused by UML4SPM,
then its semantics is implemented according to the one given in natural
language by the UML2.0 standard. The implementation of the UML
Execution Model was restricted to Activity and Action elements that we
reused within UML4SPM, and which respects the UML2.0 semantics
(see table 1). Fig. 4. gives an example of the operations and features

required for an Activity Node to execute. In UML, Activity Nodes
regroup Actions, Object Nodes (pins), and Control Nodes metaclasses.
The execution semantics adopted by UML2.0 activities is quite similar
to Petri Nets one and is based on offering and consuming tokens
between the different activity's constituents (i.e., Activity Nodes and
Activity Edges). This semantics is presented hereunder.

Actions Activity Elements
- AcceptEventAction
- CallBehaviorAction
- CallOperationAction
- RaiseExceptionAction
- SendSignalAction
- OpaqueAction

- Activity
- Activity Edge (ControlFlow, ObjectFlow)
- Controle Nodes (DecisionNode FinalNode,
ForkNode, InitialNode, JoinNode, MergeNode)
- ObjectNodes (ActivityParameterNode, Inputpin &
Outputpin, DataStoreNode)
- ConditionalNode & LoopNode
- ExceptionHandler

Table 1. UML2.0 activity elements and actions reused in UML4SPM

Fig. 4. Specification of the ActivityNode's Behavior

Execution Model: Execution Behavior

In UML2.0, the execution semantics of activities is based on token
flows. By flow, we mean that the execution of one activity node affects,
and is affected by, the execution of other nodes, and such dependencies
are represented by edges in the activity diagram. A token contains an
object, datum, or locus of control, and is present in the activity diagram
at a particular node. Each token is distinct from any other, even if it
contains the same value as another.

ActivityNode

In the UML4SPM Execution Model, we defined the token class and
we differentiate between two kinds of tokens. Control tokens and
Object tokens. When an action completes its execution, it creates a
control token and offers it to all its outgoing activity edges. Object
tokens are exchanged between object nodes (Input and Output Pins of
actions, Data Store Nodes, etc.) and may traverse control nodes. For
instance, when an action completes and if it provides an output, an
object token with a reference to the Output Pin type is created. In the
context of UML4SPM, an Output Pin can only be typed by
WorkProducts or subclasses of the WorkProduct metaclass.

Activity Nodes (i.e. actions, control nodes, etc.) and Activity Edges
follow token flow rules as defined by the UML2.0 standard. Activity
Nodes control when tokens enter or leave them. Activity Edges have
rules about when a token may be taken from the source Activity Node
and moved to the target Activity Node. A token traverses an Activity
Edge when it satisfies the rules for target and source Activity Nodes,
and the Activity Edge, all at once. This means that a source Activity
Node can only offer tokens to the outgoing Activity Edges, rather than
force them along the Activity Edges, because the tokens may be
rejected by the Activity Edges or the target Activity Node on the other
side.

Tokens are effectively held by the offering Activity Node until the
receiving one is ready to take them. As such mediator, an Activity Edge
provides the following functionality: checks whether its source is
offering any token, if the guard on the edge is satisfied, send offers of
tokens from its source to its target and take the offered tokens from its
source to its target Activity Node (see figure 5).

Tokens will be consumed by the executing Activity Node
accordingly depending on its type and, eventually, as a result of
executing the fire() operation, tokens may be produced and written to
the offeredTokens of the executing Activity Node (where they will be
held up to its consumption), which also sets its offering attribute to
true (to indicate that it is now making an offer) and then concurrently
calls sendOffer() on all its outgoing edges and, consequently, this will
cause each outgoing Activity Edge to call receiveOffer() on its target
Activity Node. Figure 5 synthesizes this general execution behavior in
form of a UML sequence diagram. It shows all the operations that need
to be executed in order to ensure such interactions between any kinds
of Activity Nodes.

Fig. 5. ActivityNode and ActivityEdge Interactions

To illustrate this, let's go back to the example we defined in figure 3.

When the "Elaborate Analysis Model" action ends, it produces an
output, which is the "UML Analysis Model" document. This document
is placed in the action's OutputPin. In UML, an OutputPin represents a
container that holds action's output values (i.e., Tokens). An action has
an OutputPin for each type of output it produces. The same applies for
InputPin. This output has then to be consumed by the "Validate
Analysis Model" action. Prior to this, the output has to be first put in
the action's OutputPin, offered by the OutputPin to all its out coming
edges, checked against guards or conditions, if any, which may be
specified between the first action's OutputPin and the second action's

sourceActNode:
ActivityNode

targetActNode:
ActivityNode

actEdgeInstance:
ActivityEdge

InputPin. In the example, we can figure out a guard specifying that the
"UML Analysis Model" document's state should be set at "created"
when passing from the source action into the target action, otherwise,
the target action will not start. If the guard is satisfied and the target
action is ready to execute, then the output is transferred from the source
action's OutputPin into the target action's InputPin, which would then
fire the execution of the action. All these interactions represent an
instance of the sequence diagram represented in figure 5.

To refer to the example, it represents the interactions between a
source action's OutputPin, the activity edge and a target action's
InputPin (see top left side of figure 5). Thus, once all metamodel
element's behaviours defined in terms of operations and interactions,
which we did in the context of UML4SPM, the next step consist in
implementing the Execution Model. This is presented in the next
section. Of course, these two steps have to be carried only once and are
completely transparent to the UML4SPM process modeller, who just
instantiates the metamodel (from the graphical editor) and run the
process.

4 Realization of the Execution Model

Hereunder we present two realizations of the Execution Model.

The Visitor pattern approach with Java

This approach is inspired from the GoF Visitor pattern (Gamma et al.
94). The idea here is to decouple the elements defined in the
UML4SPM metamodel from their runtime behavior. Thus, for each
element in the UML4SPM metamodel, there is a runtime “Execution”
visitor class that represents a single execution of that element.
Therefore, we will have for the Software Activity element, an
ActivityExecution class, for the ActivityNode an
ActivityNodeExecution class, for the ForkNode a ForkNodeExecution
class, and so on. Each class having a set of operations that once
implemented, reproduce the execution behavior of the element. The
Visitor pattern typically requires implementation of a “visit” operation
on the visitor class and an “accept” operation on the visited class. In the
Execution Model, execution classes have an association that points to

the UML4SPM element to which they add behavior. This is in line with
the purpose of the Visitor pattern which “represents an operation to be
performed on the element(s) of an object structure” and allows the
addition of behavior to the elements in UML4SPM without actually
modifying them.

Figure 6 draws the big picture of the Execution Model
implementation using the Visitor pattern by giving the example of
Software Activity, Activity Edge and Activity Node elements and their
corresponding executable classes in the Execution Model.

In the design of the UML4SPM Executable Model we put as a
crucial requirement, to keep a strong coupling between process model
elements and their execution instances. Thus, in the execution classes,
we define only the behavior of UML4SPM elements. At runtime, when
the execution class instance is created, it only keeps a reference to the
process model element for which it defines an execution behavior.
When the execution class instance requires a data, it takes it directly
from the process model element definition. Thus, if the process model
element evolves or has some of its element’s properties modified, the
execution class instance will always has access to the correct (last)
version of data. This facility opens some large perspectives such as the
possibility to modify process models at runtime without restarting the
execution of the process. Of course, the process model modification has
to be performed from the API classes generated from the UML4SPM
metamodel and under some conditions that still have to be defined. The
definition of these conditions is underway and goes beyond the scope
of this document.

We provide a Java implementation of this model. This implementation is
used as the basis of the UML4SPM process execution Engine. This
implementation can be also used as a basis of an activity diagram virtual
machine since we implemented the execution behavior of UML2.0 activity
and action packages according to the standard.

Fig. 6. Execution Model: the visitor approach

The Kermeta approach

Kermeta is an MDE platform designed to specify constraints and
operational semantics of metamodels (Muller et al. 2005). The MOF
supports the definition of metamodels in terms of packages, classes,
properties and operations but it does not include concepts for the

UML4SPM
Metamodel

UML4SPM
Executable Model

definition of constraints or operational semantics. Kermeta extends
MOF with an imperative action language for specifying constraints and
operation bodies at the metamodel level.

 One of the key features of Kermeta is the static composition
operator, which allows extending an existing metamodel with new
elements such as properties, operations, constraints or classes. This
operator allows defining various aspects in separate units and weaving
them automatically into the metamodel. The weaving is done statically
and the composed model is typed-checked to ensure the safe integration
of all aspects. This mechanism makes it easy to reuse existing
metamodels or to split metamodels in reusable pieces. It also provides
flexibility. For example, several operational semantics can be defined
in separate units for a single metamodel and then alternatively woven
depending on a particular need. This is the case for instance in the
UML metamodel where several semantics variation points are defined.

The purpose of Kermeta is to remain a core platform for safely
integrating all the aspects around a metamodel. For instance,
metamodels can be expressed using MOF and constraints using the
OCL. Kermeta also allows importing Java classes in order to use
services such as file input/output or network communications, which
are not available in the Kermeta standard framework. This is very
useful for instance to allow interactions between models and existing
legacy applications. In the case of UML4SPM, this allows processes to
interact with business applications, the enterprise workflow, to call
distant web services and so on.

Fig. 7 presents an overview of the architecture of the UML4SPM
implementation using Kermeta. The diagram shows the units to be
composed in order to build the UML4SPM environment and simulator.
Ecore files (UML.ecore and uml4spm.ecore) are metamodels expressed
using the Eclipse Modeling Framework (EMF). Because the EMF is
compliant with the EMOF standard, these metamodels can be used
directly in the implementation. UML.ecore corresponds to the
standardized UML 2 metamodel provided by the Eclipse/UML project.
The uml4spm.ecore metamodel corresponds to the extension of UML
for software process modeling given in Fig. 1.

UML.ecore

uml4spm.ecore

Constraints.ocl Semantics.kmt

UML.kmt

SPMSimulator.kmt

requires

package uml4spm;

require kermeta

require "uml4spm.ecore"

require "UML.kmt"

aspect class SoftwareActivity
{

 operation execute (): Void is do

 // Initialize actions having InputPins without inco mming edges

 self. node . select { e| e. isInstanceOf (Action)}. each { action |
 action . asType (Action). getInputPins (). select { pin |
 pin . incoming . empty }. each { pin |
 loadWorkProductToInputPins (pin)
 }
 }

 //Intialize Activity's Intial Nodes

 self. node . select { e| e. isInstanceOf (InitialNode)}. each { inode |
 inode . asType (InitialNode). fire ()
 }

 end

 [...]

}

Context Team inv:

 self.performers-> forAll (roleperformer |

 not roleperformer.isKindOf (Tool)

)

Standard UML 2 metamodel provided by the Eclipse / UML project.

Implemenation of UML 2 semantics in Kermeta. This is provided
by the UML Model Development Kits which is part of the Kermeta
project.

Main of the simulator

Fig. 7. Weaving Executability to The UML4SPM Metamodel

The *.kmt files on Fig. 7 correspond to Kermeta source files. The

UML.kmt is an implementation of the UML semantics in Kermeta.
This file especially implements the semantics of UML 2 activity
diagrams, which is reused in the context of the UML4SPM extension.
The file Semantics.kmt corresponds to the implementation of the
UML4SPM Execution Model. An excerpt of the source code of this file
is shown on the right hand side of Fig. 7. The first line of the listing
specifies the containing package for the definition contained in the file.
Then the “require” directives are used to declare dependencies with
other units. In the example, the uml4spm metamodel defines a
metaclass named uml4spm::SoftwareActivity. The piece of code shown
on the listing adds an operation named “execute” in this metaclass.

Adding new elements to a metaclass of the metamodel is achieved
using the keyword “aspect” before the declaration of the class. The
body of the operation “execute” presented in Figure 7 implements how
a software activity can be executed. The execution of an activity
consists of initializing actions and initial nodes of the activity. In the
code, we first search for actions having input pins without incoming

edges in order to initialize them with WorkProducts of the same type
and then we look for initial nodes and initialize them by calling the
operation “fire”. In order to fully implement the Execution Model of the
UML4SPM metamodel, all required operations are implemented in the
same way as for the “execute” operation detailed on the listing.

The file Constraints.ocl shown in Figure 7 encapsulates constraints
on the UML4SPM metamodel. These constrains are written in standard
OCL. Figure 7 presents the listing of a simple constraint as an example.
In the metamodel given in Figure 1 there is an aggregation called
“performers” from the Team metaclass to RolePerformer metaclass. In
practice, the performers of a team can be either teams or agents but not
tools. The constraint presented is an invariant for the metaclass Team
that ensures that no tools can be added as performers.
Finally, the Kermeta source file SPMSimulator.kmt contains the entry
point for a simulator, which can load process models (i.e. instances of
the uml4spm Ecore metamodel), check the constraints on these models
thanks to the OCL constraints and execute these models using
operations that were weaved into it.

5 DISCUSSION

Through simulation and execution of software process models, the
approach we propose provides project managers with earlier feedbacks
on how the process should behave in production stages. It is
particularly vital to evaluate process definitions carefully to be sure of
their correctness and effectiveness. Important decisions on resource
allocation, coordination of agents and procedural issues can then be
taken before to put the process on rails. In the following we discuss the
outcomes of our work and how they can be used in order to fulfill these
expectations.

The Execution Model

Contrarily to traditional process model execution approaches, one
key feature of our approach is the ability to execute process models
without any transformation or compilation step. Indeed, current
propositions require a compilation phase towards some execution

languages, sometimes proprietary, in order to execute them (cf. related
work section). This step is most often followed by a manual coding and
configuration steps, which is error prone and may induce some
traceability issues between process models and their execution.
Additionally, these steps have to be performed each time the process
definition is modified, which can become a burden for process
modelers. Using the Execution Model approach, the operational
behavior is defined once in the metamodel and can then be instantiated
many times. Process modelers do not have to deal with code. It is
completely transparent for them. Process models are directly enclosing
an execution behavior and can be executed and simulated
straightforwardly. Process definitions come in form of UML4SPM
models that abstract away all the implementation details and are
accessible to a broader community of process users (e.g., engineers,
stakeholders, project managers, etc).

A generic approach

In this paper we introduced Executability of models in the context of
UML4SPM. However it is worth noting that this approach can be
generalized to any MOF-instance language. The same approach can be
used for instance to define the execution behaviour of UML state
machines in order to make them executable models.

Since the operational semantics we defined respects the one given in
the UML2.0 specification, this makes it possible to simulate activity
diagrams and to build a UML virtual machine for activity diagrams
based on the work presented here. The outcome of the Execution Model
regarding the UML2.0 elements has been shared with the OMG group
working on UML executability in order to provide our feedbacks but
also to highlight some new classes, operations or constraints that we
defined and which are not addressed by the current OMG’s proposition.

Java Vs Kermeta

We provided two realizations of the Execution Model: the first one
using the Visitor design pattern with Java and the second one using
Kermeta and aspect modeling techniques. Our choice for Java for

implementing the UML4SPM Executable Model was guided by
efficiency reasons and by the possibility to reuse an already existing
and powerful tooling support such as Eclipse/EMF development
environment. However two main reasons encouraged us to investigate a
more model-driven solution. The first one relates to the fact that the
implementation we provide in Java represents one fixed
implementation and does not take in charge UML semantic variation
points. Indeed, in the UML standard some elements may have different
semantics and their implementation is the tool-implementer’s
responsibility. To give a different Java implementation for each of the
semantic variation points and to combine them easily and efficiently
would be too complex and error prone. With Kermeta, it is possible to
compose (i.e. to weave) different semantics into the metamodel.
Process modelers can then choose the appropriate one before starting
the process execution. They can also easily extends the behavior of
metamodel's elements in order to incorporate new functionalities or
simply to take into account some new constraints. It is also possible to
define specific kinds of activities that would have in charge the
dynamic redefinition of the process model. This would allow the
modification of the process at run time in order to take into account for
instance new deadline constraints or an unexpected lack of human
resources. In Kermeta it is also possible to take into account OCL
constraints which are not addressed in Java.

The second reason for choosing Kermeta is because it is more in line
with the MDE vision. Indeed, with the Java solution, it is up to the
process modeler to code the visitor pattern within the Java classes. This
supposes a high knowledge of the UML standard and how metaclasses
relate to each others. Using Kermeta, the application of the visitor
pattern is completely transparent. The process modeler has only to
identify the class for which he/she aims to define a behavior and simply
specify it. The Kermeta engine, thanks to aspect techniques, will
internally rely metaclasses to each others, will wave their execution
behavior and proceed to the execution of their operational semantics.

UML4SPM

In the context of this work, a UML4SPM process model editor and a
process engine was provided. The editor is generated automatically

from the UML4SPM metamodel using the EMF Eclipse environment
(see figure 8). If the UML4SPM metamodel have to be modified, then
the UML4SPM editor have to be regenerated. This will not take more
than few seconds. Additionally, if the modification is an extension to
the metamodel (i.e., addition of a new attributes or metaclasses), the
process models defined in a previous version can still be used within
the new editor. Process models are stored using the OMG standard
XMI format (OMG XMI 05).

The UML4SPM process execution engine takes as input an
UML4SPM process model and executes it according to the execution
behavior defined in the UML4SPM executable model. No
configuration or intermediate step is required.

Fig. 8. UML4SPM Process Model Editor

Regarding the expressiveness of UML4SPM, we evaluated it with
the well-known ISPW-6 Software Process Example (Kellner et al. 91),
a standard benchmark software process problem developed by experts
in the field of software process modeling. The description of the

benchmark process by UML4SPM was not just limited to the eight
activities of the core problem but it also succeeded to express most
optional extensions. Tool invocation actions, communication
mechanisms, exception handling, WorkProduct versioning and
management features and other constructs offered by UML4SPM were
used at this aim. This evaluation is presented in more details in 3 .

6 Related Work

In this section we only deal with UML-based process modeling
languages, taxonomy of first-generation PMLs can be found in (Zameli
and Lee 2001).

In the industrial side, SPEM1.0 was the first standard SPML based
on UML (UML1.4) (OMG SPEM1.0 2002). However SPEM1.0 has
had a limited success within the industry since SPEM1.0 did not offer
any execution support. Process models were only contemplative
models. In SPEM2.0, the main advance was the proposition of a clear
separation between the content of a method of its possible use within a
specific process. SPEM2.0 extends the UML2.0 Infrastructure and does
not use any concept from the UML2.0 Superstructure (i.e. Activities,
Actions, etc.). Regarding executability, SPEM2.0 does provide neither
concepts nor formalisms for executing process models. Instead, the
standard proposes to either map process definitions into some project
planning tools (e.g. MS. Project) which is not considered as process
execution but a process planning activity or to define transformation
rules into some business process execution languages (e.g. BPEL).
Unfortunately, the standard does not define any of these rules.

In Di Nitto's et al. approach (Di Nitto et al. 2002), authors aim at
assessing the possibility of employing a subset of UML1.3 as an
executable PML. It comprises two main phases. The first one consists
in describing processes using UML diagrams. The second phase
consists in translating these UML diagrams into code that can be
enacted by the team's events-based workflow engine called OPSS.
Process constituents can be defined by simply specializing a set of
predefined classes provided by the approach in form of a UML class
diagram. The flow of work is given in activity diagrams and the

3 UML4SPM evolution using ISPW6: http://pagesperso-systeme.lip6.fr/Reda.Bendraou/Documents/

UML4SPMEvaluation_ISPW6.pdf

lifecycle of each entity is defined by a state machine. However, the
activity and class diagrams have no links with each other. The approach
does not extend the UML language nor introduces new concepts.
Process elements are simply instances of the UML Class metaclass,
which means that they all have the same semantics and notation as the
UML Class metaclass. Regarding execution, it is essentially based on
how state diagrams defined by the user are precise enough and sound in
order to enable a complete code generation and to allow process
execution within OPSS. Otherwise, code has to be added manually. The
weak point in the executability aspect remains how information defined
in activity diagrams (i.e., precedence between activities), state
machines and class diagrams are integrated to generate each of the Java
classes needed for the execution. Authors did not detail how this
integration is realized.

Another approach, called Promenade (Franch and Rib 1998),
basically follows the same principle as DiNitto's. To model a process,
one has to specialize the set of predefined classes provided by the
approach. To define precedence between process's tasks, one has to
define a precedence graph, which defines the order between all tasks of
the process. However, authors do not specify how the precedence graph
(including precedence rules) is to be integrated with the class diagram
to form a complete process description. The approach does not provide
any mechanism or way to execute Promenade process models. No tool
or prototype was provided.

In (Chou and Chen 2000), Chou proposed a software process
modeling language consisting of high-level UML1.4-Based diagrams
and a low-level process language. While UML diagrams are used for
process's participants understanding, the process language is used to
represent the process - from UML diagrams – in a machine-readable
format i.e., a program. The principal obstacle of this approach is the
lack of an automatic generation of process programs from UML
diagrams, which imposes the rewriting of the process by developers
mastering the proprietary OO language provided by the author.

7 Conclusion

In this paper, we proposed an approach for building executable
software process models. Additionally to coding team's best practices,

process models can now be used for simulation and execution purposes.
This would help not only for agent coordination, but also can be used
as means to improve and to validate process definitions. Executability
of models was addressed in the context of a software process modeling
language (i.e., UML4SPM) thanks to the Execution Model approach.
However, it can be generalized to any MOF-instance language. We
provided two realizations of the Execution Model. The first one is Java
using the visitor pattern. The second one, a more model-driven
solution, is based on Kermeta and aspect modeling techniques. The
outcome of this work is largely used by our industrial partners within
the Modelplex projet. A larger evaluation of the use of UML4SPM in
production stages is underway. In the context of process modeling, an
important perspective of this work is the definition of the set of
activities and constraints that would allow a process definition to be
modified at runtime and without restarting the process execution i.e.
preserving the process state.

References

Bendraou, R. Gervais, M.P. and Blanc, X. “UML4SPM: A UML2.0-Based metamodel for
Software Process Modeling”, in Proceedings of the ACM/IEEE 8th International
Conference on Model Driven Engineering Languages and Systems (MoDELS), Montego
Bay, Jamaica, Oct. 2005, LNCS, Vol. 3713, PP 17-38.

Bendraou, R., Sadovykh, A., Gervais, M.P. and Blanc, X. “Software Process Modeling and
Execution: The UML4SPM to WS-BPEL Approach”. In Proceedings of the 33rd
EUROMICRO Conference of Software Engineering Advanced Application (SEAA), pp.
314-321, Lübeck, Germany, IEEE Computer Society Press.

Chou, S.C., and Chen, J.Y.J., “Process Program Development Based on UML and Action
Cases, Part 1: the Model, in Journal of Object-Oriented Programming, Vol. 13, Num. 2, pp
21-27, 2000.

Di Nitto, E. et at. “Deriving executable process descriptions from UML”, in Proc. of the 24th
International Conference on Software Engineering (ICSE'), Orlando, Fl. 2002, ACM Press.

Dumas, M. and ter Hofstede, A., “UML Activity Diagrams as a Workflow Specification
Language,” in Proceedings of the 4th International Conference on The Unified Modeling
Language, Modeling Languages, Concepts, and Tools, 2001.

Franch, X. and Rib, J. “A Structured Approach to Software Process Modelling,” in Proceedings
of the 24th Conference on EUROMICRO - Volume 2, 1998.

Fuggetta, A. “Software Process: A Roadmap”. 22nd International Conference on Software
Engineering (ICSE), June 4–11, Limerick (Ireland), ACM, 2000.

Gamma E., Helm R., Johnson R., and Vlissides J. “Design Patterns: Elements of Reusable
Object- Oriented Software”. Addison-Wesley, 1994.

Jablonski, S. and Bussler, C. “Workflow Management: Modeling Concepts, Architecture and
Implementation”, London, UK.: Thomson Computer Press, 1996.

Kellner, M.I., Feiler, P.H., Finklestein, A., Katayama, T., Osterweil, L.J., Penedo, M.H.,
Rombach, H.D. “ISPW-6 software process example”. In Proc. of the first Intern. Conf. on
the Software Process. IEEE Computer Society, Washington, DC, 1991, pp. 176-186.

Lonchamp, L. “A structured conceptual and terminological framework for software process
engineering”. In Proceedings of the 2nd International Conference on the Software Process
(ICSP 2) (Berlin, Germany). IEEE Computer Society Press, Los Alamitos, CA., USA, 1993.

Muller, P.A. Fleurey, F. and Jézéquel, J.M. “Weaving executability into object-oriented meta-
languages” In Proceedings of MODELS/UML'2005, volume 3713 of LNCS, pp 264-278,
Montego Bay, Jamaica, October 2005. Springer-Verlag.

OASIS, Web Services Business Process Execution Language Version 2.0. Working Draft.
WS-BPEL TC OASIS, January 2007.

OMG MOF, "Meta Object Facility version 2.0", adopted specification, OMG document
formal/06-01-01, January 2006, at http://www.omg.org.

OMG, “Semantics of a Foundational Subset for Executable UML Models RFP”, OMG
document ad/05-04-02, May 2008, at: http://www.omg.org/docs/ad/05-04-02.pdf

OMG SPEM1.0, “Software Process Engineering Metamodel”, OMG document formal/02-
11/14, November 2002, at http://www.omg.org.

OMG, “Workflow Management Facility Specification v1.2”, OMG document formal/00-05-02,
April 2000, at http://www.omg.org.

OMG XMI, “XML Metadata Interchange”, version 2.1., OMG document formal/05-09-01 ,
September 2005 at http://www.omg.org

Osterweil, L. “Software Processes Are Software Too” in Proceedings of the 9th International
Conference on Software Engineering (ICSE'9), New York, 1987, ACM Press.

Russell, N. Ter Hofstede, A., Edmond D. et al., “Workflow data patterns: Identification,
representation and tool support,” in Proceedings of the 25th International Conference on
Conceptual Modeling, Klagenfurt, Austria, 2005.

Russell, N., Van der Aalst, W. et al., “Workflow resource patterns: Identification,
representation and tool support,” in Proceedings of the 17th Conference on Advanced
Information Systems Engineering (CAiSE’05), Porto, Portugal, 2005, pp. 216–232.

Van der Aalst, W. et al. “Workflow Patterns”, in journal of Distributed and Parallel Databases,
14(3), pages 5-51, July 2003.

White, S. “Process modeling notations and workflow patterns”, Workflow Handbook 2004, L.
Fischer, ed., pp. 265–294, FL, USA: Future Strategies Inc., Lighthouse Point, 2004.

Wohed, P. et al. “Pattern-based Analysis of the Control-Flow Perspective of UML Activity
Diagrams”, in L. Delcambre et al., editors, Proceedings of the 24th International Conference
on Conceptual Modeling (ER 2005), volume 3716 of Lecture Notes in Computer Science,
pages 63-78. Springer-Verlag, Berlin, 2005 (a).

Wohed, P. et al., “Pattern-based analysis of UML activity diagrams,” in Proceedings of the 25th
International Conference on Conceptual Modeling (ER’2005), Klagenfurt, Austria, 2005 (b).

Zameli, K. Z., Lee, P.A. “Taxonomy of Process Modelling Languages”, in Proc. of the
ACS/IEEE Inter. Conf. on Computer Systems and Applications (AICCSA'01) Beirut,
Lebanon, June 2001.

