
Weaving Variability into Domain Metamodels?

Brice Morin1, Gilles Perrouin2, Philippe Lahire3, Olivier Barais1,4, Gilles
Vanwormhoudt5, and Jean-Marc Jézéquel1,4

1 INRIA, Centre Rennes - Bretagne Atlantique, Equipe Triskell, F-35042 Rennes Cedex
2 University of Luxembourg, LASSY, L-1359 Luxembourg-Kirchberg, Luxembourg

3 I3S Nice-Sophia Antipolis, Equipe Rainbow, F-06903 Sophia-Antipolis Cedex
4 IRISA, Université de Rennes1, Equipe Triskell, F-35042 Rennes Cedex

5 Institut Telecom / LIFL, Université de Lille 1, F-59655 Villeneuve d’Ascq Cedex

Abstract. A Domain-Specific Modeling Language (DSMLs) describes the
concepts and their relationships of a particular domain, in a metamodel.
Using a DSML, it is possible to describe a wide range of different models.
These models often share a common base and vary on some parts. Current
approaches tend to distinguish the variability language from the DSMLs
themselves, implying greater learning curve for DSMLs stakeholders and
a significant overhead in product line engineering. We propose to consider
variability as an independent aspect to be woven into the DSML to in-
troduce variability capabilities. In particular we detail how variability is
woven and how to perform product line derivation. We validate our ap-
proach through the weaving of variability into two different metamodels:
Ecore and SmartAdapter, our aspect model weaver. These results empha-
size how new abilities of the language can be provided by this means.

1 Introduction

In an always more competitive environment, the ability for a company to rapidly
propose new products or variations of existing products is the key to meet user
requirements. However, proposing a wide range of different products is risky: prod-
ucts should be designed, validated, implemented rapidly, at a low cost. The Soft-
ware Product Line [1] (SPL) community proposes techniques and tools in order to
engineer families of related products. The main idea behind SPL is to capture the
commonalities of the different products as well as the specificities (variability) of
each particular product. In this paper, we focus on Model-Driven SPL [2] where
the product line itself and the derived products are models. The models are de-
rived using Model-Driven Engineering techniques, such as model transformation,
model composition or aspect model weaving.

Several approaches exist to describe SPLs : i) to use a general-purpose meta-
model like the UML [3] including the concepts allowing designers to describe the
variability of a model, ii) to build a metamodel without variability and then extend
it in order to include the necessary variability. The first category allows the domain
stakeholder to directly design a family of products thanks to the expressiveness
provided by the metamodel. The second category allows designers to focus on the
domain itself but not on its variability and then to update it in order to include
? This work was realized in the context of the MOVIDA and the FAROS projects, funded

by the ANR (French National Research Agency)

the needed variability. The main drawback of this approach is that the variability
should be included manually. For example, this is what we have done when we
included variability into our aspect model weaver “SmartAdapters” [4], in order
to be able to design more flexible and more reusable aspect models.

In this paper, we propose a reusable variability aspect, defined at the meta-
model level, describing the variability concepts and their relationships indepen-
dently from any domain metamodel. Using Aspect-Oriented Modeling [5] (AOM)
techniques, this aspect can be woven into a given domain metamodel to include
variability. More precisely, we use our aspect model weaver, SmartAdapters, to
weave this variability aspect. This makes possible the integration of variability in
a semi-automatic way into a wide range of domain metamodels.

We demonstrate our approach by introducing the variability i) into EMF, which
is the de-facto standard integrated within Eclipse to define metamodels (similar
to class diagrams) and ii) into SmartAdapters itself. However, our approach is
generic and can be applied to any metamodel conforming to Ecore/EMOF, which
includes the UML, to extend it with variability mechanisms. This demonstrates
that decoupling the description of variability from the domain allows addressing,
with a minimal additional effort, the two categories we mentioned.

This paper is organized as follows. In Section 2 we present a generic variability
metamodel. In Section 3, we illustrate how we can introduce variability by hand
into an excerpt of the EMF metamodel. In Section 4 we present our model weaver
SmartAdapters and give an overview of the variability aspect associated to the
variability metamodel presented in Section 2. Then we propose in Section 5 to
apply the variability aspect to the SmartAdapters metamodel. Section 6 details
how we can take advantage of SPL techniques in order to derive models with re-
spect to variability woven at the metamodel level. Section 7 outlines some relevant
research in the field and Section 8 wraps up with conclusions as well as discusses
some interesting future perspectives.

2 Variability

In this section, we present a generic variability metamodel inspired from [2]. It re-
lies upon formal studies of variability management in SPL [6, 7] and in particular
feature diagramming [8–11], which is a very popular notation in this community.
Despite their wide acceptation, many variants have been proposed and there is
no de-facto standard for feature diagrams. One interesting result of these formal
studies is that it is possible to extract a pivot abstract syntax subsuming the
expressiveness of these existing notations hence forming a universal basis indepen-
dent of any peculiar notation. This abstract syntax is the source of our metamodel
(see [2] for details).

Our generic variability metamodel (See Figure 1) is a customization of the
feature metamodel [2] tailored to describe variability amongst Ecore concepts. In
particular the notion of feature hierarchy, which is very specific to feature dia-
gram, has been omitted because this hierarchy is imposed by the target meta-
model (see Section 6). The main metaclass is PointOfV ariability which provides
the possibility to metamodel elements on which this class is woven to have vari-
ants. PointOfV ariability has a concrete sub-class called V ariabilityOfElement
allowing a given domain concept to hold variability. Variability is described in

terms of boolean operators that describe the kind of variability relationships ap-
plies to elements. And operator holds true iff all the elements to which it applies
are chosen (mandatory elements). Xor denotes an alternative (only one element
have to be chosen) and Or at least one. Opt denotes the optionality of presence.
Finally V p(i, j) [7] will return true iff at least i and at most j elements are chosen.
This operator can embed the semantics of all other operators [6] and could hence
be the unique operator provided. However, “classic” operators are more practical
and well-known; They are therefore left for usability matters.
In addition in this metamodel we make the distinction between homogeneous and
heterogenous operators. Homogeneous operators are associated to V ariabilityOf -
Element and apply only on element of the same type (EClass, etc.). Heterogeneous
operators are associated to PointOfV ariability and apply to elements of differ-
ent types. The “choice” semantics is the same for homogenous and heterogeneous
operators. However, we distinguish the hierarchy of operators associated to homo-
geneousOperator and heterogenousOperator because we support the idea that the
domain expert should be able to add to its metamodel, only the expressiveness
he needs. Thus he should be able to choose the suitable homogeneous as well as
heterogeneous operators.

Additionally, it is possible to define constraints between points of variability,
whether there are targeted by the same operator or not. These constraints are
of two types: requires which implies that the required element have also to be
selected if the requiring element is selected, and mutex which excludes that both
referred elements are present in the same selection. There exists other kinds of
constraints [2, 6, 7] but as there mostly informal (expressed in natural language)
we decided to let the designer include them manually after weaving.

PointOfVariability
+name: String

HomogeneousOperator
+name: String+homogeneous

0,1+reference
1,1

+sources
0, 1

+targets
0, 1

Xor

+pointOfVariabilities
1,*

Vp
+i: Integer
+j: Integer

And Or Optional

Constraint+constraintType
1,1

MutexRequire

variableConcept

+derive(p:PointOfVariability)

VariabilityOfElement

ConceptElement

+variabilityOfElement
0,*

+fromVariableConcept
1,1

+toConceptElement

+variabilityOfElement
1,1

+constraints
0,*

HeteregeneousOperator
+name: String

+heterogeneous
0,1

+reference
1,1

+pointOfVariabilities
1,*

ConstraintContainer

GenXor GenVp
+i: Integer
+j: Integer

GenAnd GenOr GenOptional

VariabilityConstraint

Fig. 1. The variability metamodel

3 Patterns for introducing variability

As noted by Haugen et al [12], there are two categories of techniques to introduce
variability into languages (represented as metamodels); amalgamated and sepa-
rated. The first one proposes to augment the metamodel with variability constructs
while the second one keeps them distinct and relates them via simple referencing.
We chose the first kind of approach because we want to clearly express variability
among elements [12] and enable conformance checking in a standard way.

For example in EMF, if it is required that i) some classes, operations, or at-
tributes are optional, and ii) some model elements are part of the same variant,
and iii) alternative and constraints may exist among variants, then this informa-
tion cannot be attached into the EMF metamodel and have to be put in a feature
diagram or in a DSL as proposed by Haugen et al.

In this paper, our aim is to describe models containing variability, based on
the concepts defined in the domain metamodel. In order to do that, we construct
on demand a new metamodel MM ′ that integrates concepts from product-lines
described in Section 2 and the domain-specific concepts of the MM . The main
idea is to introduce a new meta-class on each association to capture the fact that
a model element can be a variant as illustrated in Figure 2 for an excerpt of the
EMF metamodel. As an example, it allows to capture the fact that a method m1
in a class A is optional and two methods m2 and m3 are alternatives as described
in Figure 3.

Implications of this approach are that the variability aspect can also be stan-
dardized, and that DSMLs (MM) can be designed without variability mechanisms.
These mechanisms are woven on demand to create MM ′.

We still want to keep the possibility to specify that a class A has a method
m4 which is not a variable part of the model. Consequently, we do not remove ex-
isting associations, but extend the domain metamodel with new class-associations

Fig. 2. EMF meta-model with Variability

Fig. 3. EMF model with Variability

(EClassV ariabilityForEOperation and EClassV ariabilityForESuperType in
Figure 2), which capture the variability.

The idea of the pattern to introduce variability is to match each association
and create new meta-classes for creating the connection between MM and the
variability aspect. This way, the former metamodel MM is simply extended. Since
all the existing meta-classes and their properties (from MM) are kept in MM ′, all
the pre-existing models conforming to MM can easily be converted into models
conforming to MM ′.

4 Using SmartAdapter to Weave Variability

In the previous section, we presented a metamodeling pattern that provides a
generic solution for extending a metamodel with variability. To ease the inclu-
sion of variability into a wide range of metamodels or several parts of one meta-
model, we propose to adopt an Aspect-Oriented Modeling approach. The main
idea is to describe a variability aspect based on the previous pattern and weave
this aspect into any metamodel. The use of an AOM approach provides several
benefits: first, it enables decoupling the description of variability from any par-
ticular metamodel making it reusable; it also enables integration of variability
in a semi-automatic way; lastly, it enables keeping the design of metamodel and
variability separate, making their evolution easier to manage.In the following we
briefly describe our SmartAdapters AOM approach [4] including a presentation of
its metamodel, where we will weave variability (Section 5). Then we present its use
to describe the variability aspect and apply this aspect for introducing variability
into Ecore.

SmartAdapters is a generic AOM approach. It relies on four key concepts :
aspect model, graft model, target model and adaptations. An aspect model consists
of i) a graft model that encapsulates a given concern, and ii) an abstract adapter
that describes where (target model) and how (adaptations) the aspect model will
be woven into other base models.

The metamodel describing the concepts of SmartAdapters is shown at Figure 4.
This metamodel is not tied to a specific domain metamodel and can be customized
to weave aspects into different kinds of model (provided that aspect and base
model rely on the same domain metamodel). Here, since we are interested to
weave aspects into any metamodel, we assume the customization of SmartAdapter
to MOF/Ecore metamodels.

AspectModel

ModelElement

AbstractAdapter

TargetModel Adaptation

AbstractAdaptation ConcreteAdaptation
TargetModel

Element

*

1

1

*
targetrefs refines

1

ConcreteAdapter

Binding

Adapter

**
baseEltRefs

aspectEltRefs

1

1

aspectEltRefs
*

* *

*

1

concretizes

Model

source

target 1

adapter

*

AspectModel meta-elementsBaseModel meta-elements ConcreteAdapter meta-elements

compositionProtocol
refinedCompositionProtocol

bindings

baseModel1

graftModel 1

Fig. 4. The SmartAdapters metamodel

The target model (TargetModel) is an abstract interface between the aspect
model (AspectModel) and any base models (Model). It is a model fragment that
identifies the hooks required on the base model. It contains roles (TargetMod-
elElement) that may be substituted, at binding time, by base model elements and
structural constraints that every binding (a set of elements substituting the roles)
should respect.

An abstract adapter (AbstractAdapter) is the composition protocol of an aspect
model: it guides and controls the composition of the aspect, independently from
any base model. It contains Adaptations (AbstractAdaptation) which are compo-
sition operations describing how to weave the aspect model into the target model.
In a composition protocol, the designer can refer to any role from the target model
or model element from the graft model, within the adaptations of the protocol.

The set of adaptations provides support for integrating graft models into any
base model, by: i) introducing model elements e.g. a class into a package, ii)
modifying properties (attributes and references) of a model element e.g., a method
signature, and iii) merging model elements e.g. two classes into a single one.

To actually weave an aspect model, an architect must design a concrete adapter
(ConcreteAdapter). It specifies bindings (join points) between the target model
and a given base model. Each binding (Binding) associates a target model ele-
ment (TargetModelElement) to a matching base model element. Bindings could be
specified by hand or automatically identified by a join point detection engine [13].
All the bindings contextualize the adaptations defined in the abstract adapter
with concrete elements. Additionally, during the binding stage, the architect can

specify some other concrete adaptations (ConcreteAdaptation) to consider some
properties specific to the base model.

Figure 5 shows the variability aspect. Basically, the graft model of the aspect
contains the concepts from the feature metamodel presented in Section 2 and those
from the metamodeling pattern presented in Section 3.

ConceptElementRoleelements

target Model

Composition protocol

mergeClass3: Merge VariableConcept with VariableConceptRole

mergeClass2: Merge ConceptElement with ConceptElementRole

renameClass1: modify name VariabilityOfElement with

renameAssociation1: modify name fromVariableConcept with NameOf(VariableConcept)

renameClass2: modify name HomogeneousOperator with

NameOf(VariableConceptRole)+ "HomogeneousOperatorFor" +NameOf(ConceptElementRole)

introduceDescendants1: abstract introduce class descendants CVOFE

NameOf(VariableConceptRole)+ "VariabilityFor" +NameOf(ConceptElementRole)

introduceClass1: insert class VariabilityOfElement

all referenced class and

Abstract Adapter Variability

with all referenced class and associations

variability operators

 alias CVOFE

associations are introduced

ConstraintContainerRole

mergeClass1: Merge ConstraintContainer with ConstraintContainerRole

redefineAssociationEnd1: modify associationEnd pointOfVariabilities with CVFE

 alias CVFE

PointOfVariability
+name: String

HomogeneousOperator
+name: String

+homogeneous
0,1

+reference
1,1

+sources
0, 1

+targets
0, 1

Xor

+pointOfVariabilities
1,*

And Or Optional

Constraint+constraintType
1,1

MutexRequire

variableConcept

+derive(a:PointOfVariability)

VariabilityOfElement

ConceptElement

+variabilityOfElement
0,*

+fromVariableConcept
1,1

+toConceptElement

+variabilityOfElement
1,1

+constraints
0,* HeteregeneousOperator

+name: String
+heterogeneous

0,1+reference
1,1

+pointOfVariabilities
1,*

ConstraintContainer

introduceDescendants2: abstract introduce class descendants heterogeneousOperator

target model elements

GenXor GenVp
+i: Integer
+j: Integer

GenAnd GenOr GenOptional

GenVp
+i: Integer
+j: Integer

VariabilityConstraint

VariableConceptRole

Fig. 5. The Variability Aspect including Composition Protocol

The target model contains roles to specify that three classes and one relation-
ship must be present in a base model to apply the aspect. ConstraintContainerRole
identifies the class in a metamodel where constraints for controlling variability
must be attached. VariableConceptRole, ConceptElementrole and elements rela-
tionship identify a couple of linked classes in a metamodel where variability must
be introduced.

The basic principle of the composition protocol is to: i) keep unchanged the
relationship between the two classes (VariableConceptRole and ConceptElement-
role) of the target model (to allow defining mandatory element), and ii) create a
new relationship between these two classes, controlled by a variability manager,
in order to allow defining variable elements.

More precisely the composition protocol mainly contains adaptations for intro-
ducing model elements (insert) which allow to introduce a given element (e.g. class
VariabilityOfElement) with implicitly all elements that it references. When an el-
ement already exists in the base model (for example when the aspect is applied
two times on the same model), it is not added a second time.

Another important remarks deals with the use of renaming (modify name).
One relationship (fromVariableConcept) and two classes (variabilityOfElement and
VariabilityOperator) are renamed. Main advantages in present situation is that n
applications of the aspect in the same base model will create n samples of the
same relationship or metaclass.

Finally for each application of the aspect we may choose the expressiveness of
the variability. We simply select the descendant classes of VariabilityOperator after
its renaming (the renamed class is accessible with the alias CVOFE). The choice is
made accordingly to the base model (at composition time), so that the adaptation
is abstract and will be defined in a concrete adapter (ConcreteAdapter).We may
choose the same approach for the different types of constraints. This would be
particularly interesting if we propose a larger set of constraint types. In order
to reduce the complexity of the schema we decided to provide all the types of
constraints (Require and Mutex) for each application of the aspect. In order to
provide a centralized access to all constraints in a given element of the base model,
we declare this element in the target model.

In our composition protocol we also propose to merge each of the three elements
mentioned in the target model with one element of the graft model. This way,
base model elements bound to target model elements now include their respective
functionalities (e.g. the class(es) bound to VariableConceptRole will include the
derive method and the association-end variabilityOfElement).

Figure 6 shows the concrete adapter to apply the variability aspect to EMF
and introduce the ability for an Ecore package to support variability for the Ecore
classes. This concrete adapter achieves this ability by binding elements from the
target model (resp. VariableConceptRole, ConceptElementRole, elements and Con-
straintContainerRole) to elements of the Ecore metamodel (resp. EPackage, EClas-
sifier, eClassifiers and EPackage). As a result of these bindings, EPackageVariable-
ForEClass and EPackageVariabilityOperatorForEClass classes are introduced with
their dependent classes and relationships and EPackage is extended with a new
relationship to EPackageVariabilityForEClass (see left part of the figure). Finally,
the concrete adapter also contains redefined adaptations (introduceDescendants1
and introducedDescendants2) to select the subset of operators that are appropriate
for classes variability.

5 Introducing Variability into SmartAdapters

In [4], we pointed out that aspect reusability is limited in AOM approaches be-
cause an aspect model must match exactly the structure of base models and is
always woven according to the same rules. To address this issue, we proposed
to extend AOM approaches with matching variability and composition variability.
This variability was introduced in an ad-hoc way. Supporting these two dimensions
of variability in our SmartAdapter approach have been achieved by extending the
notion of adapter with the following variability mechanisms:

PointOfVariability

+name: String

EpackageVariabilityOperatorForEclass

+name: String

+homogeneous

0,1

+reference

1,1

+sources

0, 1
+targets

0, 1

Xor+pointOfVariabilities

1,*

And Optional

Constraint

MutexRequire

VariableConceptRole

ConceptElementRole

elements

Target Model

Epackage

+derive(a:PointOfVariability)

+eClassifiers

0,*
EClassifie

EpackageVariabilityForEclass
+variabilityOfClass

0,*

+fromVariableConcept

1

+toConceptElement

0,*

+variabilityOfElement

1,1

binds

binds
introduceDescendants1: introduce class descendants from CVOFE

Concrete Adapter Application1 extends Variability

+constraints

0,*

+constraintType

1,1

ConstraintContainerRole

binds

HeteregeneousOperator

+name: String

+heterogeneous

0,1

+reference

1,1

+pointOfVariabilities

1,*

introduceDescendants2: introduce class descendants from heterogeneousOperator

(GenXor, GenAnd, GenOptional)

(Xor, And, Optional)

binds

GenXor GenAnd GenOptional

Metamodel element modified after weawin

VariabilityConstraint

Fig. 6. The variability aspect

– Optional targets: in order to specify that some elements from the target
model may be present or not in the base model where we want to weave the
aspect.

– Alternative adaptations: in order to specify that there exists several pos-
sible ways to compose the aspect. All the variants are exclusive i.e., we can
only choose exactly one variant per alternative.

– Optional adaptations: in order to specify that some adaptations of the
composition protocol are not mandatory.

– Constraints between targets and/or adaptations in order to specify that
some variants are dependent or in mutual exclusion. With these constraints,
we can ensure the consistency of the composition protocol, after derivation.

Using these mechanisms, a designer can build an aspect model that is adaptable
to different contexts. Figure 7 illustrates an aspect model using these mechanisms
to integrate the well-know observer pattern into a base model. The target model de-
clares an option to deal with the presence or not of the association between classes
playing SubjectTargetClass and ObserverTargetClass. The composition protocol
includes two variants to integrate the classes and association of the pattern into a
base model, either by merging or by inheritance.

All the mechanisms presented above can be added to our SmartAdapter ap-
proach by applying the previous variability aspect to its metamodel, using Smart-
Adapter itself. Figure 8 and 9 show the definition of two concrete adapters to
achieve this operation. They specialize and complete the abstract adapter of the
variability aspect described in Section 4.

The first concrete adapter (SmartAdapter1) handles the declaration of op-
tions and alternatives within a composition protocol. It binds elements from the

Observer <<GraftModel>>

observers
update()

Observerregister(Observer o)
unregister(Observer o)
changeValue()

Subject

0..
*

1

 target model:
ObserverAdapter <<AbstractAdapter>>

adaptations :
 - extend method notifyingMethod(...) in SubjectTargetClass with after
 { changeValue(); }
options :
 ...
alternatives :
 ...
SubjectObserverInsertion [VInheritanceSubObs] {
 - insertSubject: inherit class Subject in TaskTargetClass
 - insertObserver : inherit class Observer in ObserverTargetClass
 - option insertAssoc : introduction association
 observers (Subject, Observer)
} or else [VMergingSubObs] {
 - insertTask: merge class Subject in SubjectTargetClass
 - insertObserver: merge class Observer in ObserverTargetClass
 - option insertAssoc: introduction association
 observers (SubjectTargetClass, ObserverTargetClass)
 }

constraints :
 option insertAssoc excluded bounded observersTargetAssociation

ObserverTargetClass
nofiyingMethod()

SubjectTargetClass observersTargetAssociation <<option>>

Fig. 7. Example of an aspect model with variability

target model (resp. ConstraintContainerRole, VariableConceptRole, ConceptEle-
mentRole, elements) to elements of the SmartAdapters metamodel (resp. Model,
AbstractAdapter, AbstractAdaptation, compositionProtocol). This adapter causes
the contextualization of adaptations from the variability aspect with the following
results :

PointOfVariability

+name: String

AAVariabilityOperatorForAAdaptation

+name: String

VariabilityConstraint

+sources

0, 1
+targets

0, 1

+pointOfVariabilities

1,*

Constraint

MutexRequire

VariableConceptRole
ConceptElementRoleelements

Target Model

AbstractAdaptation

AAVariabilityForAAdaptation
+variabilityOfAAdaptation

0,*

+fromVariableConcept

1

+toConceptElement

0,*

+variabilityOfElement

1,1

binds

binds

introduceDescendants1: introduce class descendants from CVOFE (Xor, And, Optional)

Concrete Adapter SmartAdapter1 extends Variability

+constraints

0,*

+constraintType

1,1

for clarity purpose, when renaming AbstractAdapter

is replaced by AA and AbstractAdaptation by AAdaptation

Model
ConstraintContainerRole

binds

And OptionalXor

HeteregeneousOperator

+name: String

+heterogeneous

0,1

+reference

1,1

+pointOfVariabilities

1,*

introduceDescendants2: introduce class descendants from heterogeneousOperator ()

+homogeneous

0,1

+reference

1,1

GenXor GenAnd GenOptional

Metamodel element modified after weawin

AbstractAdapter

+derive(a:PointOfVariability)

+compositionProtocol

0,*

Fig. 8. Adapters for adding variability in SmartAdapters (1)

– the VariabilityOfElement class is inserted as a subclass of PointOfVariabil-
ity and this new class is renamed AAVariabilityForAAdaptation. This class
introduces variability capacities for the AbstractAdapter class.

– the content of VariableConcept is merged into AbstractAdapter class. As a re-
sult of this merging, the AbstractAdapter is extended with the derive method
and one aggregation relationship to hold AAVariabilityForAdaptation elements.

– the insertion of classes required for describing constraints and operators as
well as their relationships.

– the insertion of AAVariabilityOperatorForAAdaptation as a superclass for the
set of operators (Xor, And, Optional) defined for AbstractAdapter.

The second concrete adapter (SmartAdapter2) handles the optionality of tar-
get elements. It applies the variability aspect to metaclasses of the metamodel
representing the target model and its content, by binding VariableConceptRole to
TargetModel, ConceptElementRole to TargetModelElement and elements to tar-
getElts. According to these bindings, the TargetModel class is extended with the
content of the VariableConceptRole and with a new relationship to TMVariability-
ForTMElement that defines the variability for TargetModelElement. The operator
that can be used for this variability is defined by TMVariabilityOperatorForTMEle-
ment which is inserted as superclass of Optional. Note that classes for describing
constraints and operators are only inserted once, even when the aspect is woven
in several places.

PointOfVariability

+name: String

TMVariabilityOperatorForTMElement

+name: String

+homogeneous

0,1

+reference

1,1

+sources

0, 1

+targets

0, 1

+pointOfVariabilities

1,*

MutexRequire

VariableConceptRole
ConceptElementRoleelements

Target Model

TargetModel

+derive(a:PointOfVariability)

+targetElts

0,*

TargetModelElement

TMVariabilityForTMElement
+variabilityOfTMElement

0,*

+fromVariableConcept

1

+toConceptElement

0,*

+variabilityOfElement

1,1

binds

binds

introduceDescendants1: introduce class descendants from CVOFE (Optional)

Concrete Adapter SmartAdapter2 extends Variability

+constraints

0,*

+constraintType

1,1

for clarity purpose, when renaming TargetModel

is replaced by TM and TargetModelElement by TTElement

ConstraintContainerRole

binds

Optional

HeteregeneousOperator

+name: String

+heterogeneous

0,1

+reference

1,1

+pointOfVariabilities

1,*

introduceDescendants2: introduce class descendants from heterogeneousOperator ()

Metamodel element modified after weawin

VariabilityConstraint

Constraint

Fig. 9. Adapters for adding variability in SmartAdapters (2)

6 Towards Software Product Line

The previous sections explained how we can flexibly add variability concepts to
a domain metamodel, like Ecore or SmartAdapters, in order to be able to easily
design models containing variability. In this section, we describe how we derive
products (models with no variability, conforming to the former metamodel) from a
product line model (model with variability, conforming to the extended metamodel,
where the variability aspect has been woven).

As mentioned in Section 2, one of the most practical techniques is feature mod-
eling which aims at representing the common and variable features6 (or concepts)
of a product family. Feature modeling is not only relevant to requirement engineer-
ing but it can also be applied to design or code levels. Hence, every stakeholder
can manipulate features “as is”, independently of the kind of variability and the
level of abstraction. Moreover, feature models (FMs) encourage to define a stan-
dard vocabulary for a domain language and are ideal abstractions that customers,
experts, and developers can easily understand. FMs hierarchically structure do-
main concepts into multiple levels of increasing detail thus proposing a taxonomy.
When decomposing a feature into sub-features, the sub-features may be optional
or mandatory or may form Alternative, Or, or And groups. FMs describe the vari-
ability and the commonality of features and represent a set of valid configurations.
A valid configuration is obtained by selecting features while respecting the parent-
child and an intuitive decomposition semantics. Feature models are represented as
graph which have a tree-like structure as shown on Figure 10.

In order to take advantage of existing feature-based modeling tools [15], deriva-
tion approaches [2, 16] or formal analysis techniques [17, 18, 6], we offer to compute
a feature diagram from a model with variability as shown in Section 3. To do so,
we use Kermeta [19] which is a metamodelling environment dedicated to Ecore
models manipulation. The initial step is to obtain the root feature which corre-
sponds to the root package of the EMF model. Then we traverse the EMF model
(which imposes its structure to the feature diagram) by navigating the containment
relationships. For each relationship, there are two options:

– Variability point: If this relationship contains a variability point (instance
of the woven V ariabilityOfElement metaclass), we create an operator of the
right type (or,xor,vp) according to the operator associated to this variability
point. We then retrieve all other instances of V ariabilityOfElement which
are referenced by the operator in the EMF model. The sub-features are then
obtained by forming the union of all ConceptElement instances referenced by
the collected V ariabilityOfElement instances.

– “Standard” relationship: If there is no variability point, we treat the ref-
erenced element as a mandatory feature.

Figure 10 shows the feature diagram resulting from the application of the pro-
cedure on the EMF model shown Figure 3. Once the feature diagram is built,
we can perform product derivation [20, 2, 16]. When a set of features is selected
from the feature diagram, the last step consists in actually deriving the product
model. For all the selected features, we call the derive operation associated to the
6 according to [14] a feature is “an increment in product functionality”.

Fig. 10. Computed Feature Diagram for EMF Model with Variability

model element (e.g. an instance of EPackage in Ecore metamodel or an instance of
AbstractAdapter in SmartAdapters). This operation is implemented in Kermeta
in a generic way, directly in the domain metamodel. It sets the former references
with the model elements contained by the point of variability, which is removed.
In a second pass, once all the points of variability have been derived, we remove all
the remaining points of variability, corresponding to non-selected features. Finally,
we can save the product model using the former domain metamodel. This deriva-
tion operator is built on top of the Kermeta Model-Development Kit (MDK)7 for
Feature Modeling [2]. We reuse some parts of the Feature Diagram metamodel,
some parts of its graphical editor and we have extended the static checker. The
derivation process has been designed from scratch.

7 Related work and discussion

We do not address here the composition of models in general but the different
approaches to introduce variability into metamodels and models.

Feature modeling is very much adapted to the description of the variability but
the hierarchical approach does not provide the expressiveness that is needed and
that may be provided by OO modeling approaches. This is the reason why some
approaches like [2] use both UML and FMs for modeling a domain. Moreover on
the contrary of our approach, the formalism used to describe the domain model
contains already the expressiveness for the description of variability.

Other techniques like Ziadi et al. extend the UML metamodel in order to
include features for modeling variability [20]. Those approaches work at the meta-
meta level and extend an existing formalism in order to include variability modeling
capabilities. The variability is included in various UML diagrams like class dia-
gram or Sequence diagram. The capabilities introduced in those diagrams are very
similar to the ones of our variability aspect which is applied here to class diagram
but which could be applied also to other diagrams like sequence diagrams.

The software product line community recently investigated the use of variabil-
ity techniques to assist the engineering of DSMLs. In [12] the authors propose a
metamodel for describing variability which is independant from the models need-
ing variability. In this respect the approach is similar to ours but there are several
differences. First they do not aim to compose the two metamodels as we do; on
the contrary the metamodel describes only possible substitutions. Second those
substitutions are not defined according to the metamodel but to the models and
7 http://www.kermeta.org

these are the instances which are modified. They promote the idea that variability
should not be defined at the metamodel level but at the model level.

In [21] Voelter presents an approach that addresses variability implementation,
management and tracing by integrating model-driven and aspect-oriented software
development. Features are separated in models and composed by aspect-oriented
composition techniques on model level. This approach differs significantly from
our approach: the variability is described at the model level with feature models
which are transformed in AspectJ source code. They use AOSD as a techniques
to compose variants, we use AOM to integrate the variability mechanisms in a
domain metamodel.

8 Conclusion and future work

Building families of models related to the same domain is a key issue. It is widely
addressed by the SPL community which propose the expressiveness needed by the
description of the commonalities and the specificities of each model of the family
(i.e. the variability of the family). Variability is a possible orthogonal concern of
any domain metamodel and we propose an approach to compose this concern with
domain metamodels. The effort of the domain model designer to introduce vari-
ability into its models must be reduced as much as possible. We propose to use
the SmartAdapters approach which allows i) to minimize the information to be
given at composition time and, ii) to guide and control the reuse of the variability
aspect in various contexts. A first contribution of this paper is the specification
of a variability aspect. We apply this aspect in two different contexts: EMF and
SmartAdapters itself. A second contribution is the demonstration that AOM ap-
proaches could benefit from the concepts found in SPL without extending their
underlying mechanisms, but using only the weaving techniques already present in
AOM approaches. We use a version of SmartAdapter without variability (Figure
5) to weave the variability aspect into the SmartAdapter metamodel. We obtain
the same expressiveness that the SmartAdapters version with manually introduced
variability [4].

This validation of the approach for enhancing domain metamodel (DSMLs)
with variability is a first step towards a better modularity in the metamodels. In
the short term we aim to reuse this approach in order to introduce other features
into DSML (e.g. model checking, editing facilities, etc.) making it more attractive
but not more cumbersome especially when these facilities are not needed.

References

1. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,
NJ, USA (2005)

2. Perrouin, G., Klein, J., Guelfi, N., Jézéquel, J.M.: Reconciling automation and flexi-
bility in product derivation. In: 12th International Software Product Line Conference
(SPLC 2008), Limerick, Ireland, IEEE Computer Society (2008) 339–348

3. OMG: OMG Unified Modeling Language OMG UML, Superstructure Version 2.2.
Technical Report formal/2007-02-03, Object Management Group (2007)

4. Lahire, P., Morin, B., Vanwormhoudt, G., Gaignard, A., Barais, O., Jzquel, J.M.: In-
troducing variability into aspect-oriented modeling approaches. In: In Proceedings of
ACM/IEEE 10th International Conference on Model Driven Engineering Languages
and Systems (MoDELS 07), Nashville, TN, USA (2007)

5. Gray, J., Sztipanovits, J., Schmidt, D.C., Bapty, T., Neema, S., Gokhale, A.: Two-
level aspect weaving to support evolution in model-driven synthesis. Addison-Wesley,
Boston (2005) 681–709

6. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Feature Diagrams: A
Survey and A Formal Semantics. In: RE, Minneapolis, Minnesota, USA (2006)

7. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of
feature diagrams. Computer Networks 51 (2007) 456–479

8. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute (1990)

9. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing Cardinality-based Feature
Models and their Specialization. Software Process Improvement and Practice 10
(2005) 7–29

10. Griss, M.L., Favaro, J., d’ Alessandro, M.: Integrating Feature Modeling with the
RSEB. In: ICSR, Washington, DC, USA (1998)

11. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-Oriented
Reuse Method with Domain-Specific Reference Architectures. Ann. Softw. Eng. 5
(1998) 143–168

12. Haugen, O., Moller-Pedersen, B., Oldevik, J., Olsen, G., Svendsen, A.: Adding stan-
dardized variability to domain specific languages. In: Software Product Line Confer-
ence. (2008) 139–148

13. Ramos, R., Barais, O., Jzquel, J.M.: Matching model-snippets. In: In Proceedings of
ACM/IEEE 10th International Conference on Model Driven Engineering Languages
and Systems (MoDELS 07), Nashville, TN, USA (2007)

14. Batory, D.S.: Feature models, grammars, and propositional formulas. In Obbink,
J.H., Pohl, K., eds.: SPLC. Volume 3714 of LNCS., Springer (2005) 7–20

15. PureSystems. Pure::Variants Website http://www.pure-systems.com/ (2006)
16. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach

based on Superimposed Variants. In: Generative programming and component engi-
neering (GPCE). Volume 3676 of LNCS., Springer-Verlag (2005) 422–437

17. Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortes, A.: FAMA: Tooling a framework
for the automated analysis of feature models. In: Proceeding of the First International
Workshop on Variability Modelling of Software-intensive Systems (VAMOS). (2007)
129–134

18. Metzger, A., Pohl, K., Heymans, P., Schobbens, P.Y., Saval, G.: Disambiguating
the documentation of variability in software product lines: A separation of concerns,
formalization and automated analysis. In: IEEE Conference on Requirements Engi-
neering, Los Alamitos, CA, USA, IEEE Computer Society (2007) 243–253

19. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-oriented
meta-languages. In: Proc. of MODELS/UML’2005. LNCS, Jamaica, Springer (2005)

20. Ziadi, T., Jézéquel, J.M.: Product Line Engineering with the UML: Deriving Prod-
ucts. In: Families Research Book. Springer (2006)

21. Voelter, M., Groher, I.: Product line implementation using aspect-oriented and
model-driven software development. In: 11th International Software Product Line
Conference, Kyoto, Japan (2007) 10

