
Editorial for the Special Issue on Aspects and

Model-Driven Engineering

Robert France1 and Jean-Marc Jézéquel2

1 Colorado State University, Fort Collins, Colorado, USA,
france@cs.colostate.edu,

2 IRISA-Université de Rennes 1, France,
jezequel@irisa.fr

1 Introduction

Model-Driven Engineering (MDE) is an approach to software development in
which models are used to drive the development of all software artifacts, from
code to documentation to tests. MDE is gaining acceptance in several software
domains with demonstrated benefits such as cost reduction and quality improve-
ment.

Modeling is not just about expressing a solution at a higher abstraction
level than code. This limited view on modeling has been useful in the past
(e.g., assembly languages abstracting away from machine code, 3GL abstracting
over assembly languages) and it is still useful today, but much more can be
accomplished using modeling techniques.

A model can be an abstraction of an aspect of a system (existing or under
development) that handles a given concern. Complex systems typically give rise
to more than one model because many aspects must be considered when address-
ing all relevant software development concerns. These models may be expressed
with a general purpose modeling language such as the UML, or with Domain
Specific Languages when they are deemed more appropriate.

From a modeling point of view, the terms aspect and model can be consid-
ered synonymous. This notion of aspect goes beyond the usual meaning found
in the Aspect Oriented Programming community where an aspect is often nar-
rowly defined as the modularization of a cross-cutting concern. Given a “main”
decomposition paradigm (such as object orientation), there are many classes of
concerns (e.g., security, mobility, availability, distribution) for which clear allo-
cation into modules is not possible (i.e., they are “cross-cutting” concerns).

However, the growing uptake of the term aspect outside of the programming
world, has resulted in a growing acceptance of a broader definition in which an
aspect is a concern that can be modularized. Work on aspect-oriented techniques
above the code level is concerned with the systematic identification, modulariza-
tion, representation, and composition of concerns. The goal of work in this area
is to improve our ability to reason about the problem domain and the corre-
sponding solution, thereby reducing the size of software models and application
code, development costs, and maintenance time.



From the above, an important software development activity is the separa-
tion of concerns in problem domains. This activity is called analysis. If solutions
to these concerns can be described as aspects, the design process can then be
characterized as a weaving of these aspects into a base design model. This is not
new: designers have been doing this for some time. However, the various aspects
are often not explicitly defined, and when they are, it is done informally. Cur-
rently, designers do the weaving mentally (i.e., in their heads), and then produce
the resulting detailed design as a tangled structure of design elements. This may
work for small problems, but it introduces significant accidental complexities
when tackling larger problems.

Note that the real challenge here is not how to design the system to take
a particular aspect into account: there is significant design know-how in indus-
try on this and it is often captured in the form of design patterns. Taking into
account more than one aspect can be a little harder, but many large scale success-
ful projects in industry provide some evidence that engineers know how different
concerns should be handled. The real challenge is reducing the effort that the
engineer has to expend when grappling with many inter-dependent concerns. For
example, in a product-line context, when an engineer wants to replace a variant
of an aspect used in a system, she should be able to do this cheaply, quickly and
safely. Manually weaving every aspect is not an option.

Unlike many models used in the sciences, models in software and in linguis-
tics have the same nature as the things they model. In software, this provides
an opportunity to automatically derive software from its model, that is, to au-
tomate the weaving process. This requires models to be formal, and the weaving
process be described as a program (i.e., an executable meta-model) manipulat-
ing models to produce a detailed design. The detailed design produced by the
weaving process can ultimately be transformed to code or at least test suites.

In the above, we make the case that aspects are at the core of Model Driv-
en Engineering. From this perspective, work on aspect-oriented approaches to
modeling is important because it can yield significant insights into how the MDE
vision of software development can be realized. There is thus a growing commu-
nity interested in the convergence of Aspect-Oriented Software Development
(AOSD) and MDE ideas. In this issue, we present papers that provide good ex-
amples of how AOSD and MDE ideas can be integrated to produce techniques
that manage software complexity.

2 Content of this Special Issue

The papers in this issue cover a number of issues including the following:

– Methods and techniques supporting separation, composition, and evolution
of aspects identified in different development phases (e.g., requirements, ar-
chitecture, detailed design, deployment).

– Simulating runtime weaving of aspects using aspect-oriented models.
– Techniques for verifying and validating aspect-oriented models.



– AOM case studies that provide significant insights into how aspect-oriented
modeling techniques can be applied across the development life-cycle.

– Providing tool support for use of integrated AOSD and MDE techniques.
– Providing language support for aspect-oriented modeling.

Submissions

Dynamic Weaving of Aspect-Oriented Executable UML models In this
paper, the authors, Lidia Fuentes and Pablo Sanchez, present a model weaver
that can be used to simulate runtime weaving of aspects at design time. This
allows designers to identify and correct errors that can arise as a result of dy-
namic weaving before expending significant effort and cost on implementing the
design. The ideas are illustrated using a location-aware intelligent transportation
system.

On Language-Independent Model Modularisation In this paper, the au-
thors, Florian Heidenreich, Jakob Henriksson, Jendrik Johannes, and Steffen
Zschaler, present a generic approach to modularizing and composing models.
The approach can be adapted to construct language- and purpose-specific com-
position techniques for specific modelling languages. The authors claim that the
approach can be used as (1) a tool for developing specific model modularisa-
tion and composition techniques, and (2) a research instrument for studying
properties and concepts of model modularisation.

Aspects across Software Life Cycle: A Goal-Driven Approach In this
paper, the authors, Nan Niu, Yijun Yu, Bruno Gonzalez-Baixauli, Neil Ernst,
Julio Cesar Sampaio do Prado Leite, and John Mylopoulos, propose a model-
driven framework for tracing aspects from requirements to testing and implemen-
tation. In the framework, goal models are engineering assets and model-to-code
transformations are used to bridge the gap between domain concepts and imple-
mentation technologies. The frameworks applicability and usefulness is evaluated
using an open-source e-commerce platform case study.

Aspect-Oriented Model-Driven Software Product Line Engineering In
this paper, the authors, Iris Groher and Markus Voelter, present an integrated
AOSD and MDE approach to variability implementation, management, and trac-
ing in product-line development of software. Features are modeled separately and
the models are composed using aspect-oriented composition techniques. Model
transformations are used to transform problem models to solution models. The
ideas presented in the paper are illustrated using a home automation system
case study.



Constraint-based ModelWeaving In this paper, the authors, Jules White,
Jeff Gray, and Douglas C. Schmidt, present a constraint-based weaving tech-
nique that reduces model weaving to a constraint satisfaction problem (CSP). A
constraint solver is used to deduce an appropriate weaving strategy. The paper
also presents the results of a case study in which the constraint-based weaving
technique is applied to an enterprise Java application. The evaluation showed
that use of the technique resulted in a reduction of manual effort.

MATA: A Unified Approach for Composing UML Aspect Models
based on Graph Transformation In this paper, the authors, Jon Whittle,
Praveen Jayaraman, Ahmed Elkhodary, Ana Moreira and Joo Arajo, describe
an aspect-oriented modeling technique called MATA (Modeling Aspects Using
a Transformation Approach). MATA uses graph transformations to specify and
compose aspects. In MATA, any model element can be a join point and com-
position is a special case of model transformation. MATA has been applied to a
number of realistic case studies and is supported by a tool built on top of IBM
Rational Software Modeler.

Model Driven Theme/UML In this paper, the authors, Andrew Carton,
Cormac Driver, Andrew Jackson and Siobhan Clarke, describe how the Theme/UML
approach to modularizing and composing concerns can be integrated with MDE
techniques. The resulting method includes a tool-supported technique for trans-
forming platform-independent models to platform-specific models. The trans-
formation tool utilizes standards defined in the Object Management Group’s
Model Driven Architecture. The paper also describes a process that guides the
use of the MDE/AOSD techniques. The utility of the approach is demonstrated
through a case study.

2.1 Biographies

Robert France: Professor Robert France is a full professor in the Department
of Computer Science at Colorado State University. He is actively engaged in
research on object-oriented (OO) modeling, aspect-oriented modeling, model
transformations, and formal description techniques. He is an editor-in-chief for
the journal on Software and System Modeling (SoSyM) and is an Software Area
Editor for the IEEE Computer. He was organizing chair for the Second Confer-
ence on the UML, past chair of the UML Conference steering committee and
member of the MoDELS Conference steering committee.

Jean-Marc Jézéquel: Prof. Jean-Marc Jezequel received an engineering degree
in Telecommunications from the ENSTB in 1986, and a Ph.D. degree in Com-
puter Science from the University of Rennes, France, in 1989. He first worked in
Telecom industry (at Transpac) before joining the CNRS (Centre National de la
Recherche Scientifique) in 1991. Since October 2000, he is a Professor at the U-
niversity of Rennes, leading an INRIA research team called Triskell. His interests



include model driven software engineering based on object oriented technologies
for telecommunications and distributed systems. He is the author of the books
”Object-Oriented Software Engineering with Eiffel” and ”Design Patterns and
Contracts” (Addison-Wesley 1996 and 1999), and of more than 100 publications
in international journals and conferences. He is a member of the steering com-
mittees of the AOSD and the MODELS/UML conference series. He also served
on the editorial boards of IEEE Transactions on Software Engineering and on
the Journal on Software and System Modeling: SoSyM and the Journal of Object
Technology: JOT.

For more information please visit http://www.irisa.fr/prive/jezequel


