
K@RT: An Aspect-Oriented and Model-Oriented
Framework for Dynamic Software Product Lines⋆

Brice Morin, Olivier Barais, and Jean-Marc Jéźequel

IRISA / INRIA Rennes / Universit́e Rennes 1
EPI Triskell, Campus de Beaulieu

35042 Rennes Cedex, France

Abstract. Software systems should often propose continuous services and can-
not easily be stopped. However, in order to meet new requirements from the user
or the marketing, systems should be able to evolve in order to propose newser-
vices or modify existing ones. Adapting software systems at runtime is notan
easy task and should be realize with attention. In this paper, we present K@RT,
our generic and extensible framework for managing dynamic softwareproduct
lines. K@RT is composed of three parts:i) a generic and extensible metamodel
for describing running systems at a high-level of abstraction,ii) a set of meta-
aspects that extends the generic metamodel with constraint checking, supervis-
ing and connections with execution platformsiii) some platform-specific causal
connections that allow us to supervise systems running on different execution
platforms.

1 Introduction

Developing, testing and validating adaptive systems is a daunting task. Indeed, such
systems can propose a wide range of possible configurations at runtime [15, 19]. These
systems can be seen as Dynamic Software Product Lines (DSPL)that can reconfigure
themselves at runtime.

In order to facilitate the development, test and validationof DSPLs, we propose
K@RT, our aspect-oriented and model-oriented framework for supervising component-
based systems. This generic framework is independent from any underlying execution
platform and proposes to maintain a reference model at runtime [8]. Using this high-
level view of the running system, we can navigate the runtimearchitecture using model-
oriented languages [21] and invoke services that are delegated to the running system.
K@RT also allows to adapt the running system by modifying itsruntime model, check-
ing constraints on the modified model and comparing the actual reference model to the
modified model. This process produces a safe reconfigurationscript that is executed
on the running system. The modified model may be obtained withhigh-level model-
transformation languages [21] or Aspect-Oriented Modeling (AOM) approaches [13,
17, 20], avoiding users to write low-level platform-specific reconfiguration scripts.

The remainder of this paper is organized as follows. Section2 introduces our generic
and extensible metamodel for representing models at runtime. Section 3 briefly presents

⋆ This work was funded by the DiVA project (EU FP7 STREP, Theme 1.2: Service and Software
Architectures, Infrastructures and engineering, Contract 215412)

our causal link between a running system and a runtime model.Section 4 details the
aspect-oriented architecture of K@RT. Section 5 evaluatesour framework. Finally, Sec-
tion 6 concludes and outlines future works.

2 A Generic and Extensible Metamodel for Runtime Models

In this section, we present our generic metamodel1 for representing component-based
systems at runtime. This metamodel does not aim at representing high-level architec-
tures but focuses on abstracting a running system. This metamodel is independent from
any execution platform and can easily be mapped on Fractal [9, 10], OpenCOM [11],
PEtALS ESB [1] or SCA [2].

Fig. 1.A Generic and Extensible Metamodel

Our generic metamodel is separated in three packages, as illustrated in Figure 1.
The type package defines the notion of component type. A component type contains
some ports. Each port has a UML-like cardinality (upper and lower bounds) indicating
if the port is optional (lowerBound== 0) or mandatory (lowerBound> 0). It also in-
dicate if the port only allows single bindings (upperBound== 1) or multiple bindings
(upperBound> 1). A port also declares a role (client or server) and is associated to a
service. A service encapsulates some operations, defined bya name, a return type and
some parameters. Basically, a service has a similar structure than a Java interface.

1 In this paper, “metamodel” refers to the MOF terminology, not the middleware terminology.

The instancepackage defines the actual topology of a running system. A compo-
nent has a type and a state (ON/OFF), specifying whether the component is started
or stopped. It can be bound to other instances by a collaboration binding, linking a
provided service (server port) to a required service (client port). A composite instance
can additionally declare sub-instances and delegation bindings. Note that our meta-
model allows shared components as a component may have several super components.
A delegation binding specifies that a service from a sub-component is exported by the
composite instance.

The implementation package contains metaclasses responsible for encapsulating
the platform-specific attributes needed to implement components for a given platform.
For example in Fractal, we should specify the implementation class (contentDesc) and
a controller (controllerDesc) in order to be able to create a component.

We prefered to define a domain-specific metamodel (DSM) rather than reusing for
example the UML 2.0 metamodel. Indeed, a reference model conforming to this meta-
model is causally connected to the running system. Using a DSM allows us to reduce
the number of entities that have to be maintained at runtime and consequently limit the
memory overhead. This metamodel is strongly-typed and allows us to define algorithms
with few casts whereas it is often necessary to perform castswhen working at the plat-
form level as they often deal with losely-typed objects. Moreover, this metamodel is
aligned on the Service Component Architecture (SCA) [2] metamodel proposed by the
Open Service Oriented Architecture collaboration (OSOA) [3] that brings together in-
dustrial partners like IBM, Sun, Oracle, SAP or Siemens. Ourmetamodel can be seen as
a ligthweight version of SCA. This allows us to easily map ourmetamodel to SCA [2]
and reuse the tools provided by SCA, such as a graphical editor to visualize the runtime
architecture.

3 A Model-Driven Causal Connection

This section briefly presents our model-driven causal connection between a reference
model, conforming to the metamodel we have presented in Section 2, and an execution
platform. Currently, we have implemented such a causal connection for the Fractal [9,
10] platform but it can also be implemented for other component-based execution plat-
forms like OpenCOM [11] or PEtALS [1], if they provide reflection and dynamic re-
configuration mechanisms. The architecture of this causal connection is illustrated in
Figure 2 and is detailed in the next two subsections.

TheModel2Platformcomponent is in charge of reflecting the changes of the model
to the platform. This components will be detailed in this section. Identically, thePlat-
form2Modelcomponent reflects the changes of the running system to the model. These
two components use theFactorycomponent in order to instantiate model elements from
runtime entities, and vice-versa. TheRootcomponent is a composite component that
contains the system designed by the user. This component is not really part of the causal
link and may be deployed on a different site than the other components implementing
the causal connection.

Fig. 2.Architecture of our Causal Connection

3.1 From Platform to Model

This subsection describes how we generate and update a reference model that repre-
sents, at a higher level of abstraction, the running system.

Fractal [9, 10] and all the reflective component-based execution platforms propose
mechanisms for introspecting a running system. These mechanisms allows to discover
which components actually compose the system, how they are bound to each others, etc.
We extend the introspection operations provided by middleware approaches in order to
discover the operations and their parameters that are provided/required by ports. In
the Java-based distribution of Fractal or OpenCOM, each port (provided or required
interface) is associated to a Java interface. We use thejava.lang.reflect API to
discover these operations and give a more precise view of thesystem.

Using reflection is very useful to instantiate a model from scratch. But, if we want to
keep the model up-to-date, instantiating a complete model periodically may be time and
resource consuming if only minor changes occurs. We have instrumented the Fractal
platform to observe and notify all the architectural reconfigurations that appear in the
running system. This allows us to update the reference model.

Finally, it is possible to visualize the runtime architecture in the graphical editor
provided by SCA. Indeed, we have defined a model transformation in Kermeta [21],
that maps the concepts of our metamodel to the concepts of SCA.

3.2 From Model to Platform

This subsection describes the other part of our causal connection. In K@RT, the only
way to adapt a running system is to submit a new model to the causal link (see Sec-
tion 4). When a new model is submitted to the causal link, we perform a difference
analysis between the modified model and the actual referencemodel. In the current
implementation of K@RT, we use EMF Compare [4] in order to realize this analysis.
EMFCompare provides a generic comparison engine that can becustomized for any
domain-specific metamodel.

After analyzing the output provided by the comparison engine, we can determine
what has been removed from the model, added into the model or updated. However,
we cannot directly adapt the running system using these elements. Indeed, we cannot
ensure that the order we discover the modifications during the analysis will result in

a consistent adaptation of the running system. For example,if we discover that some
bindings and some components have been removed, it would probably lead to dangling
bindings in the running system if we directly adapt the system. In order to adapt the
running system in a consistent way, we reify every significant modification as a com-
mand. Each command declares a priority (e.g., a command that removes a binding has
a higher priority than a command that removes a component). These commands are
automatically ordered with a Comparator. Once all the commands are instantiated, they
are executed in the right order in order to actually adapt therunning system. We first
stop the components that needs to be stopped, we remove all the bindings and the com-
ponents, add the new components and the bindings and finally restarts the components.

4 K@RT: Kermeta at RunTime

This section presents our aspect-oriented and model-oriented framework for supervis-
ing component-based systems at runtime. This framework is based on the generic and
extensible metamodel presented in Section 2 (Figure 1) and is implemented in Ker-
meta [21]. Three Kermeta meta-aspects,constraint checker, supervising and plat-
form adapter extends the generic metamodel, as illustrated in Figure 3. Kermeta meta-
aspects allows us to statically introduce new features in existing model elements: adding
classes in packages, adding super classes in the inheritance tree, adding and implement-
ing new operations and adding contracts (invariants, pre/post conditions).

4.1 Constraint checker meta-aspect

This subsection details the constraint checker meta-aspect. This aspect weaves invari-
ants into metaclasses. These invariants can be written in OCL [5] and translated into
Kermeta thanks to the OCL Kermeta plugin, or directly written in Kermeta. We illus-
trate this aspect by detailing one of the invariants we have implemented.

The completeCollaborationBindingsinvariant illustrated in Figure 4 specifies that
all the client (PortRole.CLIENT) and non optional ports defined in the type (self.type) of
the component should be targeted (b.client) by the client reference of a binding owned
by the component (self.binding).

This invariant uses the OCL-compliant operators provided by Kermeta (e.g.select,
forAll, exists, etc), which significantly reduce the complexity of writing invariants. The
same invariants implemented in Java/EMF needs 15 lines of code and would even be
more complex if it was directly implemented using the platform API.

Specifying constraints on the metamodel allows us to check well-formedness rules
that all the runtime models, and consequently all the running systems must respect.
Using model-oriented constraint languages like OCL or Kermeta allows designers to
rapidly implement such invariants as these languages propose high-level operators for
manipulating models. Note that it is possible to aspectizedthis constraint checker aspect
in order to implement additional constraint. For example, if the underlying execution
platform do not support shared component, an invariant can check that components
have no more than one super component. Currently, 6 invariants are implemented in the
constraint checker aspect.

Fig. 3. K@RT overview

4.2 Supervising meta-aspect

The supervising aspect implements an administration console. It introduces two meta-
classes:DisplayContextandDisplayElement. TheDisplayContextmetaclass is respon-
sible for managing the history of the administration console and provides some useful
method for displaying information. TheDisplayElementsimply defines an abstract op-
erationdisplay(context : DisplayContext). In the aspect, this metaclass is introduced as
a super class for all the elements that may be displayed:Component, ComponentType,
Binding, etc. Thedisplayoperation is implemented in each subclass. TheDisplayCon-
text andDisplayElementmetaclasses can be seen as an interactive and history-aware
visitor pattern allowing to display the elements chosen by the user and to go back to the
previously visited elements.

4.3 Adapter meta-aspect

This aspect is responsible for connecting Kermeta to the execution platform. Kermeta
proposes a seamless mechanisms for calling Java programs. Thus, it is possible to con-
nect our K@RT framework with Java-based distribution of Fractal (Julia, AOKell),

1 aspect c l a s s Component {
2 inv completeCollaborationBindings i s do
3 self.type.ports.select{p |
4 not p.isOptional and p.role == PortRole.CLIENT}
5 .forAll{p |self.binding.exists{b | b.client == p}}
6 end
7 }

Fig. 4.Component metaclass aspectized with an invariant

OpenCOM, PEtALS ESB, etc. Currently, the Fractal adapter isfully functional and
other adapters are under development. The adapter aspect proposes operations for:

– Instantiating the reference model from scratch using the introspection API provided
by the underlying middleware platform. In Fractal, we use the content, binding,
name, lifecycle and attribute controllers.

– Getting the current reference model using the notification mechanisms provided
by the underlying middleware platform. This allows updating the reference model
instead of generating it from scratch. We have implemented anew controller for
Fractal that notifies all the runtime architectural changesto registered observers.

– Loading a model. It loads the model, analyzes the diff and match models and com-
putes a safe reconfiguration script, as described in Section3.

– Invoking services. Fractal does not propose controllers for easily accessing and
invoking methods in a reflective way. We tackle this issue by directly using the
java.lang.reflect API in order to discover which operations can be called
and actually call them from Kermeta. We plan to integrate this implementation in a
Fractal controller.

4.4 Discussion

K@RT is implemented according to our generic metamodel, instead of directly refering
to an underlying execution platforme.g.Fractal, OpenCOM, PEtALS, etc. It allows us
to reuse it for different platforms provided that they couldbe mapped, in both directions,
to the metamodel. However, if the execution platform cannotdirectly be mapped to the
metamodel, it is possible to aspectize the metamodel and therelated meta-aspects to
extend them with new concepts.

Fractal Explorer [6] is a tool for managing Fractal-based applications via a graphical
console. Currently, our console is textual but it would be possible to connect K@RT to a
Java-based graphical console, as Kermeta programs can be connected to Java programs.
The main differences between Fractal Explorer and K@RT are summarized below:

– K@RT is technology independent while Fractal Explorer is based on Fractal. In-
deed, K@RT is based on our generic and extensible metamodel that allows us to
connect it to different execution platforms

– K@RT offers a higher level of abstraction. Indeed, in Fractal Explorer all the details
of the Fractal component model are displayed in the console:content-controller,
binding-controller, lifecycle-controller, etc. In K@RT,a Fractal component that
declares a binding-controller and a lifecycle-controlleris simply represented by
a component that contains some bindings and declares a state. The Fractal-specific
notion of controller is abstracted.

– K@RT offers a higher level reconfiguration process. Indeed,K@RT proposes to
adapt the running system by modifying the reference model. It is possible to use any
transformation languages like Kermeta [21] or Aspect-Oriented Modeling tools [13,
17, 20] to modify the model. Then, this modified model is checked and automati-
cally translated in a safe reconfiguration script. Fractal explorer is limited to fine
grained reconfiguration.

5 Evaluation of K@RT

In order to evaluate K@RT, we have implemented a prototype inFractal. This example
is based on the service discovery system [14]. A service discovery system can either
advertiseor requestservices. It can also provide both functionalities. A service discov-
ery system can communicate via several technologies (at least one). In this example,
we propose WiFi and Bluetooth (BT). Figure 5 shows the complete architecture of the
service discovery system, with both roles and both communication technologies. This
model is automatically generated from the running system and mapped to SCA.

We define each functional role (Advertiser or Requester) as an aspect and each com-
munication technology (WiFi or Bluetooth) as an aspect. We use an Aspect-Oriented
Modeling tool (SmartAdapters [16–18]) to weave these aspects and produce all the
possible configurations [17, 22]. There exists 9 possible configurations for the service
discovery system: Advertiser role, Requester role or both and WiFi, Bluetooth or both.
Consequently there is 9*(9-1) = 72 possible transitions from one configuration to an-
other. Our causal link succeed to reconfigure the system at runtime for all these 72
transitions. The average time for reconfiguration was 200 ms.

Since all the aspects are independent from each others, it would be possible to han-
dle the adaptive behavior of the service discovery systems with 8 scripts, for adding/re-
moving each aspects. The identification of aspect dependencies and the generation of
the minimal set of reconfiguration scripts will be subject tofuture work.

6 Conclusion and Future Works

In this paper, we have presented K@RT, our framework for developing, testing and vali-
dating Dynamic Software Product Lines (DSPL). This framework allows us to construct
adaptive systems by defining model transformations [21] or weaving aspects into a base
model [17, 22]. It is possible to check the different configurations of the system, rep-
resented by platform independent models (compliant with SCA) that can be visualized
in a graphical editor. Finally, using our causal link, it is possible to adapt a system at
runtime and switch from one configuration to another, without writing reconfiguration
scripts.

Fig. 5.Service Discovery Runtime Architecture

In future work, we plan to reuse an existing framework for monitoring interesting
properties of the environment and develop a reasoning framework that will automat-
ically select or generate (e.g., by weaving some aspects into a base model) the most
adapted configuration. After checking some constraints, our causal link will automati-
cally reconfigure the running system. We plan to use the WildCAT monitoring frame-
work [12] in combination with the Intel Mobile Platform Software Development Kit [7]
that provides a set of implemented probes.

Acknowledgment

Brice Morin thanks theCollège Doctoral Internationalof the Universit́e Euroṕeenne
de Bretagnefor funding his visit to Lancaster University.

References

1. PEtALS: The Open Source ESB Solution for Services Oriented Architectures.
http://petals.ow2.org/.

2. Service Component Architecture http://www.eclipse.org/stp/sca/.
3. Open Service Oriented Architecture http://www.osoa.org/.

4. EMF Compare http://www.eclipse.org/emft/projects/compare/.
5. Object Constraint Language Specification, version 2.0

http://www.omg.org/technology/documents/formal/ocl.htm/.
6. Fractal Explorer http://fractal.ow2.org/fractalexplorer/.
7. Intel Mobile Platform Software Development Kit. http://ossmpsdk.intel.com/ and

http://sourceforge.net/projects/mpsdk.
8. N. Bencomo, G. Blair, and R. France. Models@run.time (at MoDELS) workshops.

http://www.comp.lancs.ac.uk/bencomo/MRT.
9. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J-B. Stefani. An Open Component

Model and Its Support in Java. InCBSE’04: 7th Int. Symp. on Component-based Software
Engineering, pages 7–22, 2004.

10. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.B. Stefani. The FRACTAL Com-
ponent Model and its Support in Java.Software Practice and Experience, Special Issue on
Experiences with Auto-adaptive and Reconfigurable Systems, 36(11-12):1257–1284, 2006.
Fractal is available at: http://fractal.ow2.org/.

11. G. Coulson, G. Blair, M. Clarke, and N. Parlavantzas. The Design of a Configurable and
Reconfigurable Middleware Platform.Distrib. Comput., 15(2):109–126, 2002. OpenCOM
is available at: http://sourceforge.net/projects/gridkit.

12. P.C. David and T. Ledoux. An Aspect-Oriented Approach for Developing Self-Adaptive
Fractal Components. InSC’06: 5th Int. Symposium on Software Composition, volume 4089
of Lecture Notes in Computer Science, pages 82–97, Vienna, Austria, 2006.

13. F. Fleurey, B. Baudry, R. France, and S. Ghosh. A Generic Approach For Automatic Model
Composition. InAOM@MoDELS’07: 11th Int. Workshop on Aspect-Oriented Modeling,
Nashville TN USA, Oct 2007.

14. C. Flores-Cort́es, G. Blair, and P. Grace. An Adaptive Middleware to Overcome Service
Discovery Heterogeneity in Mobile Ad Hoc Environments.IEEE Dist. Systems Online,
8(7):1, 2007.

15. S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dynamic Software Product Lines.
IEEE Computer, 41(4):93–95, 2008.

16. Ph. Lahire, B. Morin, G. Vanwormhoudt, A. Gaignard, O. Barais,and J. M. J́eźequel. In-
troducing Variability into Aspect-Oriented Modeling Approaches. InMoDELS’07: 10th Int.
Conf. on Model Driven Engineering Languages and Systems, Nashville USA, October 2007.

17. B. Morin, O. Barais, and J. M. Jéźequel. Weaving Aspect Configurations for Managing
System Variability. InVaMoS’08: 2nd Int. Workshop on Variability Modelling of Software-
intensive Systems, Essen, Germany, January 2008.

18. B. Morin, O. Barais, J. M. J́eźequel, and R. Ramos. Towards a Generic Aspect-Oriented
Modeling Framework. In3rd Int. ECOOP’07 Workshop on Models and Aspects, Handling
Crosscutting Concerns in MDSD, Berlin, Germany, August 2007.

19. B. Morin, F. Fleurey, N. Bencomo, J-M. Jéźequel, A. Solberg, V. Dehlen, and G. Blair. An
Aspect-Oriented and Model-Driven Approach for Managing Dynamic Variability. In MoD-
ELS’08: 11th Int. Conf. on Model Driven Engineering Languages andSystems, Toulouse,
France, October 2008.

20. B. Morin, J.Klein, O. Barais, and J. M. Jéźequel. A Generic Weaver for Supporting Product
Lines. InEA@ICSE’08: Int. Workshop on Early Aspects, Leipzig, Germany, May 2008.

21. P.A. Muller, F. Fleurey, and J. M. Jéźequel. Weaving Executability into Object-Oriented
Meta-languages. InMoDELS’05: 8th Int. Conf. on Model Driven Engineering Lan-
guages and Systems, Montego Bay, Jamaica, Oct 2005. Springer. Kermeta is available at:
http://www.kermeta.org.

22. G. Perrouin, J. Klein, N. Guelfi, and J.M. Jéźequel. Reconciling Automation and Flexibility
in Product Derivation. InSPLC’08: 12th Int. Conf. on Software Product Lines, 2008.

