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Abstract. Software systems should often propose continuous services and can-
not easily be stopped. However, in order to meet new requirememntstfr® user
or the marketing, systems should be able to evolve in order to proposearew
vices or modify existing ones. Adapting software systems at runtime iamot
easy task and should be realize with attention. In this paper, we preseRTK@
our generic and extensible framework for managing dynamic softperguct
lines. K@RT is composed of three parfsa generic and extensible metamodel
for describing running systems at a high-level of abstraciiprg set of meta-
aspects that extends the generic metamodel with constraint checkpegyisu
ing and connections with execution platforifiy some platform-specific causal
connections that allow us to supervise systems running on differentigome
platforms.

1 Introduction

Developing, testing and validating adaptive systems isumtilag task. Indeed, such
systems can propose a wide range of possible configurationatane [15, 19]. These
systems can be seen as Dynamic Software Product Lines (ODB&i.gan reconfigure
themselves at runtime.

In order to facilitate the development, test and validatérDSPLs, we propose
K@RT, our aspect-oriented and model-oriented framewarkdipervising component-
based systems. This generic framework is independent frgnuaderlying execution
platform and proposes to maintain a reference model atmenf8]. Using this high-
level view of the running system, we can navigate the runtinclitecture using model-
oriented languages [21] and invoke services that are deléda the running system.
K@RT also allows to adapt the running system by modifyingutgime model, check-
ing constraints on the modified model and comparing the haference model to the
modified model. This process produces a safe reconfiguratiopt that is executed
on the running system. The modified model may be obtained Wgh-level model-
transformation languages [21] or Aspect-Oriented Mode(iAOM) approaches [13,
17, 20], avoiding users to write low-level platform-specieconfiguration scripts.

The remainder of this paper is organized as follows. Se@iotroduces our generic
and extensible metamodel for representing models at ren@action 3 briefly presents
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our causal link between a running system and a runtime m&getion 4 details the
aspect-oriented architecture of K@RT. Section 5 evaluaieframework. Finally, Sec-
tion 6 concludes and outlines future works.

2 A Generic and Extensible Metamodel for Runtime Models

In this section, we present our generic metambisl representing component-based
systems at runtime. This metamodel does not aim at repregdrnigh-level architec-
tures but focuses on abstracting a running system. Thismoetal is independent from
any execution platform and can easily be mapped on FractaD[90OpenCOM [11],
PEtALS ESB [1] or SCA [2].
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Fig. 1. A Generic and Extensible Metamodel

Our generic metamodel is separated in three packagesussatied in Figure 1.
The type package defines the notion of component type. A componeet d¢gptains
some ports. Each port has a UML-like cardinality (upper awveer bounds) indicating
if the port is optional lowerBound== 0) or mandatorylowerBound> 0). It also in-
dicate if the port only allows single bindingafperBound== 1) or multiple bindings
(upperBound> 1). A port also declares a role (client or server) and is daset to a
service. A service encapsulates some operations, definachbyne, a return type and
some parameters. Basically, a service has a similar steutien a Java interface.

1 In this paper, “metamodel” refers to the MOF terminology, not the middiewerminology.



The instance package defines the actual topology of a running system. Aboem
nent has a type and a state (ON/OFF), specifying whetherdh®gpanent is started
or stopped. It can be bound to other instances by a collabarainding, linking a
provided service (server port) to a required service (tlpamt). A composite instance
can additionally declare sub-instances and delegatiodirgs. Note that our meta-
model allows shared components as a component may havalssweer components.
A delegation binding specifies that a service from a sub-aapt is exported by the
composite instance.

The implementation package contains metaclasses responsible for encapgulati
the platform-specific attributes needed to implement carepts for a given platform.
For example in Fractal, we should specify the implementatiass ¢ontentDestand
a controller ¢ontrollerDesg in order to be able to create a component.

We prefered to define a domain-specific metamodel (DSM) rdktiaa reusing for
example the UML 2.0 metamodel. Indeed, a reference modébooing to this meta-
model is causally connected to the running system. Using i Bi®ws us to reduce
the number of entities that have to be maintained at runtimlecansequently limit the
memory overhead. This metamodel is strongly-typed anvallss to define algorithms
with few casts whereas it is often necessary to perform edsts working at the plat-
form level as they often deal with losely-typed objects. Bwer, this metamodel is
aligned on the Service Component Architecture (SCA) [2]anmeidel proposed by the
Open Service Oriented Architecture collaboration (OSCG#)that brings together in-
dustrial partners like IBM, Sun, Oracle, SAP or Siemens. @etamodel can be seen as
a ligthweight version of SCA. This allows us to easily map matamodel to SCA [2]
and reuse the tools provided by SCA, such as a graphicakediisualize the runtime
architecture.

3 A Model-Driven Causal Connection

This section briefly presents our model-driven causal cotime between a reference
model, conforming to the metamodel we have presented indde2tand an execution
platform. Currently, we have implemented such a causal ection for the Fractal [9,

10] platform but it can also be implemented for other compiiiased execution plat-
forms like OpenCOM [11] or PEtALS [1], if they provide reflémt and dynamic re-

configuration mechanisms. The architecture of this causahection is illustrated in

Figure 2 and is detailed in the next two subsections.

TheModel2Platformcomponent is in charge of reflecting the changes of the model
to the platform. This components will be detailed in thistget Identically, thePlat-
form2Modelcomponent reflects the changes of the running system to thlelnthese
two components use tl&@ctorycomponent in order to instantiate model elements from
runtime entities, and vice-versa. TR®otcomponent is a composite component that
contains the system designed by the user. This componeuttigally part of the causal
link and may be deployed on a different site than the otherpmrants implementing
the causal connection.
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Fig. 2. Architecture of our Causal Connection

3.1 From Platform to Model

This subsection describes how we generate and update ameéemodel that repre-
sents, at a higher level of abstraction, the running system.

Fractal [9, 10] and all the reflective component-based ei@typlatforms propose
mechanisms for introspecting a running system. These mésha allows to discover
which components actually compose the system, how theyoanmedto each others, etc.
We extend the introspection operations provided by middtevapproaches in order to
discover the operations and their parameters that aredadirequired by ports. In
the Java-based distribution of Fractal or OpenCOM, each (poovided or required
interface) is associated to a Java interface. We usgdhi@. | ang. r ef | ect APIto
discover these operations and give a more precise view clytem.

Using reflection is very useful to instantiate a model fromaszh. But, if we want to
keep the model up-to-date, instantiating a complete magt@gically may be time and
resource consuming if only minor changes occurs. We haveumgnted the Fractal
platform to observe and notify all the architectural recgufations that appear in the
running system. This allows us to update the reference model

Finally, it is possible to visualize the runtime architeetin the graphical editor
provided by SCA. Indeed, we have defined a model transfoomaiti Kermeta [21],
that maps the concepts of our metamodel to the concepts of SCA

3.2 From Model to Platform

This subsection describes the other part of our causal ctioneln K@RT, the only
way to adapt a running system is to submit a new model to theatdink (see Sec-
tion 4). When a new model is submitted to the causal link, wéoper a difference
analysis between the modified model and the actual refeneciel. In the current
implementation of K@RT, we use EMF Compare [4] in order tdizegthis analysis.
EMFCompare provides a generic comparison engine that castemized for any
domain-specific metamodel.

After analyzing the output provided by the comparison eagime can determine
what has been removed from the model, added into the modgddated. However,
we cannot directly adapt the running system using theseegltsnindeed, we cannot
ensure that the order we discover the modifications duriegatialysis will result in



a consistent adaptation of the running system. For exarifples discover that some
bindings and some components have been removed, it woub@lpiylead to dangling
bindings in the running system if we directly adapt the systin order to adapt the
running system in a consistent way, we reify every significaadification as a com-
mand. Each command declares a prioréyg( a command that removes a binding has
a higher priority than a command that removes a componehgsd commands are
automatically ordered with a Comparator. Once all the conusare instantiated, they
are executed in the right order in order to actually adaptin@ing system. We first
stop the components that needs to be stopped, we remove hlhithings and the com-
ponents, add the new components and the bindings and fieatlyrts the components.

4 K@RT: Kermeta at RunTime

This section presents our aspect-oriented and modelteddramework for supervis-
ing component-based systems at runtime. This frameworkssd on the generic and
extensible metamodel presented in Section 2 (Figure 1) aumiplemented in Ker-
meta [21]. Three Kermeta meta-aspecatsnstraint checker, supervising and plat-
form adapter extends the generic metamodel, as illustrated in FigureeBniéta meta-
aspects allows us to statically introduce new featuresistiag model elements: adding
classes in packages, adding super classes in the inheritaec adding and implement-
ing new operations and adding contracts (invariants, pet/gonditions).

4.1 Constraint checker meta-aspect

This subsection details the constraint checker meta-aspkis aspect weaves invari-
ants into metaclasses. These invariants can be written in [BICand translated into
Kermeta thanks to the OCL Kermeta plugin, or directly writte Kermeta. We illus-
trate this aspect by detailing one of the invariants we hangemented.

The completeCollaborationBindingsivariant illustrated in Figure 4 specifies that
all the client PortRole.CLIENY and non optional ports defined in the tygelf.typé of
the component should be targetédc({ien) by the client reference of a binding owned
by the componentsglf.binding.

This invariant uses the OCL-compliant operators providg&érmeta €.g.select,
forAll, exists, etc), which significantly reduce the comyptg of writing invariants. The
same invariants implemented in Java/EMF needs 15 linesdd end would even be
more complex if it was directly implemented using the platicAPI.

Specifying constraints on the metamodel allows us to chealkfarmedness rules
that all the runtime models, and consequently all the rupisipstems must respect.
Using model-oriented constraint languages like OCL or Ketemallows designers to
rapidly implement such invariants as these languages peopigh-level operators for
manipulating models. Note that it is possible to aspectizecconstraint checker aspect
in order to implement additional constraint. For exampi¢hé underlying execution
platform do not support shared component, an invariant tetkcthat components
have no more than one super component. Currently, 6 intargaa implemented in the
constraint checker aspect.
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Fig. 3. K@RT overview

4.2 Supervising meta-aspect

The supervising aspect implements an administration dengantroduces two meta-
classesDisplayContexandDisplayElementThe DisplayContexinetaclass is respon-
sible for managing the history of the administration coasad provides some useful
method for displaying information. THRisplayElemensimply defines an abstract op-
erationdisplay(context : DisplayContextn the aspect, this metaclass is introduced as

a super class for all the elements that may be displa@edponentComponentType
Binding etc. Thedisplayoperation is implemented in each subclass. DigplayCon-

text and DisplayElemeninetaclasses can be seen as an interactive and history-aware
visitor pattern allowing to display the elements choserguiser and to go back to the
previously visited elements.

4.3 Adapter meta-aspect

This aspect is responsible for connecting Kermeta to theutian platform. Kermeta
proposes a seamless mechanisms for calling Java programms. iTis possible to con-
nect our K@RT framework with Java-based distribution ofcka(Julia, AOKell),
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Fig. 4. Component metaclass aspectized with an invariant

OpenCOM, PEtALS ESB, etc. Currently, the Fractal adaptdully functional and
other adapters are under development. The adapter aspposps operations for:

— Instantiating the reference model from scratch using ttrespection API provided
by the underlying middleware platform. In Fractal, we use tlontent, binding,
name, lifecycle and attribute controllers.

— Getting the current reference model using the notificati@tmanisms provided
by the underlying middleware platform. This allows updgtthe reference model
instead of generating it from scratch. We have implementadva controller for
Fractal that notifies all the runtime architectural chartgeggistered observers.

— Loading a model. It loads the model, analyzes the diff anctimatodels and com-
putes a safe reconfiguration script, as described in Se8tion

— Invoking services. Fractal does not propose controllersefsily accessing and
invoking methods in a reflective way. We tackle this issue bgally using the
java. |l ang. refl ect API in order to discover which operations can be called
and actually call them from Kermeta. We plan to integrats ittmplementation in a
Fractal controller.

4.4 Discussion

K@RT is implemented according to our generic metamodeieatsof directly refering
to an underlying execution platformg.Fractal, OpenCOM, PEtALS, etc. It allows us
to reuse it for different platforms provided that they cobédmapped, in both directions,
to the metamodel. However, if the execution platform camlirgictly be mapped to the
metamodel, it is possible to aspectize the metamodel andcetated meta-aspects to
extend them with new concepts.

Fractal Explorer [6] is a tool for managing Fractal-basegpligptions via a graphical
console. Currently, our console is textual but it would bsgilole to connect K@RT to a
Java-based graphical console, as Kermeta programs camibeated to Java programs.
The main differences between Fractal Explorer and K@RT arensarized below:

— K@RT is technology independent while Fractal Explorer iseézhon Fractal. In-
deed, K@RT is based on our generic and extensible metamuatehltows us to
connect it to different execution platforms



— K@RT offers a higher level of abstraction. Indeed, in FreEiglorer all the details
of the Fractal component model are displayed in the consoletent-controller,
binding-controller, lifecycle-controller, etc. In K@R®§, Fractal component that
declares a binding-controller and a lifecycle-controleisimply represented by
a component that contains some bindings and declares aBtat&ractal-specific
notion of controller is abstracted.

— K@RT offers a higher level reconfiguration process. Indé&@RT proposes to
adapt the running system by modifying the reference motislpbssible to use any
transformation languages like Kermeta [21] or Aspect-atad Modeling tools [13,
17, 20] to modify the model. Then, this modified model is clegtknd automati-
cally translated in a safe reconfiguration script. Fractplarer is limited to fine
grained reconfiguration.

5 Evaluation of K@RT

In order to evaluate K@RT, we have implemented a prototypeadatal. This example
is based on the service discovery system [14]. A serviceod&y system can either
advertiseor requestservices. It can also provide both functionalities. A seewdliscov-
ery system can communicate via several technologies (st ¢ee). In this example,
we propose WiFi and Bluetooth (BT). Figure 5 shows the cotepdechitecture of the
service discovery system, with both roles and both comnatioic technologies. This
model is automatically generated from the running systethnaapped to SCA.

We define each functional role (Advertiser or Requesterhaspect and each com-
munication technology (WiFi or Bluetooth) as an aspect. \We an Aspect-Oriented
Modeling tool (SmartAdapters [16—18]) to weave these aspand produce all the
possible configurations [17, 22]. There exists 9 possibidigarations for the service
discovery system: Advertiser role, Requester role or both\&iFi, Bluetooth or both.
Consequently there is 9*%(9-1) = 72 possible transitionsnflane configuration to an-
other. Our causal link succeed to reconfigure the systemnditme for all these 72
transitions. The average time for reconfiguration was 200 ms

Since all the aspects are independent from each othersyltile possible to han-
dle the adaptive behavior of the service discovery systeitis8ascripts, for adding/re-
moving each aspects. The identification of aspect depereteand the generation of
the minimal set of reconfiguration scripts will be subjecfuture work.

6 Conclusion and Future Works

In this paper, we have presented K@RT, our framework forldgueg, testing and vali-
dating Dynamic Software Product Lines (DSPL). This framevadlows us to construct
adaptive systems by defining model transformations [21]eawing aspects into a base
model [17, 22]. It is possible to check the different confagions of the system, rep-
resented by platform independent models (compliant witA)38at can be visualized
in a graphical editor. Finally, using our causal link, it isggible to adapt a system at
runtime and switch from one configuration to another, withatiting reconfiguration
scripts.



Fig. 5. Service Discovery Runtime Architecture

In future work, we plan to reuse an existing framework for itaing interesting
properties of the environment and develop a reasoning framiethat will automat-
ically select or generatee(g, by weaving some aspects into a base model) the most
adapted configuration. After checking some constraintscausal link will automati-
cally reconfigure the running system. We plan to use the WAd@onitoring frame-
work [12] in combination with the Intel Mobile Platform Sefare Development Kit [7]
that provides a set of implemented probes.
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