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Abstract

As with other software development processes,
model-driven engineering of real time software sys-
tems include quality assurance and measurement.
Model-driven engineering (MDE) supports the de-
velopment of real-time software systems by means
of a set of languages, processes, methods and tools.
To measure the models, a dedicated measurement
software has to be developed, which is costly. In
this paper, we propose a framework to concisely
define and automatically implement an open-ended
family of metrics for real time software systems.
The overall contribution of this approach is to give
an instant, reliable and low cost implementation of
model metrics seamlessly integrated into modeling
tools.

1 Introduction

As with other software development processes,
model-driven engineering of real time software sys-
tems include quality assurance [1]. Assessing the
quality of a product built from a set of models,
involves the measurement of the resulting target.
However, to be able to drive the development pro-
cess all along the life cycle, it is needed to measure
the models themselves as well.

Model-driven engineering (MDE) supports the
development of real-time software systems by means
of a set of languages, processes, methods and tools
[2]. Domain specific modeling languages (DSML)
are specified and built so as to raise the level of
abstraction and increase the productivity.

To measure the models, a dedicated measurement
software has to be developed, which is costly. Time-
to-market and cost constraints do not allow to build
an ad hoc metric software. Indeed, the NASA rec-
ommends that the cost of measurement should not
add more than 2 percent to the software develop-
ment or maintenance effort [3].

In this paper, we propose a framework to con-
cisely define and automatically implement an open-
ended family of metrics for real time software sys-
tems. This framework generates the whole imple-
mentation and environment, both integrated into a

modeling tool. This framework enables to concen-
trate only on the conceptual level of the develop-
ment of metrics. The overall contribution of this ap-
proach is to give an instant, reliable and low cost im-
plementation of metrics seamlessly integrated into
modeling tools.

The remainder of this paper is organized as fol-
lows. In section 2, we explore the research question.
We then present our proposal (section 3), applied to
the measurement of a large scale AADL model (sec-
tion 4). We finish with a related work (section 5)
and conclude.

2 Research Question

In table 1, we list the high level requirements of a
real time model measurement software. Despite the
small number of requirements, each of them hides
an intrinsic complexity. For instance, requirement
#2 implies to have an open modeling environment,
to know its internals and to master the program-
ming languages used to implement it.

Indeed, a paper relating industrial experiences of
software measurement points out five lessons [4].
The second lesson states that software measurement
should focus on a particular area to limit the cost of
measurement [...]. Measurement is part of software
economics.

Model driven engineering involves models as in-
puts, and other models or source code as outputs.
This generative approach seeks to cut off the de-
velopment costs. An analysis of the requirements
presented in table 1 concludes that they are all ad-
dressable by code generation. This is emphasized
in the last column of the table. To sum up, our re-
search question is how to reduce the cost of devel-
opment of real time model measurement software.
Our intuition is to leverage model-driven engineer-
ing to generate the measurement software from an
high level description of what to measure.
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# Description Generatable
1 The model measurement tool is accessible via a command-line interface. Yes
2 The model measurement tool integrates into a modeling environment. Yes
3 The code includes an API to implement estimation models on top of metrics. Yes
4 The model measurement tool is extensible and gives a way to add new model metrics. Yes.

Table 1: Main requirements for a measurement tool.

3 Solution

3.1 Architecture

In this section, we present the architecture of model
driven measurement software (first introduced in
[5]).

The design of a DSML environment starts with
the metamodeling activity. DSMLs are specified by
the domain expert with a metamodel which identi-
fies the concepts of the domain and their relation-
ships. The domain expert also knows what needs to
be measured. Hence, we propose to give him a way
of defining the domain metrics. This is achieved by
a metric metamodel that identifies the good con-
cepts for the metric specification. Compared to an
ad hoc measurement software development, the do-
main expert defines the metrics at a higher level
of abstraction than code. These two functions are
depicted in figure 1.

Figure 1: The domain expert function

Tools have to be implemented to create, edit and
browse models as well as to check the conformity
to the metamodel. However, there exists toolchains
that generate this modeling environment conform
to a metamodel (e.g. EMF1 / Topcased2). We pro-
pose to add a module to such a toolchain that com-
piles the declarative description of metrics directly
in the DSML modeling environment to augment it
with metrics capabilities. This is depicted in figure
2.

1Eclipse Modeling Framework, see www.eclipse.org/emf
2Topcased is an open source CASE environment, see

www.topcased.org

Figure 2: The toolchain function

Finally, the DSML engineer is able to check its
model against the metric values, as shown in fig-
ure 3. Changes are instantly reflected in the met-
ric module of the modeling environment. This ap-
proach has three major advantages:

• metrics are defined at a higher level of abstrac-
tion without caring about how this can be im-
plemented in a DSML modeling environment;

• the implementation of the enhanced editor is
generated;

• DSML engineers can edit and measure models
in the same environment.

Figure 3: The engineer function

To sum up, the whole process is sketched on figure
4. This architecture generates the whole measure-
ment software integrated into a modeling tool. This
eventually gives an enhanced modeling environment
with metric capabilities.

3.2 Metric Metamodel

In this section, we present the metric metamodel.
This metamodel comes from the fact that a lot of
metrics in the literature are a kind of count metrics,
i.e. the number of a given kind of elements. The dif-
ficulty is to precisely define the elements that needs
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Figure 4: Model-driven engineering of metrics

to be counted. The definition of what to count is
called a predicate. Ratio, sums, weighted sums can
then be computed on top of these count metrics. All
these abstractions have been gathered in a meta-
model presented in the next paragraphs. We first
present the general mechanisms to specify metrics,
then the specification of predicates [6] in two dis-
tinct paragraphs.

In figure 5 is shown the backbone of the metric
metamodel. The domain expert defines a Metric-
SpecificationSet, composed of MetricSpecification.
Since the term ”metric” is polymorphic, we use the
term metric specification to be opposed to metric
values. A MetricSpecification is either a Predicate-
MetricSpecification, a ConstantMetricSpecification,
that simply handles constant values in metric ex-
pressions, and a DerivedSpecification that handle
arithmetic operators and more complex ones, e.g.
the exponential function (hidden in the figure).

A PredicateMetricSpecification contains a Predi-
cate. A predicate is a function that takes an object
as input and makes tests on it to determine if it has
to be counted. Predicates refer to the concepts ex-
pressed in the metamodel. The tests are made on
types, attribute values and/or referenced objects.
A predicate can be as long and complex as needed.
The metric value of a PredicateMetricSpecification
is the number of elements of a given model that
satisfy the predicate.

Figure 6: Main part of the predicate metamodel

As shown in figure 6, a predicate can be com-
posed of an arbitrary number of subpredicates, in
the same manner as a boolean function. Therefore,
the metamodel contains the AndPredicate, OrPred-
icate, and NotPredicate. There are also classes han-
dle tests on the type of the model element IsIn-
stance and IsDirectInstance: IsInstance tests the
metaclass the model element; IsDirectInstance tests
the metaclass or one of its superclasses. The re-
maining class is central and handles tests on fea-
tures of a given model element. In this context,
a feature means a slot (e.g. a string “foo”), or a
reference to another model element. This OnFea-
turePredicateClass is further presented in the next
paragraph.

Figure 7: Features management in the metric meta-
model

The figure 7 shows what are the possible tests on
a given feature, which are:

• EqualityPredicate enables to test whether a ref-
erence points to a model element referred by a
variable;

• StringValuePredicate enables to test the value
of a slot (e.g. a boolean equals to “false” or an
integer equals to “13”);

• ContainsPredicate enables to test if a collection
contains a model element referred by a vari-
able;

• MultiplicityPredicate enables to test the actual
size of a collection (not the multiplicity of the
reference in the metamodel);

• LambdaPredicate enables to apply a predicate
to all elements of a collection. It is subclassed
in Exists and ForAll to express first-order logic
quantifiers.

Given that a predicate can be as long and com-
plex as needed and that predicate metrics can be
composed together, this metamodel let the do-
main expert define an open-ended family of met-
rics. We show in the next sections our implementa-
tion choices and apply this framework to an AADL
model.
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Figure 5: General mechanisms of the metric metamodel

3.3 Implementation

Our prototype relies on the following technologies:
the metric metamodel is expressed in EMF/Ecore;
the metric specification can be expressed as an EMF
model, or using Kermeta 3. For each metric spec-
ification, a Kermeta program is generated. This
Kermeta program is built on top of a metric library,
implemented as an aspect on the metric metamodel.

Since, EMF and Kermeta work inside Eclipse, we
use the Eclipse API to listen to changes on models
files in order to automate the computation of met-
ric values. This prototype is a proof that our ap-
proach solves the requirements of table 1 by means
of model-driven engineering.

4 Case study

Our case study consists of the generation of a mea-
surement software for AADL models. We then com-
pute and present the metric values for an open
source industrial AADL model. The Architecture
Analysis & Design Language (AADL) is a compo-
nent based modeling language that supports early
analysis of a system’s architecture with respect to
performance-critical properties through an extend-
able notation, a tool framework, and precisely de-
fined semantics [8]. An excerpt of the AADL meta-
model is given figure 8.

3a model-driven language and workbench, see
www.kermeta.org and [7]

Figure 8: Excerpt of the AADL metamodel

The AADL model used is an open source model of
a flight display system. It was created by Rockwell
Collins and is part of the available resources on the
AADL website. It consists of 30400 model elements.
An excerpt of this model is given figure 9 with the
standard textual syntax.

bus Node_Switch
properties
Network_Speed => 120 Kbps;
Max_Transmission_Rate => 160 Kbps;
Max_Packet_Size => 1 KB;

end Node_Switch;

thread Periodic_1_Hz
properties
Dispatch_Protocol => Periodic;
Period => 1000 Ms;

end Periodic_1_Hz;

Figure 9: Excerpt of the AADL model used

We chose 9 metrics used by the real time system
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ID Value Interpretation
P1 5 saved in a database, used for cost and risk estimation afterwards.
P2 11 idem.
P3 69 idem.
P4 0 cf. D4
P5 0 the model is well-formed
D1 2.2 OK according to the empirical know-how.
D2 6.27 idem.
D3 13.8 is less than 30, acceptable.
D4 0 this indicates a low risk w.r.t. the load estimation.

Table 2: The generated measurement software output

architects of an automotive company. Our con-
tribution coupled to AADL give them the way to
automate and obtain reliable values compared to
their actual Word/Excel practices. The metric def-
initions are presented in the list below. D* stands
for derived, P* stands for predicate based metric,
as in the metamodel.

P1 The number of devices (a computing resource
in AADL);

P2 The number of processes;

P3 The number of threads;

P4 The number of non periodic threads;

P5 The number of orphan components i.e., that
are not connected to at least one port (this ap-
plies to SystemImpl, ProcessImpl). Real-time
systems architects really need to identify this
problem;

D1 The mean number of processes per device is
P2/P1;

D2 The mean number of threads per process is
P3/P2;

D3 The schedulability difficulty indicator is D1 ∗
D2. This is the number of tasks that the sched-
uler has to manage. Real-time systems archi-
tects recommend a strong risk warning to be
raised if this metric is evaluated to more than
30;

D4 The load predictability is P4/P3. If all threads
are periodic i.e., D4 → 0 and if they are well
defined in terms of CPU consumption, the load
of the device is easily predictable. On the con-
trary, if they are mainly sporadic or aperiodic
i.e., D4→ 1, it is extremely hard to predict the
load. In this case, real time systems architects
augment their security margins.

For sake of brevity we present only two formalized
metric specifications below (in this case study the
predicates are written in Kermeta). Note that, the
complexity of the predicate depends on the metric
and the metamodel architecture.

// expression of the predicate of N1
result:= component::DeviceImpl.isInstance(this)

// expression of the predicate of N4
result:= this.asType(component::ThreadImpl)

compType.properties.propertyAssociation.exists{ x |
x.propertyValue.exists{z |

(z.asType(~property::EnumValue)
.enumLiteral.name == "Aperiodic"

or z.asType(~property::EnumValue)
.enumLiteral.name == "Sporadic")}}

The framework compiles the specification of met-
rics into a Kermeta program built on top of a Ker-
meta library. With the proposed framework the
declarative specification of metrics is about 40 lines
of code, mainly to expressed the predicates in Ker-
meta. The whole implementation of the generated
measurement software is about 1000 lines. Given
that Kermeta is more concise than Java, and that
the library is the result of our measurement know-
how, the added value of our generative approach to
measurement software is significant. The workload
of the metric definition by the domain expert is re-
duced to its formalization in textual or graphical
syntax of the metric metamodel. The implementa-
tion is entirely automated.

This generated measurement software takes the
large scale AADL model mentionned above and pro-
duce the needed metric values, as shown in table 2.
According to architects, the most important metrics
are P5, P3, P4. They all indicate that the model
considered is manageable in regard to their know-
how. For instance, we note that the schedulability
difficulty indicator D3 is less than the empirical up-
per bound (30). According to project managers, P1,
P2 and P3 are important. They need to be saved in
a database, in order to ground future development
process analysis, cost and risk estimation.

This case study illustrated the applicability of our
model-driven approach to the measurement of real-
time models. The framework is intended to obtain
low cost measurement software, not only for AADL,
but also for any real time systems metamodel.
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5 Related Works

Metamodels and metrics Misic et al. [9] ex-
press a generic object-oriented metamodel using Z.
With this metamodel, they express a function point
metric using the number of instances of a given
type. They also express a previously introduced
metric called the system meter. Along the same
line, [10] extends the UML metamodel to provide
a basis for metrics expression and then use this
model to express known metrics suite with set the-
ory and first order logic. Our approach also uses
object models, set theory and logic. However, our
approach is fully executable.

In [11], the authors address the issue of model
metrics early in the life cycle. Hence, they present
a method to compute object-oriented design met-
rics from UML models. UML models from Rose
are parsed in order to feed their own tool in which
metrics are hard-coded. We also believe that met-
rics are needed in early life cycle and the genericity
of the predicate based metrics makes it usable for
design metrics. But it is also usable at any mo-
ment of a product life-cycle, since a step of a design
process can be considered as a domain per se.

On the implementation issue, [12] exposes a con-
crete design to compute semantic metrics on source
code. The authors create a relational database for
storing source code. This database is fed using a
modified compiler. Metrics are expressed in SQL
for simple ones, and with a mix of Java and SQL
for the others. We also believe that it is needed to
access the semantic elements of source code to ex-
press metrics. But the implementation presented
in [12] is complex and tightly coupled with the
source code and the metamodel unlike the predicate
based metric and our associated prototype which
are metamodel-independent. In [13], the authors
use XQuery to express metrics. Metrics are then
computed on XMI files. Our implementation relies
also on XML. But thanks to the Eclipse Modeling
Framework, it has a direct and complete access to
the metamodel whereas when considering syntactic
XML and XQuery, one has no direct access to the
metamodel.

Baroni et al. [14] propose to use OCL to express
metrics. They use their own metamodel exposed
in a previous paper. Likewise, in [15], the authors
use Java bytecode to instantiate the Dagstuhl meta-
model and express known cohesion metrics in OCL.
Our implementation relies on Kermeta which per-
mits OCL-like queries.

Note that the scope of all these works are ob-
ject oriented metrics. In this paper, the considered
metrics are real time model metrics.

Abstraction level for expressing metrics On
the genericity of metrics, Alikacem et al. [16] em-

phasize on the need not to hard-code metrics and
to express metrics in a generic manner and refer to
the proposition made in [17]. In this paper, Mens
et al. define a generic object-oriented metamodel
and generic metrics. They then show that known
software metrics are an application of these generic
metrics. The predicate-based metric is close to the
NodeCount of [17]. Since NodeCount aims primar-
ily at computing classical OO metrics such as the
number of methods per class, NodeCount has a lo-
cal view and considers a root node. On the contrary
the predicate-based metric is at the model level and
considers the model as a whole.

Marinescu et al. [18] propose a simplified im-
plementation of object-oriented design metrics with
a metric language called SAIL. Logically, some of
the key mechanisms of SAIL, namely navigation,
selection, set arithmetic are present in the predi-
cates presented in this paper. Compared to them,
we leverage generative techniques to integrate the
domain-specific metrics into a DSML environment.

6 Conclusion

The current state of the art of real time systems
development is moving toward more high level de-
scriptions of systems. The Architecture Analysis
& Design Language (AADL) is one of them. How-
ever for AADL, as for any metamodel of real time
systems, the developement cost of the modeling en-
vironment, as well as its measurement features, has
to be controlled.

To address this issue, we presented a way to gen-
erate a measurement software for measuring real
time models. From a set of metric specifications
made by the domain expert, the whole tool is gener-
ated and is able to compute metric values right out
of the box. To address industrial scale and quality,
the proof-of-concept research prototype has to be
redeveloped in an future project or partnership in
order to generate a whole Java/EMF Eclipse plugin
for the model measurement. Moreover, further re-
search is currently made to enrich the metric meta-
model and thus widen the space of possible metric
definitions.
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