
Matching Model-Snippets

Rodrigo Ramos1,2, Olivier Barais2, and Jean-Marc Jézéquel2

1 Centre of Informatics, Federal University of Pernambuco
P.O. Box 7851, CEP 50732970, Recife, Brazil

2 IRISA / INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract. An important demand in Model-Driven Development is the
simple and efficient expression of model patterns. Current approaches
tend to distinguish the language they use to express patterns from the
one for modelling. Consequently, productivity is reduced by dealing with
a distinct new language, and new intermediate steps are introduced in
order to support pattern-matching. In this paper we propose a frame-
work for expressing patterns as model-snippets. We present how model-
snippets are specified upon concepts in a given domain (meta-model),
and how we perform pattern-matching with model-snippets, whatever
the meta-model. We also provide an implementation which is well inte-
grated with existing technologies, such as Eclipse Modelling Framework.

1 Introduction

Recently, hopes that modelling might play a more important role in the software
engineering process have been lived up by Model Driven Development initiatives.
These initiatives have been mainly advanced by the Object Management Group
and IBM through the Eclipse foundation. The main proposition of this approach
consists of considering models as first-class artefacts within the software develop-
ment process. The recent focus on these assets has raised several new issues [1].
An important demand is the introduction of more automatic ways for search-
ing into model repositories. This demand can be rephrased into the ability to
perform efficient pattern matching at the model level.

Pattern-matching at the design level is also used, for example, in order to
perform declarative transformations [2], to recover design-patterns in an object-
oriented software design [3], or to identify join points in a model from a pointcut
expression to weave aspects into models [4,5]. In all these cases, we can imagine
patterns as model snippets with some conditions, which are possibly expressed
by some predicates over the models that they wish to match. In fact, several
languages have been proposed to express these patterns [4,5] in this way. Un-
fortunately, most of these languages were designed to a specific domain, defined
by a specific meta-model. Moreover, approaches that implement pattern match-
ing over these languages tend to also be specific to these meta-models. This
limitation has been obstructing the application of pattern matching over new
meta-models, since each of them requires new support for pattern matching.
For instance, despite of the good results of current methods for aspect-oriented

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 121–135, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

122 R. Ramos, O. Barais, and J.-M. Jézéquel

modelling, it is still difficult to play with its concepts over non object-oriented
paradigms or, even more, meta-models that do not extend UML.

In this paper, we propose a generic pattern framework for expressing pattern
at the model level and for performing pattern-matching. The language for ex-
pressing patterns is built on demand, conforming to an input meta-model of the
model that we wish to match. The main goal of simplifying the expression of
patterns at the model level, avoiding any textual regular expressions, is to assist
the design of these patterns with existing model editors for the user, what-
ever the meta-model. Moreover, we consistently define model patterns upon the
concepts of model-typing [6], which permits us to better manage such patterns
during model evolution. The results of this work are also integrated with existing
technologies, such as EMF1 (Eclipse Modelling Framework), Kermeta1 (a meta-
model engineering environment within Eclipse) and Flora-21 (An object-oriented
knowledge base language that extends Prolog).

The next section complements this introduction with a motivating example,
which will also guild us throughout the paper. Then, Section 2 presents our
approach for meta pattern-matching in details, and Section 3 describes how this
is implemented and integrated with Kermeta and Flora-2. Finally, Section 4
relates this work with existing approaches, and Section 5 concludes this paper.

1.1 Motivating Example

In order to motivate this work, a small state-machine meta-model is presented in
this section, in which we intend to perform a pattern-matching. As any typical
state-machine, it is mainly formed by a set of states and transitions among the
states. Additionally, the meta-model might include some constraints (expressed
in OCL, for example), which among other things may specify that the state-
machine must have a unique initial state.

Now, assume that we have a state-machine obeying this meta-model (left-hand
side of Fig. 1), which is composed by several complex states and transitions and
detailed with actions to be executed during the state-machine life-cycle.

Moreover, suppose that we want to find some simple patterns over this model,
such as cyclic-transitions or, in the opposite way, any transition that links two
distinct states. By the simple nature of these patterns, we wish to avoid dealing
with complex details of the state-machine meta-model, specifying just what is
needed for performing pattern-matching. Moreover, it makes sense to express
patterns in a similar language in order to make their specification easier and
avoid learning new languages. Another concern is to use the same mechanism
for each meta-model, instead of recreate them to each new meta-model. We can
summarise these concerns, as follows:

– How to have a simple way to express a valid pattern?
– How can we be guided by our meta-model in the specification of a pattern?
– Can we express patterns using existing editors for our meta-model?
– Are our models already supported by any existing pattern-matching tool?

1 see www.eclipse.org/emf, www.kermeta.org and flora.sourceforge.net

Matching Model-Snippets 123

Fig. 1. A model and a meta-model of state-machine

All things considered, we have identified, as other authors [4], that probably
the simplest way to express patterns is using the same concepts that we find
in our meta-model, i.e. expressing patterns as snippets of a valid model in our
meta-model. In order to realise this idea, and also to support its application
in new meta-models, we discuss throughout this paper a pattern framework for
expressing pattern as model snippets and for performing pattern-matching. The
questions raised in this section are also addressed during the paper, using the
small example of the state-machine to illustrate our discussion.

2 Patterns as Model-Snippets

As suggested in the previous section, patterns might be expressed as model snip-
pets, such as the UML templates [4] in Fig. 2. Having patterns expressed in this
way, it is possible to allow a user to draw patterns using editors that he is used
to, when drawing the models that he intents to match.

Each model-snippet defines a set of information existing in the model that
we wish to match. For example, in Fig. 2, a class named Trace is declared with

Fig. 2. UML Templates of a Class and State Diagram

124 R. Ramos, O. Barais, and J.-M. Jézéquel

two methods (traceEntry and traceExit). Whenever, a class contains the same
name and methods, it matches with Trace. Obviously, the matched class might
have also more information, such as methods, attributes or associations.

Observe that the snippet in Fig. 2 was constructed for UML models [4]. Many
other domain specific languages could take advantage of a similar approach. In
brief, we can define model snippets as:

A set of objects S is a model snippet of meta-model MM iff:
– every object in S is an instance of a metaclass defined in MM;
– there exists a set M where M is a Valid Model w.r.t. MM and S is

subset or equal to M.
where, we assume that a model and a meta-model are respectively sets
of EMOF objects and classes.

Every valid model is also a snippet (w.r.t its own metamodel) and so is every
model that can be obtained by removing objects from that model. But not every
model that may be obtained by adding objects to such a model.

With this in mind, we show how we can express model-snippets in any domain.
We present in Sect. 2.1 a pattern-framework with the minimal elements that
forms a pattern. In Sect. 2.2, we show how to create model snippets and to
customise this framework according to a target meta-model. Finally, on Sect. 2.3
we formally define what we mean by pattern-matching using model-snippets.

2.1 Pattern-Framework Meta-model

Taking a closer look at the model-snippet in Fig. 2, we can see the snippet as an
instance of the UML meta-model. All elements in the snippets are instances of a
UML classifier, and furthermore inherit from a superclass NamedElement. For
instance, Trace is an instance of a UML Class identified with a feature name
equal to ′Trace′, and the method traceEntry is an instance of Operator with
name equal to ′traceEntry′. The same happens in the model that we want to
match. An important finding from this observation is that a snippet specifies a
subset of instances, and of associations among them, in the model that we want
to match. This set of instances is the information that we use to match models.
However, a pattern seems to be a little more complex than just a set of instances
of a meta-model.

It is clear from Fig. 2 that a pattern is mainly formed by a snippet part (in
each package of the figure) and a sequence of free-variables over this snippet part
(in rectangle on the top-right side of each package). The purpose of variables is
to define the selection criteria for a particular model element. A variant can
also be conceptually seen as a placeholder for any element in the intended model
that is matched to it. In most cases, variables represent elements that play a
significant role in the pattern, and that we have a special interest in matching
with. Contrary to variables, non-variables must be directly associated to a unique
element in the intended model, containing all features which identify the element.

Nearly all meta-models define a special feature that uniquely identifies each
element of their models. As we wish to be able to match variables with more

Matching Model-Snippets 125

than one element in the model, we do not take into account this identifier dur-
ing pattern-matching of variables. For instance, TracedClass is a variable in
Fig. 2. So it matches to any class, with any name, that has the same meth-
ods than TracedClass and an association to a class named ′Trace′. Trace is a
non-variable, and, furthermore, we take into account its name during pattern-
matching. As in most of the cases, UML uses a feature name as an identifier.
However, the feature can change in other meta-models.

The more information is expressed in the structural part of the pattern, the
more precise is the pattern-matching. However, an excessive and detailed snippet
might also uncover all positive matches. For this reason, as any model, a pattern
can have additional constraints, which help to better describe the pattern and
to relate variables with other elements in the model.

Note that constraints between variables and non-variables in a pattern should
still be valid after they have been matched with elements in the intended model.
From this standpoint, constraints might also help to describe false positives in
the set of possible matchings. In doing so, constraints can represent Negative
Application Conditions (NAC) in a pattern-matching, improving the accuracy
of the matching process.

Based on the concepts presented above, a possible generic meta-model for
patterns could be expressed as the one in Fig. 3. In the meta-model, Pattern
represents the whole pattern, and PatternStructure represents its structure.
The structural part contains a PModel with a set of instances of classes in a
given meta-model, which we wish to be related to the metamodel that describes
the models in which we look for matches (intended model). PatternStructure
has also a set of Role, which express pattern variables in the structural part.
Additionally, the pattern can also have some constraints, or invariants, that,
here, might be expressed in OCL or Kermeta.

Fig. 3 presents what we call a Pattern Framework. PModel is the point (hot
spots) where the framework can be adapted or specialised by the developer. The
specialisation of our framework to the meta-model that describes the intended
models is described in the next section.

Fig. 3. Meta-model of the pattern framework

126 R. Ramos, O. Barais, and J.-M. Jézéquel

2.2 Constructing Model-Snippets

Most of the time, the meta-model (MM) of the intended model is too restrictive
to represent patterns. The reason for that is very simple; patterns have to be
expressed in a higher level of abstraction, such as model-snippets (see definition
in the beginning of Sect. 2). For example in the state machine meta-model, it is
totally understandable that someone does not want to provide the mandatory
event of a Transition, or even want to instantiate a V ertex, which is defined as
abstract, in order to match over instances of State or PseudoState.

We wish that a snippet relies as much as possible on the same concepts of
MM . In order to do that, we construct by demand a more flexible meta-model
(MM ′) that allows us to represent abstract patterns with all concepts of the
meta-model of the intended model. If we imagine a flexible meta-model MM ′

that is equals to MM , except that:

– No invariant or pre-condition is defined in MM ′;
– All features of all classes in MM ′ are optional;
– MM ′ has no abstract element.

Then, we can notice that all concepts in MM are also represented in MM ′.
MM ′ describe a wider range of models, including all models described by MM
(see Fig. 4). This is obtained by removing all restrictions that exist in MM : in-
variants, mandatory features, nonexistence of instances of certain class. To allow
features to be optional, we just set its lower bound as zero. These restrictions
can be taken rewritten as invariants over a group of classes S, and any group of
classes with a weaker invariant could be taken as a generalisation of S [6].

Note that any model that conforms to MM also conforms to MM ′, and,
furthermore, any model-snippet that conforms to MM also conforms to MM ′.
A detailed discussion about this conformance is presented in Sect. 2.4. This is
an important result, it shows that we can still use existing graphical editors to
draw pattern snippets and use them for pattern-matching. It also says that any
meta-model that generalises MM can be used to specify more abstract patterns.

For example, we can generate a new and flexible meta-model (MM ′) from the
state machine meta-model in Fig. 1 (MM). MM ′ might describe, for instance,
a Region with zero InitialStates or a State with no Activity. It also describes
V ertex as a concrete class, allowing instances of it.

In order to finish the automatic building the meta-model of model snippets
according to a specific meta-model, we need to merge our general framework
for patterns (Fig. 3) with this restrictiveness meta-model (MM ′), which takes

Fig. 4. Process for deriving a meta-model for pattern snippets

Matching Model-Snippets 127

Fig. 5. Process for customising the pattern framework

into account concepts in the intended domain (MM). This composition is called
a weaving because this transformation integrates PObject, which comes from
the pattern framework (PatternFramework), as a superclass of all meta-classes
in MM ′. The transformation can be compared to an interface introduction in
AspectJ1 that adds a new superclass to a type. Our weaving process is equiva-
lent to this mechanism. The implicit pointcut used in our weaving applies the
introduction of the PObject superclass into all the metaclasses that do not have
any superclass. The whole process to derive MM ′ from MM and to permit the
specification of valid pattern snippet(PATsnippet) is presented in Fig. 5.

For example, we can generate a new meta-model that weaves our pattern
framework and the state machine meta-model. It includes classes from both
framework and meta-model, and additionally hook all classes from the latter
with PObject. Then, all classes that do not have a super class in MM ′ inherit
from PObject after the weaving process. Fig. 6 shows the inheritance between
some of these classes and PObject. As a result, we obtain a meta-model that
can be used to express model-snippets and also can be taken as an input of the
pattern-matching mechanism.

Fig. 6. Weaved state machine meta-model

2.3 Pattern-Matching Behaviour

In this section, we describe what we mean by pattern-matching using model
snippets. We make use of a formal notation that looks like OCL, but with explicit
use of quantifier operators of the first order logic. We also assume that any
instance of MM ′ and MM is also an instance of Model, as it is presented in
Fig. 7. Where, Model contains a elements reference with a set of EMOF object
instances.
1 see www.eclipse.org/aspectj.

128 R. Ramos, O. Barais, and J.-M. Jézéquel

In order to better represent our ideas, we define some auxiliary (private)
methods in PatternMatcher. We have included the method Booleancontains
(Obj1 : EObject, Obj2 : EObject) to indicate when an object Obj1 contains all
the features that an object Obj2 has, and Booleancontains(M1 : Model, M2 :
Model) to indicate when all objects in model M1 have all objects in a model
M2. These methods are specially used to know when a model M2 is a snippet
of M1.

contains(M1 : Model, M2 : Model) = contains(M1, M2, {}, {}) (1)

contains(Obj1 : EObject, Obj2 : EObject) = contains(Obj1, Obj2, {}, {}) (2)

contains(M1 : Model, M2 : Model, fIds : EString[0..∗], roles : Role[0..∗]) = (3)

∀e2 ∈ M2.elements • ∃e1|contains(e1, e2, fIds, roles) (4)

contains(Obj1 : EObject, Obj2 : EObject, fIds : EString[0..∗], (5)

roles : Role[0..∗]) = (6)

∀r2 ∈ Obj2.getAllReferences() | Obj2.eGet(r2).isDefined() • (7)

∃r1 :∈ Obj1.getAllReferences()|r2.name = r1.name ∧ (8)

contains(Obj1.eGet(r1), Obj2.eGet(r2), fIds, roles) ∧ (9)

∀a2 ∈ Obj2.getAllAttributes() | Obj2.eGet(a2).isDefined() • (10)

∃a1 :∈ Obj1.getAllAttributes()| (11)

(a2.name = a1.name ∧ Obj1.eGet(a1) = Obj2.eGet(a2)) ∨ (12)

(∃ro : roles|ro.player = Obj2 ∧ a2.name ∈ fIds) (13)

We also included two auxiliary methods that take into account the list of fea-
tures used as identifiers (fIds) in the model type (as we said before, this list
changes from a domain to another) and a list of variables (roles). The method
Booleancontains(M1, M2, fIds, roles) is used to indicate that M2 is a snippet
of M1 considering a set of feature identifiers and pattern variables. With the help
of a method with similar signature for objects, it checks if every objects in M2
has a counterpart in M1, checking every association (lines 7-9) and comparing
every attribute (lines 10-13). While the attributes are checked, feature identifiers
of a pattern variable are ignored (line 13).

However, pattern-matching is not solely about detecting that a pattern snip-
pet exists in a model. We need to cope with the possible bindings of the pattern
variables with the intended model. For our purposes, we define pattern-matching

Fig. 7. Abstraction level of MM and MM ′

Matching Model-Snippets 129

as the set of possible bindings (tuples with variable name and object) from the
pattern variables into the objects of the intended model.

patternMatching(pat : Pattern,m : Model) : Role[0..∗][0..∗] = (14)

lets patsnpt = pat.structure.snippet ∧ vars = pat.structure.variables ∧ (15)

ids = pat.featureIDName (16)

∀snpt : Model | contains(m, snpt) ∧ contains(snpt, patsnpt, ids, vars) ∧ (17)

� ∃minorsnpt : Model | minorsnpt! = snpt ∧ contains(snpt,minorsnpt) ∧(18)

contains(minorsnpt, patsnpt, ids, vars) • (19)

∃setroles ∈ result | (20)

∀es ∈ snpt.elements, ro ∈ vars | contains(es, ro.player, ids, vars) ∧ (21)

(∀(ro.name, e) ∈ setroles | e = es) • (ro.name, es) ∈ setroles (22)

It the above expression, the patternMatching method is formed by two steps,
first, in the lines 17-19, the smallest snippets of the intended model that contains
the pattern structure are found. Then, in lines 20-22, the bindings with the
objects of these snippets are finally defined. This is a very general and inefficient
definition. We use it here for explanation purposes. The way that we address its
implementation is described in the next section.

2.4 Model-Snippets During Model Evolution

During a software evolution, an important question that might raises is:

– How useful is a model-snippet (or pattern) when definitions in the meta-
model are changed ?

The need for identifying relationships between models, including model-
snippets, suggests that we might examine model-typing [6]. Indeed, we need
to identify a type for the model-snippet in order to verify if a pattern can still
be applied in a certain domain, after changes in the meta-model.

For this purpose, we can think in patternMatching() (see Fig. 3) as a
parametrized type operation, that can be performed to any model that con-
forms to a criterion. A good starting point for this criterion is to use type check-
ing based on the type relationship matching [6] (< #), where any operation
Op[X < #MMT] parametrized with the group of types X can be successfully
performed when X matches to a group of types MMT . Generally speaking,
matching2 in this context is satisfied when all class ct in MMT has a respective
class cx in X that matches to it. A class cx matches to another ct if: 1) cx in-
cludes all features of ct, 2) and, for all associations of ct with other class c

′

t there
is an association in cx to a class c

′

x, which contains c
′

t.
Despite we have presented a pattern-framework that is independent of any

meta-model, we can use model type as a pre-step criterion for verifying the
validity of a pattern in a specific domain, comparing the model types of the
2 Do not mix pattern-matching with the type relationship called matching. We use

only matching when we refer to the latter in this paper.

130 R. Ramos, O. Barais, and J.-M. Jézéquel

pattern snippet and the intended model. This criterion can be expressed as a
pre-condition of the pattern-matching operation, as follows.

patternMatching(pat : Pattern,m : Model) : Role[0..∗][0..∗]
pre : pat.structure.snippet.getModelType() <#m.getModelType()

From the expression above, we identify that we can use any meta-model MM ′

to describe a pattern snippet, provided that MM ′<#MM . So, in other words,
a model-snippets is still useful if the changes applied to a meta-model MM does
not make it less abstract than the MM ′.

3 Implementation

From Sect. 2, we can see how pattern-matching is performed. However, an ef-
ficient implementation might not be so easy to construct. Fortunately, this is
an extensive topic of research, which has produced several existing languages
and APIs with embedded pattern-matching mechanisms [2,7]. For that reason,
we have decided to rely on these existing tools as much as possible in order to
integrate our ideas and to contribute with existing tools in this research topic.

Our implementation relies on the Kermeta language [8], an executable and
object-oriented DSL (Domain Specific Language) for meta-model engineering.
Kermeta is built as a conservative extension of EMOF, giving special attention
to the specification of abstract syntax, static semantic (OCL) and operational
semantics as well with connexion to the concrete syntax. Consequently, an EMF
model is seen as a Kermeta model without operational semantics. Through our
implementation, we contribute with pattern-matching mechanisms to the meta-
model engineering environment available with Kermeta, which includes model
transformations, aspect weaving and loading of EMF models.

For our purpose, we have implemented a pattern-matching front-end in Ker-
meta. This front-end behaves as an abstract interface between our framework for
pattern-matching and existing engines with embedded pattern-matching mech-
anisms. In order to delegate computation to these engines, we require the imple-
mentation of a specialised back-end for each engine.

As a proof of concept, we have constructed a back-end that uses a Prolog
engine to perform pattern-matching. Using this approach, facts are derived from

Fig. 8. The workflow of pattern-matching implementation using flora2

Matching Model-Snippets 131

Fig. 9. A simplified meta-model of Flora-2

the model that we intent to match and inserted in a knowledge base of the engine.
Then, queries are generated to search for a subset of the facts that matches with
the pattern. An abstract workflow of this back-end is presented in Fig. 8.

Initially, the front-end inputs the pattern and the intended model into the
back-end in Kermeta. The later transforms both into an intermediate model in
Flora-2, an object-oriented Prolog dialect that is suitable to represent concepts
in EMOF [9]; a simplified meta-model for Flora-2 is presented next. In order
to interpret this model in Flora-2, we serialise it in the concrete textual syntax
of Flora-2. Then, our back-end implementation in Kermenta sends the Flora-2
program to the Prolog Engine trough a Java proxy layer; Kermeta supports a
seamless integration with Java programs. The Engine interprets the program
and returns the result for our query. From the analysis of this result, we obtain
a set of bindings from pattern variables into elements in the intended model.

Being object-oriented, Flora-2 offers all necessary counterparts for concepts
in EMOF. However, as it is a conservative extension of Prolog, Flora-2 still is
a fact-based language. All information about a class or instance is distributed
in several atoms1 (AtomicFormula), as it is presented in Fig. 9. Fig. 9 shows a
simplified and incomplete meta-model for Flora-2, which only addresses concepts
that Flora-2 takes from F-Logic.

Any concept in Flora-2 starts being represented by the most basic atom, a
Term, which might be classified as a primitive type, a constant or a variant;

1 Despite Molecule constructions permit the direct representation of object and classes
and their features, it still is a syntax sugar for a set of related atom in the Knowledge
base. Furthermore, it is not represented in our meta-model.

132 R. Ramos, O. Barais, and J.-M. Jézéquel

the last one is usually used in queries. Initially any new term might represent a
class or an object in the knowledge base. In a class declaration, its super-types
are declared through ISASubClass atoms, and features of the class are declared
through SignatureAtom atoms. For example, the class State in Fig. 1 is repre-
sented by a term with the same name, its superclass by a term V ertex, and it is
the host of a feature entry of class Activity. These atoms are textually expressed
in Flora-2 as State :: V ertex and State[entry ∗=> Activity]; they could also be
condensed in a unique molecule State :: V ertex[entry ∗=> Activity]. The type of
an object instance is represented through an ISAInstance atom, and the value
of its features through DataAtom atoms. So, a state S1 with entry entryAct
and exit exitAct, is textually expressed as S1 :: State, S1[entry −> entryAct],
S1[entry −> entryAct].

After transforming the intended model and its meta-model into a Flora-2
model, using the meta-model in Fig. 9, the back-end generates a program in
Flora-2 in its textual concrete syntax. So, for the example presented in Sect. 1.1,
we obtain the following program. For brevity, we do not present all program.

// Facts about the meta-model
PseudoState :: Vertex, State :: Vertex.
FinalState :: State, InitialState :: PseudoState.
...
//Facts about the model
SM1:StateMachine [name -> "sm1", topRegion -> Reg1].
Reg1 [transition => {T1, T2, T3, T4, T5}, vertex => {S0, S1, S2, S3}].
T1:Transition[name -> "T1", source -> S0, target -> S1, trigger -> event1].
T2:Transition[name -> "T2", source -> S1, target -> S1, trigger -> event2].
T3:Transition[name -> "T3", source -> S1, target -> S3, trigger -> event3].
T4:Transition[name -> "T4", source -> S2, target -> S1, trigger -> event4].
T5:Transition[name -> "T5", source -> S1, target -> S2, trigger -> event5].
S0:InitialState[name -> "S0", owner -> Reg1].
S1:State[name -> "S1", entry -> Activity1].
S2:State[name -> "S2", entry -> Activity2].
S3:FinalState[name -> "S3"owner -> Reg1].

In the program above, we summarised some facts about subtyping in the meta-
model, which we use next for pattern matching. Subtyping is expressed in the
form Class :: SuperClass. Classes are themselves expressed using atomic clauses
(atoms) or molecules. And, objects are represented in the form ObjectID :
Class[feature1−> value, ..., featuren => setOfV alues], where the operators
−> and => map a feature into a single and multiple values, respectively.

In this way, if we wish to detect all transitions from two states, excepting
self-transitions, we would use the pattern presented in Fig. 10. The transition,
its source and target states are presented in the left-hand side of the figure, while
the false-positive pattern with a cyclic transition is shown in the right-hand side.

The Flora-2 textual representation of this pattern, considering the false-
positive pattern in the right-hand side of figure, is expressed bellow. The query
is composed of clauses, conjuncted by commas, with Flora-2 variables (symbols

Matching Model-Snippets 133

Fig. 10. Patterns of state machines

with a ? suffix) to represent all pattern variables. The false-positive is represented
with a negation clause not((...))).

?link : Transition[source -> ?SourceState, target -> ?TargetState],
not ((?link : Transition [source -> ?SameState, target -> ?SameState])),
?SourceState : State, ?TargetState : State, ?SameState : State.

The query result is presented as follows. Note that the transition from S1
to the final state (S3) is also returned, since the type FinalState inherits from
State in the state-machine meta-model (see Fig. 1).

?source = S1
?target = S2
?link = T5

?source = S2
?target = S1
?link = T4

?source = S1
?target = S3
?link = T3

After analysing the set of bindings from the inference engine, which maps
variables into elements of the intended model, we check constraints over the
pattern considering each new set of binding for roles in the pattern. This final
checking is useful to eliminate false positives in the pattern. Note that part of
these constraints might be anticipated through the representation of patterns
for false positives, using the falsepositive feature of the pattern (see Fig. 3).
Elements in falsepositive can also be conceptually seen as an negative expression
in the query in Prolog, restricting the possible results in the search. Despite the
possible use of negative patterns, constraints are always checked, as a post-
procedure to filter false positives from the results of the pattern-matching.

After the elimination of false positives, a final set of bindings are presented to
the user, or program which invoked the pattern-matching, who can chose among
the bindings the most convenient one.

4 Related Work

Pattern-matching has been analysed theoretically in various contexts. For meta-
model engineering, the most successful results have been achieved in approaches
that use graph transformation, such as GReAT1 and AGG1. They rely on graph
theories to perform searches in an intermediate graph model that represents the
source model. Patterns are also constructed as graphs, which are used to match
with model graphs. Differently, but still using an intermediate language, MOLA
has an efficient approach for pattern matching [7] through SQL queries in a
model repository located in a database.

134 R. Ramos, O. Barais, and J.-M. Jézéquel

The unique exception, known by the authors, that proposes a concrete syntax
for pattern for graph transformations is reported in [10]. Similar to our approach,
this work discuss how a metamodel for patterns can be generated conforming
to the meta-model of the model that we wish to match, and how these patterns
can visualised using a concrete syntax. Besides its originality, this work does
not address negative application conditions and constraints (like in OCL) as we
do.

In ATL [2], pattern-matching is used to identify a source element for declar-
ative transformations. Opposite to real pattern-matching, so called pattern-
matching in ATL is used in a simplistic way to identify a unique element, rather
that a snippet of the model. Features related to pattern-matching in all these
languages are encompassed in the approach presented in Sect. 2, which solves a
common deficiency in non-graph-like transformation languages, as Kermeta.

Concerning the implementation in Sect. 3, pattern-matching implemented via
Prolog have been already studied in [3]. However, contrary to our approach, this
work has focused in the detection of design patterns in object-oriented programs.
While the process steps are very similar, our implementation concerns the ap-
plication of Prolog in pattern-matching at the model level. The derivated facts
from the meta-models and models in this section are also aligned to the formal
mapping of class and object into Flora-2 in [9] and other transformations using
F-Logic [11]. However, we take as input EMOF classes and objects.

5 Conclusion

Nearly all of graph model transformation languages use pattern-matching as the
main functional element for defining how the source model components must be
detected in model transformations or weavings. For this reason, this work brings
an important contribution to Kermeta, permitting the use of pattern-matching
mechanisms in its environment. It also brings an alternative between so many
existing pattern-matchings using graph-transformations.

In Sect. 2, we also present a simple meta-model framework for patterns, which
is beyond any language or implementation. We have shown that this framework
might be used in conjunct with any meta-models in order to represent concepts
in existing or new domains. We have also discussed how pattern snippets might
be validated according to the model type of models in these domains. This have
shown that indeed, although its limitations, we can use these meta-models to
guide the specification of pattern snippets; this also brings some advantages in
the use of existing model editors to express model-snippets. This consideration
of model type in pattern-matching, and the relation between patterns and the
models that they intent to match, have been neglected so far.

An efficient implementation of these ideas is proposed in Sect. 3, through the
integration of Kemeta and Flora-2. This is by itself an original contribution,
concerning model transformations from arbitrary EMOF model to Flora-2 and
the presentation of a, despite simplified, meta-model for Flora-2.
1 see tfs.cs.tu-berlin.de/agg and repo.isis.vanderbilt.edu/tools

Matching Model-Snippets 135

As future work, we plan to match semantic equivalent models. Examples of its
need are mainly found in the pattern-matching of behavioural models, since too
much semantic information is required. Another future work is to take advantage
of transaction logic to directly introduce OCL constraints as Flora-2 facts, in
order to improve the overall performance of our implementation. Indeed, such
optimisation contributes to a better integration with the Prolog engine, which
uses execution strategies with backtracking to reduce the exhaustive search.

References

1. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM
2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)

2. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Model Transformations
in Practice Workshop at MoDELS/UML (2005)

3. Prechelt, L., Krämer, C.: Functionality versus practicality: Employing existing
tools for recovering structural design patterns. Journal of Universal Computer Sci-
ence (J.UCS) 4, 866–882 (1998)

4. Clarke, S., Walker, R.J.: Composition patterns: an approach to designing reusable
aspects. In: ICSE’01. 23rd International Conference on Software Engineering,
Washington, DC, USA, pp. 5–14. IEEE Computer Society, Los Alamitos (2001)

5. Barais, O., Duchien, L., Meur, A.F.L.: A framework to specify incremental software
architecture transformations. In: 31st EUROMICRO Conf. on Software Engineer-
ing and Advanced Applications, IEEE Computer Society, Los Alamitos (2005)

6. Steel, J., Jézéquel, J.M.: On model typing. Journal of Software and Systems Mod-
eling (SoSyM) (to appear, 2007)

7. Kalnins, A., Celms, E., Sostaks, A.: Simple and efficient implementation of pattern
matching in mola tool. In: Baltic DB&IS2006, Vilnius, Lithuania, pp. 159–167
(2006)

8. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-
oriented meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

9. Ramalho, F., Robin, J.: Mapping uml class diagrams to object-oriented logic pro-
grams for formal. In: 3rd UML Workshop in Software Model Engineering (WiSME
2004) at MODELS/UML’2004, Lisbon, Portugal, pp. 11–15 (2004)

10. Baar, T., Whittle, J.: On the usage of concrete syntax in model transformation
rules. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, Springer,
Heidelberg (2007)

11. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The
missing link of mda. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 90–105. Springer, Heidelberg (2002)

	Matching Model-Snippets
	Introduction
	Motivating Example

	Patterns as Model-Snippets
	Pattern-Framework Meta-model
	Constructing Model-Snippets
	Pattern-Matching Behaviour
	Model-Snippets During Model Evolution

	Implementation
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

