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1. Introduction  
According to the CERT [1], the number of reported vulnerabilities in 2006 was 8064 (5990 
were reported in 2005, a 36% increase). As a consequence, and overall justification for this 
research work, the international community needs new approaches to deal with these security 
issues. One of the open challenges is to provide web application developers with pragmatic 
techniques to check that the security aspects are implemented according to the security 
requirements. No trust can be built in security aspects if the developers cannot even check that 
these security aspects have been correctly implemented. The current report studies how 
security can become a target for testing and which criteria can be applied to have some trust in 
the security mechanism implementation. The goal of this work is to offer a first trustable step 
in a design for security process: it doesn’t aim to generate attacks but “only” to test that a 
security mechanism is consistent with what it is supposed to do. 
Currently, an important effort is dedicated to software testing in development cycles, which 
varies between 35 to 55% of the overall effort for producing an application (from 
requirements elicitation to system delivery to final clients). Except ad-hoc penetration testing 
techniques, very few works have been dedicated to the issue of testing security in the same 
way functional aspects are tested. The first difficulty is to estimate test cases quality and 
specify the faults specific to the domain (e.g. security flaws). Among the techniques for 
estimating test quality, mutation analysis is the only one which builds confidence in test cases 
in relation to an explicit fault model. .Mutation analysis consists of creating faulty versions of 
a program and checking whether the test cases are efficient – or not - to detect these injected 
faults. This technique is usually used for three main purposes: estimating the efficiency of a 
testing technique, measuring the robustness/fault tolerance of a system and as an objective to 
generate tests (in that case, it is called mutation testing). In this report, we adapt mutation and 
perform studies for two different security aspects of a 3-tiers architectures, namely security 
policy (access control) and SQL injection attacks. Mutation analysis is used : 

- as a way to compare functional tests and tests generated for checking the correctness 
of a security mechanisms (security policy testing), 

- as an objective for testing security policies, 
- to check the robustness of security mechanism in the context of  SQL injection attacks 

(SQLIA). 
The first part of this report will focus on the adaptation of mutation analysis for testing access 
control based security policies.  The considered access control model is OrBAC, an advanced 
model developed by the SERES team in the RSM lab. of the ENST-Bretagne engineering 
school. OrBAC is a security model for defining security policy access rules and the 
implementation of these rules has to be tested for a given deployed system. In this part of the 
report, the use of mutation analysis is two-fold. On one hand, it serves for experimental 
purposes as a technique to estimate the efficiency of testing techniques for security. On the 
other hand, the feasibility of the use of mutation for generating tests is studied (mutation 
testing). The OrBAC security model will be presented and the mutation analysis adaptation 
will be introduced using a simple case study. This study, and the first results it provides, leads 
to a ranking of the mutation operators (types of injected faults) and gives a comparison of 
security tests and functional tests. In addition, testing strategies are evaluated using the results 
of these experiments. The results and the study conducted were submitted to the ISSRE 
conference. The article title is “Testing security policy: going beyond functional  testing”. In 
it, we present the results concerning the relation between functional and security tests and the 
comparison between the proposed strategies. In addition, we have submitted another article to 
Mutation 2007 conference. The article title is “Mutation analysis for security tests 
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qualification”. It presents in details the implementation of the mutation analysis, the mutation 
operators and the ranking of the operators. 
In the second part, we apply the mutation analysis approach in the context of SQL injection 
attacks (SQLIA) which are among the most important attacks performed against web 
applications. In the literature, several security mechanisms were proposed to deal with 
SQLIA. We present the main ones and propose a testing methodology based on fault injection 
in order to estimate the robustness of each of these security mechanisms. This study - rather 
qualitative due to the duration of the internship –highlights the potential weaknesses of each 
security mechanism and leads to appropriate improvements  and countermeasures. 

2. Background and definitions 
 
Testing that a system is correct with respect to security is known as a hard task [2]. Among 
the numerous identified difficulties we can first point that security issues are handled at many 
different places in a system (network, hardware, server and client). Moreover, since 
specifying the expected security qualities is complex, it is very difficult to express the 
expected result when building test cases for security. 
In this report, we restrict our study to 3-tier applications, even if the proposed solutions can be 
applied to other contexts (e.g. n-tiers architectures). As shown in Fig 1, there are 3 main parts 
in the application architecture; the database, the application server and the interface. Mutation 
analysis will be adapted to two different security testing contexts.  
Firstly, we focus on OrBAC based access control model use for the 3-tier application. 
Security test cases are generated to check the correctness of the implementation with respect 
to those security rules. Today there is no systematic way to derive test cases from a security 
policy and no test adequacy criteria to assess the quality of test cases for security. Thus, once 
test cases have been produced, it is necessary to estimate their quality in terms of ability to 
detect security flaws in the implementation.  
In order to evaluate the quality of test cases for security, we adapt mutation analysis and 
introduce new mutation operators that correspond to fault models for access control security 
policies. We introduce a running example used for illustration. This example is based on a 
library management system.  
Secondly, mutation analysis will be applied to evaluate SQL injection countermeasures. The 
strategy used in this part consists on injecting faults into security mechanism environment in 
order to perturb the behaviour of the application.  
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Fig 1. General context 
In this section we present the mutation analysis technique. Then we present related works 
concerning the application of the mutation analysis in the context of security testing. 
 

2.1. Mutation analysis 

Mutation analysis technique was initially proposed by DeMillo [3] and consists in creating a 
set erroneous versions of the program under test that are called mutants. The goal for the 
tester is then to write a series of tests which makes it possible to distinguish the initial 
program from all its mutants. This technique thus makes it possible to write relevant tests. 
 In practice, the mutants are created by submitting the program to operators that insert simple 
errors* (changing the sign of a constant, replacing arithmetic operators…). Indeed, DeMillo 
limits the analysis to the injection of simple errors and makes the assumption that if a set of 
tests can detect all the simple errors, then it will be able to detect more complex errors in the 
initial program. If a test case applied on a mutant results in an output that is different from the 
output produced by the initial program, the test case has detected the mutant. The test case 
killed the mutant, in the other case the mutant is still alive. A mutant which is detected as 
erroneous by a test case is said to be killed by the test case.  
Among the generated mutants some are equivalent to the initial program, i.e. no input data 
makes can distinguish the two programs. Fig 2 illustrates an example of equivalent mutant: 
(from [4]). 
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Fig 2. Example of equivalent mutant 

 
In this example, the mutant program replaced I by MinVal in the second instruction. 
However, the previous instruction assigns to MinVal the value 1. We can see that variables 
MinVal=I having same value, the mutant program is equivalent to the initial program. 
 
It is important to determine equivalent mutants, because they must be removed from the set of 
mutants to be killed. Without that there will be never a set of tests able to detect all the 
mutants since some will be impossible to detect, and then we will not be able to rely on our 
tests. The detection of equivalent mutants is generally done by hand, which increases the cost 
of the analysis of change. The tests cases are thus confronted to the set of non-equivalent 
mutants.  In this report, we intend to generate faulty security policy implementations, and on 
constraint for the feasibility of the approach to this context is to avoid the creation of 
equivalent mutant (from the security policy point of view). 
The objective of the mutation analysis is to estimate the efficiency of a test cases set, that is 
its capacity in revealing faults (the fault revealing power of a test case). It can be used to 
compare test criteria, test strategies and any test technique. The mutation score is an indicator 
for the quality of the tests. Let d be the number of dead mutants and m the number of mutants, 
the mutation score MS is:   MS(t) = d/m. 
The process of mutation analysis is presented in Fig 3.  
 
 

 
Fig 3. Mutation analysis process 
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2.2. Fault injection applied to security tests 

To our knowledge, very few works proposed fault injection to security tests. In [5], Mathur et 
al. applied fault injection to the application environment. The application environment is 
perturbed by modifying environment variables, files or process used by the application under 
test. Then the application has to resist to this perturbation and must not have an insecure 
behaviour that may lead to security flaw. The authors applied their technique to an existing 
application used by Purdue university. This application is used by students and teacher. They 
were able to find a security hole that represents a real threat. This technique is based on fault 
injection and allows discovering new kinds of security holes that are possible to find with 
traditional techniques. 
Furthermore, fault injection was applied in another way. Adaptative vulnerability analysis [6]  
injects faults to the application data flow and internal variables. The objective is to identify 
parts of application’s code that have insecure behaviours when the state of the application is 
perturbed. 
In addition, fault injection was applied to back box testing. The black box framework Fuzz [7] 
uses fault injection by randomly creating data input for a given application. The goal of this 
approach is to identify abnormal behaviour and to check that the application does not crash. 

2.3. Functional testing vs. security policy testing 

Testing system functions includes exercising many security mechanisms. The issue is to 
determine whether testing functions provide enough confidence in the security mechanisms. 
We would like to know how to improve this confidence by selecting test cases specific to 
security. Two strategies are proposed for producing security policy test cases, depending if 
they are built in complement of existing functional test cases or independently from them. 
In this section we present the overall process to derive test cases from requirements. In this 
process we identify the main artefacts that must be produced for testing and propose precise 
definitions for the notions used in this report. 
The software lifecycle may vary, but the input information is always a requirement document 
which includes the functional description of the system as well as many extra-functional 
concerns (performances, real-time, availability, technical and architectural constraints …). 
Among these concerns, the security aspects are often mixed with the functional ones, as it will 
be illustrated with the running example throughout the report. The requirement analysts have 
to extract these aspects and express, on one hand the uses cases and the business model and 
on the other hand explicit the security policy in the form of an access control model. It is 
composed of a set of security policy rules, each of them specifying rights and restrictions of 
actors on parts and resources of the system. The business model (a class diagram + simple 
dynamic models) focuses on the concepts which are needed to derive functional aspects, in a 
nominal use of the system. The security policy may introduce specific concepts, and reuse 
most of the concepts and functions identified in the uses cases and business model. As a 
result, the security policy makes reference to the business and use case models, but includes 
new concepts which are taken into account in the refinement process, either during design 
(SecureUML [8]) or at deployment/coding steps.  In this section, we will detail these 
differences. 
Figure 4 highlights the fact that both the code and the tests, which exercise this code, are 
produced from the requirements by independent ways. The important point is that the security 
policy test cases are obtained using the access control model, while the functional test cases 
are derived only from the uses cases (and business model). Security policy test cases are not 
only dependent on the security policy but also refer to the use cases and the business model. 
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In this report, the functional test cases (or system tests in the sense of Briand’s work [9]) are 
generated using the approach presented in [10], based on the use cases improved with pre- 
and post-conditions, called contracts. The functional test cases cover all the code 
implementing the functions of the system. We will study how functional test cases can be 
reused for testing security mechanisms.  

Design&Deployment

Code

Analysis Model

Design & Deployment Models

Code

Functional SecurityFunctional Security

Functional Tests

Security policy tests

Access Control Model

Use Cases + contracts

Requirements
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implementation
and test

 
 

Fig 4. Process to generate security policy tests from an access control model 

2.4. Definitions and differences between functional and security 
tests 

 

Security Policy: it describes the permissions or prohibitions for people to any of the 
resources of the system (it may apply to configure a firewall as well as to define who can 
access a given service or data in a database). 

 The most advanced models ([11-13]) express rules that specify permissions or prohibitions 
that apply only to specific circumstances, called contexts. For instance, in the health care 
domain, physicians have special permissions in specific contexts, such as the context of 
urgency. Also, some models provide means to specify the different security policies 
applicable to the various parts of an organization (sub-organizations). At the end of this 
specification process, the security policy specifies what the permissions and prohibitions 
should be in the system, in function of contexts, roles and views. In this work we use OrBAC 
[12, 13] as a specification language to define the access control rules (a set of rules specifies a 
security policy). Based on the simplified requirements of this system, it is possible to derive a 
set of access control rules using the OrBAC model. 

 

System/functional testing: the activity which consists of generating and executing test 
cases which are produced based on the uses cases and the business models (e.g. analysis 
class diagram and dynamic views) of the system [9, 10] . By opposition with security 
tests, we call these tests functional.  
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Security policy testing (SP testing): it denotes the activity of generating and executing test 
cases which are derived specifically from a security policy. The objective of SP testing is 
to reveal as many security flaws as possible. 

  

Security flaw: A security flaw is the equivalent of a fault for functional testing. It 
corresponds to an inconsistency between the security policy (the specification) and a 
security mechanism (the implementation) which is revealed at runtime.  

 

Test case: In the report, we define a test case as a triplet: intent, input test sequence, oracle 
function. The intent may be either to test functional or security policy aspects.  

 

Intent of a test case: The intent of a test case is the reason why an input test sequence and 
an oracle function are associated to test a specific aspect of a system. It includes at least 
the following information:  (functional, names of the tested functions) for functional test 
cases or (security policy, names of the tested security rules) for SP ones. 

SP oracle function: The oracle function for a SP test case is a specific assertion which 
interrogates the security mechanism. There are two different oracle functions: 

• For permission, the oracle function checks that the service is activated.  

• For a prohibition, the oracle checks that the service is not activated.  

In our case, services are methods in the business application, thus the oracle checks the 
absence or presence of a method call. It has to be noted that some data are constrained by 
access control rules, but the oracle function does not check any data values (in the database) 
because they are always accessed through a service.  
The intent of the functional tests is not to observe that a security mechanism is executed 
correctly. For instance, for an actor of the system who is allowed to access a given service, the 
functional test intent consists of making this actor execute this service. Indirectly, the 
permission check mechanism has been executed, but a specific oracle function must be added 
to transform this functional test into a security policy test.  
A security flaw may occur: 

- when an actor (person or program) of the system has (has not) access to a resource 
while the security policy stipulates it should not (should). 

- when an actor (person or program) of the system has (not) access to a resource while 
no security policy exists for this particular actor and when this resource is the object of 
other security rules. 

The second point corresponds to security test cases highlighting the incompleteness in the 
security policy which leads to incorrect default security mechanisms. We call such test cases 
advanced security test cases in the following. 
  
Examples:  
Functional – a functional test case will make a borrower borrow and return a book.  

Intent: functional, test borrow and return for a unique borrower 

Oracle: check that the book is available after it has been returned 

Security Policy – a SP test case will check that a borrower can borrow a book to the library 
the working days. 
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Intent: security, permission for a borrower to borrow a book the working days. 

Test sequence: create the context of a working day, make a borrower borrow a book. 

Oracle: interrogate the security mechanism and check that the permission has been computed 
and given to the borrower. 
 

3. Mutation applied to OrBAC security model 
Mutation analysis is a technique for evaluating the quality of test cases. We propose to apply 
it in the context of security penetration tests. Security tests and software tests share many 
aspects. We can assimilate faults to security breaches or defects in the protection mechanisms. 
In addition, test scenarios can be assimilated to security attacks made by a hacker. In order to 
apply mutation analysis to security tests we need to find suitable mutation operators. 
Since there are many different solutions to implement access control rules into the business 
model, it is very difficult to define security fault models based on syntactic errors in the code. 
We could inject classical mutation faults (arithmetic, logical etc.) in security mechanisms, but 
the effect of these faults would be unpredictable w.r.t. a given security policy (and the verdict 
difficult to define).  
Mutation operators are defined independently from implementation-specific details. Since the 
access control rules are expressed with OrBAC, we model the faults at this level of 
abstraction. The mutation operators are thus expressed on OrBAC syntax. On one hand, this 
approach has the advantage of defining faults that are actually related to the definition of 
security rules (prohibition instead of permission, wrong role, etc.). On the other hand, the 
difficulty consists in transforming mutation operators defined with OrBAC into faults in the 
implementation.  
For this study, we assume that traceability matrices and maintained between OrBAC rules and 
the corresponding code blocks in the implementation. Using this information, it is easier to 
map mutant OrBAC rules to faults in the implementation. However, in the general case, the 
traceability information might not be available, or the mapping between the rules and the code 
might not be trivial. In that case it is not possible to automatically generate the mutants. If we 
still want the mutation analysis to be used, it is important to identify the most relevant subset 
of operators, in order to produce the minimum mutants that lead to the production of the best 
security test cases. This is one of the objective of the case study. It will help to select a 
sufficient subset of mutation operators. 
In the following section, we present a set of mutation operators that can be defined for 
OrBAC rules. We illustrate these operators with examples. Then, in next section we run a 
case study to select the most relevant subset. The security mutation operators are divided in 4 
categories: 

� Type changing operators 
� Parameter changing operators 
� Hierarchy changing operators 
� Adding rules operators 

3.1. Security mutant operators 

We identified 27 mutant operators. They are classified in 4 categories: 
� Rule type mutation operators 
� Rule parameter mutation  operators 
� Rule adding or removing  mutation operators 
� Hierarchy mutant operators. 
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We will present all of these operators. We chose to reject some of the these operators. We will 
explain in details the reasons. Then the selected operators will be presented in examples in 
order to show how they can be used and the security flaws that are simulated by the resulting 
policy. 

3.1.1. Type changing operators 
Type change operators pick a rule and modify its type. There are 3 types of rules: prohibition, 
permission and obligations. Therefore, there are 6 possible modifications:  

1. Prohibition to permission 
2. Permission to prohibition 
3. Prohibition to obligation 
4. Obligation to prohibition. 
5. Permission to obligation 
6. Obligation to permission 

The first four operators simulate faults that occur during the implementation. The obtained 
policy allows a forbidden activity or prohibits an authorized activity. 
The problem of operators 5 and 6 is that it is difficult to distinguish between obligation and 
permission. Test cases are not able to validate that an obligation rule is used instead of a 
permission one. For this reasons, we choose not to use obligation rules and only use 
prohibition rules. We only implement the first 2 operators (Prohibition to permission named 
PRP and permission to prohibition named PPR). 

3.1.2. Parameter changing operators 
Parameter changing operators pick a rule and change one of its parameters. As there are 5 
parameters the following operators are defined: 

1. Change organization 
2. Change role 
3. Change activity 
4. Change view 
5. Change context 

We can not replace a rule’s organization because each organization defines its own entities 
and we may not have the role, activity, view and context of the first organization defined for 
the new organization.  
If we have: 
Permission(org1,role1,activity1,view1,context1) 

We cannot replace it with: 
Permission(org2,role1,activity1,view1,context1) 

We can only replace if org2 defines role1, activity1, view1 and context1 in its scope. 
In addition, the notions of activity and view are tightly linked. In fact, the activity must be 
related to the rule view. The following example illustrates this issue: 
Rule used: 
Permission (Library, Administrator, ModifyAccount, BorrowerAccount, default) 

Rule to use instead:  
Permission (Library, Administrator, ReserveBook, BorrowerAccount, default) 

ModifyAccount cannot be replaced by ReserveBook because ReserveBook can not be attached to the  
BorrowerAccount view.  The same problem appears when we change the rule’s view. In fact, 
replacing views or activities can be done only for activities that are independent from views 
(and can be applied to different views). For example, if we have the activity Modify that may 
be applied to 2 views BorrowerAccount and PersonnelAccount then we can replace BorrowerAccount 
by PersonnelAccount. Therefore, the relevant operators are those changing the role and the 
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context. These 2 operators are useful because they will simulate cases where the security 
policy is too permissive or too restrictive. The first one allows a user (the secretary) to do the 
same activity allowed for another user. The second one allows a user to perform the action 
under another context. In this category, we only keep two operators (Change role named RRD 
and change context named CRD). 

3.1.3. Rule adding operators 
Instead of replacing an existing rule, the adding rule operator introduces a new rule. The goal 
of this operator is to simulate cases where the implementation does something in addition to 
the requirement. This is a typical security fault and makes security faults different from 
functional tests. The security breaches are caused by the fact that the application behaves in 
unexpected way, even if it satisfies all functional requirements. 
In order to obtain relevant rules, the add rule operator (named ANR) introduces rules that 
contain an activity and a view that were already defined by at least one rule in the initial 
security policy. It is important to note that this operator generates a lot of mutants. 

3.1.4. Hierarchy mutant operators 
OrBAC allows defining hierarchies for organisations, roles, activities, views and contexts. 
Then, a mutation operator can be used to change hierarchies by replacing a parameter by its 
parent or one of its descendants. 

1. Change organization hierarchies 
2. Change role hierarchies 
3. Change activity hierarchies 
4. Change view hierarchies 
5. Change context hierarchies 

Due to the reasons explained in the previous section, the first operator is not used. In addition, 
context and views hierarchies are not useful. In practice we do not define hierarchies for 
contexts and views. In fact, we insist on hierarchies for activities and roles.  
The only useful operators in this category are operators 2 and 3. The hierarchy changing 
operators that will be retained are: ‘change rule hierarchies’ (named RPD) and ‘change 
activity hierarchies’ (named APD). 

3.1.5. Summary of security mutation operators 
This table presents the retained operators that were presented in details in previous section. 
 

Mutation 
Operator 

Description 

PRP Prohibition rule replaced with permission 

PPR Permission  rule replaced with prohibition 

RRD Rule role is replaced with different  role 

CRD Rule context is replaced with different 
context 

RPD Rule role (a parent) replaced with one of its 
descendants 

APD Rule activity replaced with one of its 
descendants 

ANR New rule Added 

 
Table 1 OrBAC Mutation operators 
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Number of mutants 
The following table shows the number of each type of mutant that can be generated. It is 
function of the number of entities that are in the model.  
 

Operator name # generated mutants 
Hierarchy changing operator :# hierarchies levels * # rules with entities (contained in hierarchies) 
Addition of new rule operator #roles * #contexts * # (activities and views) 
Type changing operator # permission +  #prohibition 
Parameter changing operator # entities * # rules 

 
Table 2 Number of generated mutants 

 

3.2. Examples of OrBAC mutation 

We illustrate the use of security mutation operators by presenting an example of security 
policy. The context of the study case is a hospital. We specify these entities: 
 
 

 
Fig 5. hospital OrBAC model entities 

 
Some Rules are added: 

We allow the secretary to do doctors planning. 

permission(RennesHospital,Secretary,DoPlanning,TimeTable,Default) 

permission(RennesHospital,Surgeon,DoSurgeonsPlanning,TimeTable,Default) 

permission(RennesHospital,Dentist,DoDentistsPlanning,TimeTable,Default) 

permission(RennesHospital,DoctorReasearcher,DoDoctorReasearcherPlanning,TimeTable, 

Default) 

 

We prohibit doctors to do the planning of other roles. 

prohibition(RennesHospital,Surgeon,DoDentistsPlanning,TimeTable,Default) 
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prohibition(RennesHospital,Surgeon,DoDoctorReasearcherPlanning,TimeTable,Default) 

prohibition(RennesHospital,DoctorReasearcher,DoDentistsPlanning,TimeTable,Default) 

prohibition(RennesHospital,DoctorReasearcher,DoSurgeonsPlanning,TimeTable,Default) 

prohibition(RennesHospital,Dentist,DoSurgeonsPlanning,TimeTable,Default) 

prohibition(RennesHospital,Dentist,DoDoctorReasearcherPlanning,TimeTable,Default) 

 

In the following section, one mutation operator will be applied for each category to show 
what kinds of security violations are simulated. 

3.2.1. The use of type changing operators 
PPR operator: 

permission(RennesHospital,Secretary,DoPlanning,TimeTable,Default) 

Became  

prohobition(RennesHospital,Secretary,DoPlanning,TimeTable,Default)  

By using this operator, the resulting mutant simulates the violation of non repudiation security 
requirement. 

3.2.2. The use of parameter changing operators 
Applying RRD: 

permission(RennesHospital,Secretary,DoPlanning,TimeTable,Default)   

Became 

permission(RennesHospital,Doctor,DoPlanning,TimeTable,Default)  

This will allow doctors to do planning. There will be no conflicts because we defined rules or 
roles that inherit from “doctor” and for activities that inherit from “DoPlanning”. So these 
rules will be replaced by permission rule because the parent role and parent activity have 
priority and descendants inherits parent rules. 

This policy mutant allows activities that were forbidden by the initial security policy. 
Authorization security requirement is violated. 

3.2.3. The use of the rule adding operator 
Applying ANR, the following rule is added: 

permission(RennesHospital,Secretary,DoPlanning,TimeTable,Urgency) 

A rule that defines the authorization granted to secretaries to do planning in context of 
urgency is added. The resultant mutant simulates the case when the system is too permissive. 

3.2.4. The use of hierarchy mutant operators 
Applying APD: 

permission(RennesHospital,Secretary,DoPlanning,TimeTable,Default) 

Become 

permission(RennesHospital,Secretary DoDentistsPlanning,TimeTable,Default) 
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As the mutation operator reduces the scope of secretary activities, the resultant policy mutant 
simulates the violation of non repudiation security requirement. 

4. Case study and mutation framework 
 
We apply the OrBAC mutation analysis to a sample application used to manage a library. We 
start with a presentation the implementation of the mutation tool in MotOrBAC. Afterwards, 
We present the sample application OrBAC model and the architecture of the security policy 
deployment. Finally, we present the application and the security mutation implementation and 
the mutation analysis results. 

4.1. Case study requirements 

The purpose of the library management system (LMS) is to offer services to manage books in 
a public library. The books can be borrowed and returned by the users of the library on 
working days. When the library is closed, users can not borrow books. When a book is 
already borrowed, a user can make a reservation for this book. When the book is available, the 
user can borrow it. The LMS distinguishes three types of users: public users who can borrow 
5 books for 3 weeks, students who can borrow 10 books for 3 weeks and teachers who can 
borrow 10 books for 2 months. 
The library management system is managed by an administrator who can create, modify and 
remove accounts for new users. Books in the library are managed by a secretary who can 
order books, add them in the LMS when they are delivered. The secretary can also fix the 
damaged books in certain days dedicated to maintenance. When a book is damaged, it must 
be fixed. While it is not fixed, this book can not be borrowed but it can be reserved by a user. 
The director of the library has the same accesses. 
The administrator and the secretary can consult all accounts of users.  All users can consult 
the list of books in the library. 

4.2. Sample application OrBAC model 

We defines according to the requirements the following entities; 
 

Roles

Activities
Views

Contexts

 
Fig 6. OrBAC entities for the LMS 

  
The following roles are defined:  

• Borrower roles : contain student and teacher 
• Personnel roles : contain secretary (in charge of books), administrator (in 

charge of accounts, users), and the director. 
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Activities are classified depending on related roles. We differentiate between borrower 
activities and administrator activities. Therefore, there are 2 hierarchies; The borrower’s 
activities and the personnel’s activities. Fig 6 shows these roles. Note that personnel activities 
are sub-activities of the administrator activity because administrators have extended activities. 

4.3. Security rules 

The following rules are defined: 
 

Types Organization Role Activity View Context 
Permission rennesLibraries Borrower BorrowerActivity Book WorkingDays 
Prohibition rennesLibraries Borrower BorrowerActivity Book Holidays 
Permission rennesLibraries Administrator ManageAccess PersonnelAccount default 
Permission rennesLibraries Administrator CreateAccount BorrowerAccount default 
Permission rennesLibraries Administrator ModifyAccount BorrowerAccount default 
Permission rennesLibraries Administrator ConsultBorrowerAccount BorrowerAccount default 
Permission rennesLibraries Administrator FixBook BorrowerAccount MaintenanceDay 
Permission rennesLibraries Administrator DeliverBook BorrowerAccount MaintenanceDay 
Prohibition rennesLibraries Secretary ManageAccess PersonnelAccount default 
Prohibition rennesLibraries Secretary CreateAccount BorrowerAccount default 
Prohibition rennesLibraries Secretary ModifyAccount BorrowerAccount default 
Permission rennesLibraries Secretary ConsultBorrowerAccount BorrowerAccount default 
Permission rennesLibraries Secretary FixBook Book MaintenanceDay 
Permission rennesLibraries Secretary DeliverBook Book MaintenanceDay 
Permission rennesLibraries Director ConsultBorrowerAccount BorrowerAccount default 
Prohibition rennesLibraries Director ManageAccess PersonnelAccount default 
Prohibition rennesLibraries Director CreateAccount BorrowerAccount default 
Prohibition rennesLibraries Director ModifyAccount BorrowerAccount default 
Permission rennesLibraries Director FixBook Book MaintenanceDay 
Permission rennesLibraries Director DeliverBook Book MaintenanceDay 

 
It is important to note that rules are derived based on the parameters hierarchy. For example 
the rule: 

� Permission(rennesLibraries,Borrower,BorrowerActivity,Book,WorkingDays) 
Based on hierarchies shown in Fig 6, the following rules are automatically derived: 

� Permission(rennesLibraries,Student,BorrowBook,Book,WorkingDays) 
� Permission(rennesLibraries, Student,GiveBackBook,Book,WorkingDays) 
� Permission(rennesLibraries, Student,ReserveBook,Book,WorkingDays) 
� Permission(rennesLibraries,Teacher, BorrowBook,Book,WorkingDays) 
� Permission(rennesLibraries, Teacher, GiveBackBook,Book,WorkingDays) 
� Permission(rennesLibraries, Teacher, ReserveBook,Book,WorkingDays) 

 
The current security policy does not have any conflicts. 

4.4. The business model and architecture 

The UML class diagram is shown by Fig 7: 
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Fig 7. UML Class diagram 
 
We managed to define an UML model that does not hard-code the security policy in it. For 
example we do not define a method borrow in the borrower class because it implements a 
security policy rule by construction in the model (allowing only a borrower to borrow) and 
therefore this rule cannot be violated or changed. In fact a generic model allows us to have a 
dynamic implementation of the security policy. The security policy is in charge of deciding 
whether an activity requested by a user under a specific context and performed under a certain 
view is allowed or prohibited. 
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Fig 8. Application architecture 
 

In addition to the model presented above, we use 3-tiers architecture, as shown in Fig 8. Is it 
important to note that all user interactions with the application are handled by service classes. 
These classes are implementation of facade design pattern.  They take as parameters (among 
others) the user who requested the activity. The application business logic is located in the 
service layer. Service classes interact with the interface and call the business objects classes. 
In addition, they call the data access objects that will read or modify the database. Also, the 
data access layer is in charge of doing the mapping between the database and the application 
objects. It contains requests and methods that create data transfer objects. These objects are 
transferred to service classes who create business objects. 

Before performing the activity, the services methods perform a security check in order to 
verify that the activity is allowed by the security policy. If it is prohibited then a security 
exception is thrown. In order to illustrate this, let’s focus on the following example. It shows a 
method in the service BorrowerAccountService that updates the borrower account: 

 

public void updateBorrowerAccount(User borrower, BorrowerAccount borrowerAccount, User connectedUser) throws 
BSException, SecuritPolicyViolationException { 

    ServiceUtils.checkSecurity(connectedUser, LibrarySecurityModel.MODIFYACCOUNT_METHOD,         
LibrarySecurityModel.BORROWERACCOUNT_VIEW, LibrarySecurityModel.DEFAULT_CONTEXT); 

 

This method takes as arguments a borrower, its account (modified) and the connected user 
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(the one who asks for modifying the account). The first instruction makes a call to the method 
‘checkSecurity’. This method checks if the security policy allows or prohibits the 
‘connectedUser’ to perform the activity (here ‘LibrarySecurityModel.MODIFYACCOUNT_METHOD’) 

under the book view (‘LibrarySecurityModel.BORROWERACCOUNT_VIEW’) and in the default context. 

The ‘checkSecurity’ may raise 2 security exceptions: 

• ‘SecurityViolationException’: when a security rule is violated. This happens when a 
prohibited activity is requested. 

• ‘UndefinedSecurityPolicyException’: when no security rule is defined for the 
requested parameters. 

The code of this function is shown bellow: 

 

public static void checkSecurity(User user, Method[] activity, Class view, Context context) throws 
SecuritPolicyViolationException, UndefinedSecuritPolicyException { 

        String result; 

         

        // call the security service 

        result = ServiceBO.securitPolicyService.checkSecurityPolicy(user.getRole().getClass(),activity,view,context); 

        // it is prohibited 

        if(result.equals(SecurityPolicyServiceInterface.PROHIBITION_AUTH)) 

            throw new SecuritPolicyViolationException("Security policy violation. The requested activity is prohibited"); 

        // it is undefined 

        if(result.equals(SecurityPolicyServiceInterface.UNDEFINED_AUTH)) 

            throw new UndefinedSecuritPolicyException("undefined security policy behaviour. The response to the requested 
parameters is undefined."); 

 

    } 

4.5. Deployment of the security model 

In order to deploy the security model, we followed 2 steps: 

• Create a generic security policy framework 

• Implement the security policy library 

 

The generic framework is not dependant of the  implementation. Therefore, it can be used 
with any OrBAC based security policy. In this section, the security policy UML model is 
presented. Then, the framework execution and use is shown by a sequence diagram showing 
how the security mechanism is triggered. 

Fig. 9 shows the UML model of the security framework: 
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Fig 9. Security framework class model 
 

It is important to point out that the only class that is related to the implementation is 
“LibrarySecurityModel”. This class implements 2 abstract methods: 

• initMapping: initializes the constants containing the application classes and methods 
that will be used to map OrBAC roles, activities, views and contexts. 

• defineSecurityModelMapping: defined the mapping between OrBAC entities and the 
application classes and methods (created by initMapping). 

The “SecurityModel” class loads security rules from the database and creates the collection of 
OrBAC security rules. The only class that will be called by the application is the 
“SecurityPolicyService” service class. This service checks the security policy in order to find 
out if the requested activity (knowing the user role, the context and the view) is allowed or 
prohibited. Fig 10 shows how the security framework is used by the application (when a user 
tries to borrow a book during holidays which is forbidden by the security policy):  
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Fig 10. Security policy sequence diagram 

 

All methods of services classes that implement a security policy rule call “checkSecurity” 
method in  “ServiceUtils” before performing the action. Then the security policy service uses 
the security model to get the OrBAC entities mapped by the parameters. Afterward, the 
service searches for a rule using the calculated OrBAC entities (in the presented case it is a 
prohibition rule). Finally, ServiceUtils raises a security policy violation exception when it find 
out that the requested activity is forbidden. 

4.6. Mutation tool  

4.6.1. Generation of mutants 
 
The mutant generator is implemented as part of the MotOrBAC tool that implements the 
OrBAC security model. The goal of this tool is to allow security administrators to specify and 
define an OrBAC based security policy model.  
We added a module that generates security policy mutants.  When the security policy is 
defined the tool creates the security mutants. Its user interface is shown in Fig 12. 
.  
 

 
Fig 11. Mutation result dialog box 
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The user can choose the number of generated mutants for each category. Then the tool creates 
MotOrBAC security policy files and/or an SQL script that creates a database table containing 
all the mutant rules (each mutant policy having a unique id). 
   

 
 

Fig 12.  The mutant generator window 
 
 

 
The mutation tool uses MotOrBAC libraries to get the current security policy rules list, 
entities as well as hierarchies. In addition, the mutation tool uses MotOrBAC modules to 
check if conflicts exist and resolves them. In case of conflict, it means that the mutated rule is 
in conflict with another. The conflict is automatically solved by giving the highest priority to 
the mutated rule. The result is that this rule is implemented or executed in priority. The 
numbers of generated mutants are shown in a dialog box (as presented in Figure 11). For our 
experiments, we generated all the possible mutants, for ranking the mutation operators. 

4.6.2. Oracle function for mutation analysis 
In order to decide whether a mutant is killed or not, we use an oracle function that checks the 
difference between the output of the mutant policy implementation and the correct security 
policy one. The security mechanism prints the authorization that was granted to the requested 
action into a file. The oracle function thus consists in comparing the files that are produced by 
the mutant and the original policy. We present here an example of 2 different outputs: 
 
Output of the application using initial security policy: 
 
INFO main root - Permission granted for the requested action reserveBook BORROWER 
 

Output of the application using mutant security policy: 
 
WARN main root - Requested action prohibited reserveBook BORROWER 
 

Information about the operator used to generate this mutant: 
 
Operator used: Type Changing Operator 
 
Rule to change:  
Permission (rennesLibraries,Borrower, ReserveBook, Book, WorkingDays). 
 
Rule to use instead: 
Prohibitionp (rennesLibraries, Borrower, ReserveBook, Book, WorkingDays). 
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This oracle function, by comparing the behaviour of the initial program with the seeded one, 
is sufficient to determine that a test case kills a mutant. For a practical use, this comparison is 
not possible and the tester must define an explicit oracle function or manually establish the 
verdict. This is another reason why it is important to generate only the necessary and 
sufficient number of mutants. 
 

4.6.3. Generated mutants 
Table 3 gives the number of generated mutants per operator. The ANR operator generates 
much more mutants since it adds a non specified security rule. The number of generated 
mutants thus reflects the fact that all the possible cases have not been specified in the security 
policy. To our own experience, this is quite usual: the specification focuses on the most 
critical and important case, and often considers that a default behaviour is acceptable. Testing 
these cases allow the default policy to be exercised and allow to highlight lack in the 
specification.  On the other hand, they are few mutants generated from hierarchy changing 
operators because the specification doesn’t introduce many hierarchical entities. 

 
Operator category Op. name # mutants 

PPR 22 Rule type changing operator 
PRP 19 
RRD 60 Rule parameter changing operator 
CRD 60 
RPD 5 Hierarchy changing operator 
APD 5 

Rule adding operator ANR 200 
All  371 

 
Table 3 - Number of generated mutants per operator 

5. OrBAC mutation analysis in action: results and 
comments 

In this section, we present the results of the OrBAC mutation. There are 2 main objectives for 
this study.  

The first objective is to provide a ranking of the mutation operators. This ranking will be 
based on the mutation analysis results.  

The second objective is to study the relation between software test cases and security test 
cases. In fact, testing functions includes exercising many security mechanisms. The issue is to 
determine whether testing functions provide enough confidence in the security mechanisms. 
Then we want to know how to improve this confidence by selecting test cases specific to 
security. Two strategies are studied for producing security policy test cases, depending if they 
are built in complement of existing functional test cases or independently from them. 
 
Before presenting the results, we present some definitions in order to help clarifying the 
subtle  differences between functional and security policy testing. After this sub-section, we 
will start with presenting the experimentation protocol and the strategy used to decide how to 
rank the operators. Afterwards, in the last sub-section, we study the relation between 
functional tests and security tests. 
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5.1. Security tests qualification 

 
Experimental protocol 
 
The first step consists of generating minimal test suites per mutation operator, w.r.t. the 
following definition: 

Definition: minimal test suite. A test suite is minimal for a set of mutants iff the test cases 
it includes have a 100% mutation score and, if when a test case is removed, the 
mutation score decreases. 

We note TS(name of operator) the minimal test suite needed to kill all the mutants generated 
with this operator. In this study, an important effort has been allocated for generating the test 
cases and minimizing the test suites. Since it is difficult to have much less than a test case by 
security rule, we believe the minimal test suites are close from the optimum. For instance, the 
minimal test suite of 36 test cases selected for killing the basic mutation operators is equal to 
the number of non generic security policy rules.  
The second step consists of comparing the mutation operators. This comparison leads to a 
ranking, which is obtained with two criteria. The first one determines whether a mutation 
operator can replace another. This aspect is captured by the notion of subsume relationship. 
When two mutation operators are equivalent, any of them can replace the other without loss 
of efficiency for the generated test cases. To choose which of the two mutation operators can 
be removed, we consider the number of generated mutants as a second criterion.   
 

Definition: subsume relationship (->). A mutation operator MO1 strictly subsumes MO2 
(MO1 -> MO2) if:  

a) the minimal test suite TS(MO1) also reaches a 100% mutation score for the MO2 
mutants  

b) the minimal test suite TS(MO2) does not reach 100% for MO1 mutants.  

MO1 and MO2 are equivalent (MO1 <-> MO2) if TS(MO1) reaches 100% on MO2 
mutants and TS(MO2) reaches 100% on MO1 mutants. 

Fig 13 illustrates the definition. MO1 -> MO2 since the test suite for MO1 is sufficient to kill 
all mutants generated with MO2. Conversely, MO2 doesn’t subsume MO1 since its minimal 
test suite only kills 80% of the mutants created with MO1. We can thus consider that MO2 
can be removed, since it is not needed when qualifying a test suite. MO1 precedes MO2 in the 
ranking. In case of equivalence, one of the two mutation operators is useless. To determine 
which one can be removed, we consider that it is better to generate less mutants (due to the 
execution times, and to the effort needed for generating these mutants when done manually). 
So, the ranking relation is defined as follows. 

TS1 TS2

MO2MO1

100% 100%
100%

< 100%

TS1 TS2

MO2MO1

100% 100%
100%

< 100%

 
Fig 13.  MO1 operator strictly subsumes MO2 

Definition: mutation operators ranking (>).  

MO1 > MO2  iff: MO1 -> MO2 or ( (MO1<->MO2 )  and |{MO1 mutants}| < |{MO2 
mutants}| ) 



   

28 

This ranking only orders partially mutation operators. If a mutation operator is not ranked, it 
is independent and necessary for a relevant test qualification process. 
 
Ranking of mutation operators 
First, the mutation analysis was applied with each minimal test suite for each mutation 
operator. The results were deceiving since no clear ranking appear. We then consider minimal 
test suites for couples of mutation operators: PPR-PRP (Rule type changing operators), RRD-
CRD (Rule parameter changing operator) and RPD-APD (Hierarchy changing operator). The 
results for the size of the minimal test suites are displayed in the table bellow. The 
relationships between minimal test suites are: 
TS(RRD-CRD) = TS(PPR-PRP) 
TS(RPD-APD) ⊂ TS(PPR-PRP) 
| TS(PPR-PRP) ∩ TS(ANR) | = 21 test cases 
 
So, both PPR-PRP and RRD-CRD operators subsume the RPD-APD operator. PPR-PRP and 
RRD-CRD are equivalent for the subsume relationship. Taking into account the second 
criterion, the number of generated mutants per operator, we obtain the following ranking: 
PPR-PRP -> RRD-CRD -> RPD-APD 
This result shows that the PPR-PRP operator should be used in priority, thus avoiding the 
creation of most mutants.  
 

Operator category OP 
 

Size of minimal test 
suites 

 

PPR Rule type changing operator 

PRP 

 
36 

RRD Rule parameter changing operator 

CRD 

 
36 

RPD Hierarchy changing operators 

APD 

 
4 

Rule adding operator ANR 154 
 

 
Table 4 Number of minimal test suites 

 
The ANR and PPR-PRP operators are not comparable with this ranking. Some test cases are 
shared by both minimal test suites (21 test). The table bellow shows the overlap between the 
test suites, in terms of respective mutation scores. The minimal test suite for ANR kills 59.3 
% of the non-ANR mutants. On the other hand, the PPR-PRP test suite only covers 17% of 
the ANR mutants. The ANR mutants are thus necessary but cannot replace the PPR-PRP 
operator. PPR-PRP and ANR are not comparable, and are recommended operators. On this 
case study, the ANR operator is the most costly in terms of generated mutants. This number 
may vary, depending on the completeness of access control rules. The fewer rules are 
specified, the more mutants this operator generates. We believe that it is likely that the rules 
do not specify all the combinations explicitly, and that this operator is the most costly. On the 
other hand, the PPR-PRP operator will generate more mutants when more rules are added. In 
a general case, there is thus a balance in the number of generated mutants between PPR-PRP 
and ANR.    
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 all mutants 

except ANR 
ANR 

TS(PPR-PRP) 100% 17% 
TS(ANR) 59.3% 100% 

 
Table 5 Overlap of test suites between  

PPR-PRP and ANR operators 
  
Removing mutants generating conflicts 
To reduce the number of mutants to be generated, we remarked that the mutants which caused 
a conflict (which is solved by giving priority to the mutant rule) are the more easy to kill. 
Table 6 presents the number of mutants which generated conflicts per operator. Bellow we 
present an example of such conflict. The example illustrates that two test cases, generated to 
kill mutants without conflicts, kill this mutant with conflict.  
 

Operator used: RRD 
Initial rule: 
Prohibition(Library,Secretary,ManageAccess,PersonnelAccount,Default) 
 
Mutated rule: 
Prohibition(Library,Administrator,ManageAccess,PersonnelAccount, Default) 
 
The seeded rule is in conflict with another rule: 
Permission(Library,Administrator,ManageAccess,PersonnelAccount,Default) 
 
The two tests that kill this security policy mutant: 
Test 1: Test that secretary cannot manage access 
Test 2: Test that admin can manage access. 
 
These two tests are already generated to kill mutants without conflicts. 
 

Operator category With 
conflicts 

Without 
conflicts 

Rule type changing 
operator 

- 41 
 

Rule parameter 
changing operator 

23 
 

97 
 

Hierarchy changing 
operators 

- 10 
 

Rule adding 
operator 

33 
 

167 
 

Total 56 315 

 
Table 6 # of generated mutants with and without conflicts 

 
So, several test cases, from the minimal test suites, systematically kill these mutants. It means 
that these mutants are not necessary. Indeed, we have: 

TS(RRD-CRD with conflicts) ⊂  TS(RRD-CRD without conflicts) 
 

TS(RRD-CRD without conflicts) corresponds to the suite of 36 test cases needed both for 
Rule type and Rule parameter changing operators. This test suite is also minimal for the 
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mutants RRD-CRD which do not cause conflicts. Among this set, only 12 test cases are 
needed to kill mutants with conflicts which compose the TS(RRD-CRD with conflicts) 
minimal test suite. 
TS(ANR with conflicts) ⊄ TS(ANR without conflicts)  
But TS(ANR with conflicts) ⊂ TS(PPR-PRP) and TS(ANR with conflicts) corresponds to a 
minimal test suite of 21 test cases (which are the exact intersection of the TS(ANR) and 
TS(PPR-PRP) test suites.  
It means that if the PPR-PRP and ANR operators are used, the minimal test suite of PPR-PRP 
kills the mutants with conflict generated with ANR. Combining these two operators allows 
removing the mutants with conflicts generated with the ANR operator. Around 18% of the 
mutants (those with conflicts) can be removed without any loss of relevance for the generated 
test cases. 
We study why these mutants could be removed and the explanation is interesting, since it 
corresponds, for security testing, to the ‘coupling effect’ analyzed by Offutt et al. [14]. In fact, 
when a mutated rule causes a conflict, it has an impact on at least two rules: this fault is 
equivalent to two sequential mutations without conflicts. 
In conclusion, some operators are more relevant than others for improving the quality of 
security test cases. We present a ranking of the most useful mutation operators: 

1. Adding rules operators 
1. Rule type changing operators 
2. Rule parameter changing operators 
3. Hierarchy changing operators 

 

ANR

PPR-PRP 

RRD-CRD 

RPD-APD

ANR

PPR-PRP 

RRD-CRD 

RPD-APD

 
 

Fig 14. Relation between operators 
  

 
Fig 14 displays this ranking, and highlights the overlap between ANR and the other operators. 
All these operators generate mutants which intersect with the adding rule operator. Adding 
rules operators are the most interesting because they simulate cases that are not tested by 
functional tests. As shown by the results, they are the most difficult to kill, regarding the 
number of test cases needed to detect its generated mutants. Only advanced security test cases 
are able to kill mutants without conflicts created by this operator.  

5.2. Security tests vs. functional tests 

Two test criteria are studied in order to select test cases from an OrBAC security policy 
model.  

CR1 - The criterion 1 (CR1) is satisfied iff a test case is generated for each primary access 
control rule of the security model. 
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In the case of the LMS, we have 20 such primary rules. In the case of a generic rule, a test 
case testing one instance of this rule is considered as sufficient.  
 

CR2 - The criterion 2 (CR2) is satisfied iff a test case is generated for each primary and 
secondary rule of the security model, except the generic rules. 

 
In that case, 35 test cases are generated corresponding to the 42 total access control rules 
minus the 7 generic ones. The CR2 criterion is stronger than CR1, since it forces the coverage 
of all secondary rules. 
 

Advanced SP test cases - Advanced SP test cases that exercise the default/non specified 
aspects of the security policy.  

 

These test cases are selected to kill mutants generated with a specific mutation operator 
(ANR) presented in the next section.  
 

Functional test cases: It corresponds to system tests, in the sense they are generated based 
on the use cases of the system under test. 

We used the approach based on use cases + contracts (pre- and post-conditions) to generate 
the functional test cases. The automated generation is obtained using the UCTS (Use Case 
Transition System) presented in [10]. The generated test cases cover the nominal code (code 
implementing the specified use of use cases) and a part of the robustness code of the  system 
under test (unexpected use of a use case and specified situations when the use case execution 
fails).  
Security test cases obtained with CR1 or CR2 should test aspects which are not the explicit 
objective of functional tests, e.g. that all prohibition rules that are not tested by functional 
tests. 
Test strategies  
We study whether the functional test cases can be used for security policy testing. Reusing 
functional test cases implies adapting them for explicitly testing the security policy. The intent 
of the functional test becomes security and details the SP rules which are tested by the input 
test sequence. The test oracle does not check the correctness of the service results, but 
interrogates the security mechanism and checks if the expected permission/prohibition is 
executed. 
So, we consider two types of strategies depending whether we reuse the existing test cases or 
not.  

Incremental strategy: It denotes the strategy for producing security test cases which reuse 
existing test cases. 

An example of incremental test strategy consists of reusing functional test cases, then 
completing them with one of the CR1 or CR2 criteria, and finally completing the resulting test 
suite with advanced test cases.  

Independent strategy: This strategy consists of selecting functional, SP test cases and 
Advanced SP test cases independently. 
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We will compare and discuss in the case study several incremental strategies and the 
independent one. The goal is to highlight the many issues that arise when selecting test cases 
for the security policy aspect. 
 
Issue 1: Relationships/differences between functional tests and security ones  
The first experiments we performed aim at studying whether the faults detected by functional 
test cases differ from (are included in or intersect with) the ones detected by test cases 
dedicated to the security policy. While the functional tests, which cover 100% of the code, 
necessarily execute security mechanisms, they should only focus on the success/failure of 
method/service sequence executions.  
When reusing functional test cases with the objective of testing security, the intent changes 
and thus it is necessary to modify the associated test oracle. This task may be costly in the 
general case, depending on the difficulty to relate the functional test sequence to the security 
mechanisms it should exercise. 
Table 8 summarizes the number of functional test cases. The table shows that some test cases 
do not trigger the security mechanisms. It corresponds to the execution of code which is not 
related to the security policy. It confirms the intuition that functional test objectives differ 
from the objective of explicitly testing security mechanisms.  
Table 7 second column shows that the functional test cases, adapted to security, can kill most 
(78%), but not all, basic operators’ mutants. Concerning, the ANR operator, the functional 
test cases are not efficient (11%): it is due to the fact that the ANR operator generates security 
flaws which are outside the scope of the specification. In conclusion, the overlap of functional 
aspect and security policy is high, but the functional test cases do not kill all security mutants. 
It appears as a meaningful task to generate test cases with the explicit objective of testing the 
security policy.  
 

 Functional CR1 CR2 
#Test Cases 42 20 35 

Rule type changing operator 35/41 85% 38/41 92% 41/41 100% 
Rule parameter changing operator 90/120 75% 101/120 84% 120/120 100% 
Hierarchy changing operators 10/10 100% 10/10 100% 10/10 100% 

Overall score with basic security 
operators 

135/171 78% 149/171 87% 171/171 100% 

Rule adding operator (ANR) 22/200 11% 28/200 14% 33/200 17% 

Overall score with all operators 157/371 42% 177/371 47% 204/371 55% 

 
Table 7 Mutation analysis results by test cases category 

 
 # test cases 

Tests that do not that trigger sec. mechanisms 7 
Tests that trigger security mechanisms 35 

All tests 42 
 

Table 8 Functional tests analysis 
 
 
Issue 2: Comparing test criteria 
Table 7 third and fourth columns present the mutation results for CR1 and CR2 test criteria. 
The 20 test cases selected with CR1 are more efficient than the functional test cases, since 
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with fewer test cases the final mutation score is higher. However, this criterion is not efficient 
to reach a 100% mutation score on basic mutants (generated with all operators except ANR).  
In conclusion, the CR2 criterion is necessary to provide a full coverage of basic mutants, and 
appears as good trade-off between functional and CR1, in terms of efficiency (mutation score) 
and cost (#test cases) for detecting security flaws. A corollary conclusion is that a large 
number of basic mutants are quite easy to kill. Since the hard-to-kill mutants are the most 
interesting ones (because they require the most efficient test cases), another study would 
consist of ranking the mutation operators so that only hard-to-kill mutants are generated. This 
study is beyond the objective of this report but is necessary to offer a realistic mutation-based 
approach to test security policies. This report focuses on the test selection problem for 
security policy and the question of sufficient mutant operator does not impact the conclusions 
we draw (in the worse case, we consider more mutants than necessary since some mutants are 
coupled). 
We remark that the CR2 criterion allows covering up to 17% of the ANR mutants. While 
basic security mutants force the tests to cover the specified security rules, the ANR ones are 
useful to check the robustness of the system in case of default or underspecified policies. 
Combining both operators provides a good criterion to guide the tester when generating the 
test cases. 
The advanced security test cases are test cases which are explicitly generated in order to kill 
all the ANR mutants. In this approach, we are using mutant score as the test criterion. We do 
not use mutation for analysis purpose (to compare test criteria or testing technique) but as a 
test selection technique. In the case mutants generation cannot be fully automated, it makes 
this test selection technique impossible to apply. However, the study we propose provides 
interesting results, in terms of test selection effort and test quality. 
 
Issue 3: Advanced vs. basic security tests  
The issue here is to compare the test cases selected to cover the security rules with CR2 (and 
which kill all mutants except ANR) and the advanced security tests which are generated in 
order to kill all the ANR mutants. Table 9 presents the overlap between these two approaches. 
It is interesting to note that the advanced security test cases kill up to 60% of the basic 
security mutants. On the other hand, the test cases selected with CR2 only kill 17%. The 
effort to kill the ANR mutants is much more important (154) than for killing the basic security 
mutants (35). 

 #test 
cases 

Basic 
security 
mutants 

ANR 

CR2 35 100% 17% 
Advanced 
sec. tests 

154 59.3% 100% 

 
Table 9 Overlap of CR2 and advanced test cases 

 
In conclusion, the test selection based on the ANR mutants cannot replace the CR2 criterion. 
CR2 and advanced security test cases are not comparable, and are both recommended, the 
first to efficiently test the specification, the second to cover non-specified cases (robustness).  
Issue 4: Incremental vs. independent test strategies 
The issue now is to study whether we can leverage an incremental approach to save test 
generation effort. Table 10 recalls the number of test cases generated with the following 
strategies: the independent approach (we do not reuse functional test cases) reusing the 
functional test cases, completing them to reach the CR2 criterion and to kill all ANR mutants 
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(Incremental from functional strategy), generating test cases to reach the CR2 criterion, 
completing them to kill all ANR mutants  (Incr. from CR2 strategy). 
The first incremental strategy seeks to take benefit from the existing functional test cases 
(which have to be adapted for security), the second one starts from the CR2 test criterion. 
Even if quantitative results are displayed, the comparison is difficult because the effort to 
adapt functional test cases to security cannot be easily estimated in a general case. It depends 
on the system to be tested. It may be neglected: that’s the case for our study since the security 
mechanisms are centralized and can be quite easily observed. In a general case, adapting these 
test cases may be as costly as generating security test cases. In Table 11, we put two values 
that correspond to the case when the cost of adaptation can be neglected in parenthesis. This 
issue is related to the problem of security mechanisms testability (controllability and 
observability). 
 

#Test cases 
Strategy 

Funct. Basic Security 
CR2 

Advanced Security Total 

Independent - 35 154 189 
Incremental from functional (42) 21 133 196 

(154) 
Incr. from CR2 - 35 133 168 

 
Table 10 Independent vs. Incremental test generation strategies 

 
It appears that the independent generation of basic security and advanced test cases is the 
most costly. With any incremental strategy, we need to generate 133 test cases to kill all 
advanced security mutants (saving 21 test cases generation). The final ranking between the 
two incremental strategies depends on the adaptation cost of functional test cases and may 
vary from a system under test to another. Only the test experts may estimate this adaptation 
cost. If it can be neglected, reusing functional test cases and completing them is the most 
interesting strategy. Another decision has to be taken which is to put an important effort for 
testing the security policy robustness (killing ANR mutants).  

5.3. Conclusion for the use of mutation analysis for SP testing 

The objectives of the study are two-fold: 
First, it proposes mutation operators for security policy testing. To qualify a set of security 
policy test cases, a classical mutation analysis is applied with these ‘security’ mutants. In 
practice, it may be costly to implement all types of security mutants, especially if it must be 
done manually. We thus performed detailed experiments, as rigorously as possible, on a 3-
tiers architecture example (a library system) to select a sufficient subset. The hardest-to-kill 
security mutant operators are those which must be generated in priority. If this initial study 
has to be completed with others, the first results reveal that we can limit the types and number 
of generated mutants. The ranking shows that two operator types are necessary: rule type 
changing operator (PPR and PRP) and rule adding operator (ANR). Combining these two 
operators also leads to another minimization of the generated mutants: only mutants which do 
not cause conflicts in the security rule have to be created. It is due to the fact they introduce at 
least two coupled elementary faults (coupling effect). While PPR-PRP mutants force the test 
to cover the specified security rules, the ANR ones are useful to check the robustness of the 
system in case of default or underspecified policies. Combining both operators provide a good 
criterion to guide the tester when generating the test cases. 
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Secondly, the study focused on comparing functional and security policy testing, and on 
estimating the interest of two test selection criteria and two test strategies. The study does not 
answer the many issues security policy testing tackles but allows underlining them and shows 
that testing a security policy is a specific task, which is complementary from the functional 
testing one. We proposed a first methodology to select test cases, with various test selection 
criteria based on the security policy (specification) or on mutation (code based). Finally, we 
distinguish test selection for testing the “nominal” security policy rules from the advanced test 
selection that aims at testing the robustness of the security policy. The first test cases can be 
derived from CR2 test criterion. We use ANR mutants as a suitable criterion for testing 
security policy robustness. To conclude concerning the use of mutation as a sSP testing 
technique, the studies must be balanced by considering wo qualitative aspects that makes the 
approach feasible or not: 

- the possibility, or not, to adapt functional test cases to test a security policy,  
- the interest of advanced security tests regarding the important additional effort it may 

require. 

6. Mutation analysis applied to SQL Injection 
A lot of web applications use back end databases. SQL injection is one of the simplest and 
well known attacks that can easily be used to damage or to perform illegal actions against 
these web applications. However, it is surprising that many web applications are vulnerable to 
this attack. It is very easy for hackers to find vulnerable websites and attack them using the 
SQL injection technique.  

In this section we study how to adapt mutation analysis to the context of SQL injection 
attacks. We start with a brief presentation of SQL injection attack. Then we present the most 
interesting approaches used to cope with SQL injection attacks. Afterwards, we propose a 
strategy to adapt Mutation analysis to qualify SQL injection countermeasures and to evaluate 
the testing tools. Afterwards, the results of mutation analysis applied to SQL injection 
countermeasures are presented. Then, based on the results and the mutants, we propose some 
improvements that can be applied to SQL injection countermeasures to overcome the 
limitations exposed by the mutation analysis study. 

6.1. SQL injection attacks 

SQL injection attacks exploit the fact that some web applications do not perform the input 
data validation, and create SQL query strings dynamically. The aim of SQL injection attack is 
to append SQL statements inside the application SQL query and execute a different query. 
In order to understand the SQL injection, let us focus on the following example, this code is 
used inside a java class. (It is a “hello world” example always presented by reports to show 
the SQL injection technique): 

String unsafeQuery = “Select * FROM users WHERE user = ‘“ + inputUser + “’ and 
password = ‘“ + inputPassword + “’;”; 

 

A rogue user (or a hacker) may type this as inputUser and inputPassword:  

InputUser?  ‘ or 1=1; --‘ 

inputPassword? Nothing 

Now we end up with the following query: 
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unsafeQuery = “Select * FROM users WHERE user = ‘’ or 1=1; --‘ and password = 
‘Nothing’; 

The last part of the query that starts from “--“ is ignored. It is considered as comment because 
the string “--“ indicates a comment.  The query that will be executed is this one:  

Select * FROM users WHERE user = ‘’ or 1=1; 

This query is a tautology and will return all users. In this case, the attacker succeeded to log in 
(illegally). 

6.2. Countermeasures security mechanisms against  SQL injection 

6.2.1. Basic security mechanisms based on input validation 
Many approaches were proposed to deal with SQL injections based attacks. Input validation is 
an obvious approach that is easy to implement. There are 3 different options for input 
validations [15]:  

� Massage data to get valid data.  

� Reject illegal characters.  

� Accept only authorized characters 

data massage consists on escaping data. For example if the user types: [‘ or 1=1-- ]. This 
string becomes: [’’ or 1=1 ] or [\’ or 1=1]. The query will be executed as expected and there 
will be no harm. This technique has drawbacks. The list of suspicious data is not finite and 
new suspicious characters are added all the time (it depends on new versions of SQL database 
that may use new reserved words or on hackers who invent new techniques etc…).  For 
example, SQL server databases uses the character ‘#’ to delimit dates. This character was not 
in the list of suspicious characters and hackers used it to perform attacks. 

Furthermore, the developers may limit the input data length. In this case, data massage is 
insufficient. Here is an example [15]:   

If the user name length is limited to 16, a user may type (see that inputUser contains 16 
characters, it is done intentionnaly): 

inputUser? aaaaaaaaaaaaaaa' 

inputPassword ?  '; shutdown; --  

The application will try to escape the quote located at the end of inputUser. The problem is 
that the escape character is ignored since the user name length is limited to 16. The query 
becomes. 

unsafeQuery = “Select * FROM users  

WHERE user = ‘aaaaaaaaaaaaaaa'’ and password = ‘’; '; shutdown; --‘ 

This query shutdowns the server. Because it looks for user name = [‘aaaaaaaaaaaaaaa'’ and 
password = ‘’; ']. Then the shutdown command is launched (a dangerous attack reached its 
goal). 

The technique of rejecting illegal data consists of removing all suspicious characters used as 
input. The string will not contain characters like “‘” or “--“   that may be used to perform an 
SQL injection attack. The main drawback of this approach is that we do not know all possible 
dangerous characters (as explained above). 
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The last technique (accepting only authorized input) consists of accepting only letters and 
numbers. This is the most efficient technique because it makes impossible an SQL injection 
attacks since the input data will never contains suspicious characters. 

The main drawback of input validation is that it is prone to a many false negatives. For 
example, a user can type his name (say) O’Brian. In this case, the application may consider 
the input data as an attack since it contains the bad character (‘). In addition, as explained 
above this technique does not guarantee that there will be no false positive because there is no 
complete and final list of bad data. Furthermore, we know that if the third technique (Accept 
only authorized characters) is implemented the application will be completely immune to 
SQL injection attacks. This is obvious because only letters and numbers are accepted. The 
disadvantage of this approach is that application users (whose names are for example 
O’Brian, O'Connor or Bassington-Bassington) may refuse to have their name written 
differently (and become OBrian or O Brian). Moreover, strongly restricting input data 
sometimes makes no sense. Why would we forbid that users search for things like 
“director_at_company.com" (special character used), "2001/12/03" (no alphabetic characters 
at all) and so on?  

6.2.2. Advanced security mechanisms 
Many approaches were proposed in the literature. We present here some of the most 
interesting techniques used to protect from SQL injection attacks (SQLIA). 

SQLIA detection: combining static and runtime analysis 

In [16], the authors propose a technique to detect SQLIA. If an SQLIA is detected the 
application rejects the query and does not execute it. A static analysis tool is used to create an 
SQL Finite State Machine (SQL-FSM) for each query. Figure 15 shows an example of SQL-
FSM [16] (the query represented is “Select * FROM user WHERE login = ‘” + input “’”). 
SQL-FSM for applications programs are constructed off-line, not at runtime.  

 
 

Fig 15. SQL-FSM 
 

During runtime,  SQL-FSM representing the executed query (containing input data, a 
potential SQLIA) is created then compared with the SQL-FSM for that query that was created 
before (off-line). If the dynamically created SQL query does not conform to the expected 
query then it is rejected (An attempt of SQLIA). Figure 16  shows an example SQL-FSM 
violation (from [16]). The input data is [‘ or 1=1 --] . 

 

 
 

Fig 16. SQL-FSM violation 
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The main drawback of this approach is the additional runtime analysis overhead. The authors 
propose solutions to overcome this problem by reducing the number or scanned queries. 

 

SQLRand: a radical shift 

This technique was proposed by Stephen W. Boyd et al. [17]. They apply instruction-set 
randomization against code-injection attacks (mainly buffer overflow based attacks) to the 
problem of SQL injection. The idea behind the concept is to create randomized instances of 
the SQL query language by using random keywords. The SQL keywords (like select or 
update etc…) are appended by a random number called a key. All application queries are 
randomized inside code scripts or sources. Then a de-randomizing proxy is used to recover 
the query (the proper SQL syntax) and send it the database management system. The 
malicious input is rejected by the proxy parser, as it uses unknown keywords (the assumption 
is made that the user will not be able to guess the value of the key). 

For example, we have the following query: 

SELECT gender, avg(age)  FROM  cs101.students WHERE  dept = ‘$dept’ GROUP BY 
gender 

To randomize the query, a utility appends automatically the key (here it is 571): 

SELECT571 gender, avg(age)  FROM571  cs101.students WHERE571  dept = ‘$dept’ 
GROUP571 BY571 gender 

A rogue user may attempt to type “‘ or 1=1; --“  the query became : 

SELECT571 gender, avg(age)  FROM571  cs101.students WHERE571  dept = ‘’  or 1=1 ; --
GROUP571 BY571 gender 

The SQLIA fails because when the parser tries to parse this query the “or” is identified as 
unknown keyword since it does not contain the key “571”. 

The figure 17 presents the architecture proposed by SQLRand approach (from [17]) : 

 

 
Fig 17. SQLRand architecture 

 
 

The drawback of this approach is that it requires developers to adopt a new programming 
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paradigm. Moreover, it is difficult to apply to legacy software as it requires the medication of 
all applications queries. 

 
String tainting based techniques 
Several approaches relying on tainting are proposed in the literature. We present one of these 
approaches named positive tainting that was proposed by Halfond and Orso [18]. 
Positive tainting consists on marking query strings hard-coded in the applications  tainted as 
safe. Application strings are identified as trusted. Then the user input strings added by the 
user are tainted unsafe. A new library called MetaString is used to extend the behaviour of 
Java Standard classes. The MetaString objects mark the safe characters in the string.  
 
This allows to check the part of query added by the user to test that no SQL reserved words 
are injected into the query. 
This allows to detect malicious SQL code injected to the query. 
This approach works as follow: 

� All trusted strings are marked (hard-coded parts only are marked trusted) 
� Before executing a query a test is done. It checks that all reserved words are tainted as 

trusted. 
 
In order to illustrate this approach the Figure 18 presents a high level overview of this system 
[18]. 

 
 
This technique was implemented in a tool named WASP targeting only applications written in 
Java . The tool uses a library to modify the Java bytecode files by replacing all String 
declarations by a new class named MetaString that marks as tainted the hard-coded strings 
and leaves untainted the dynamically added data.  In addition, the bytecode classes are 
scanned to find all database calls in order to invoke a Metachecker class that tests the query 
before authorising the execution of that query. The Metachcker uses an SQL parser that the 
query is valid. 

Fig 18. Overview of positive tainting approach 
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A learning based approach 
 
This approach [19] is based on the idea that an application always performs the same types 
and models of SQL queries and if a new kind of query is performed then this is an indicator of 
a possible SQLIA. 
This approach works as follows: 

� During a training period the security mechanism learns all the models of queries that 
can be performed by the application. 

� The security mechanism monitors checks every query performed by the application to 
see if it is linked with an already known model. If it is not then an alert is raised. 
 

The security mechanism is located between the application and the database server. 
Therefore, if is completely independent from the application language and platform. The 
figure 19 presents an overview of the system (from [19]). 
 
One limitation mentioned by the authors for this approach is that it might not detect attacks 
when the structure of the malicious query matches the structure of  another accepted query. In 
this case, the attacker changed the query in a way that makes it similar to another query 
normally used by the application. The security mechanism is not able to detect this attack. 
This potential shortcoming can be overcome by making the association at a finer level. 
 

 
 

6.3. Qualitative criteria for security mechanisms comparison 

We introduce a comparison of the approaches we presented above. We use the following 
criteria to compare the different techniques: 

� Deployment cost: 
� High cost: manual modification of application code. 
� Medium cost: semi automatic deployment. 
� Low cost: fully automated deployment. 

� Runtime overhead 
� High: important overhead. 
� Low: neglected overhead. 

Fig 19. Overview of the learning based approach 
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� Complexity of the approach 
� Complex: the use of the technique requires a lot of effort and knowledge. 
� Not complex: the technique is simple to use and deploy. 

� Portability  
� Platform and language independent. 
� Language dependent. 

 
In the following table, we present this comparison: 
 
 

 Deployment 
cost 

Runtime 
overhead 

complexity Portability 

Input validation High  Low Not complex No 

Static and runtime 
validation 

Low Low Complex No 

SQLRand Medium Low Complex Yes 

Tainted string Low Low Complex No 

learning machine Low Low Not complex Yes 
 

Table 11 Comparison of SQLIA countermeasures 

6.4. Fault injection applied to SQLIA 

6.4.1. Adaptation for SQLIA countermeasures 
 
In order to test the proposed techniques against SQLIA, we need a security fault model that is 
adapted to the context of SQLIA. 
We propose to apply a technique similar to what was proposed by Mathur et al. concerning 
environment perturbation [5]. The purpose of this approach is to evaluate the robustness of 
the mechanism when its environment is behaving badly. 
Environment perturbation can be done in the following places: 
 
Database: The database scheme and the database behaviour. For example: 

� making the database show all error messages. 
� Introducing unsafe behaviour in the stored procedure by using execSQL that open the 

door to SQLIA. 
 
The application code: 

� Weakening the application code by making it rely only on the security mechanism. 
� Making the application print the error message coming from the database. 
� Modifying the application behaviour in a way that is different from the security 

mechanism assumptions. For example, some security mechanisms make the 
assumption that the query is constructed by making concatenation of string. So it is 
interesting to see if the security mechanism works when this is done differently. 
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6.4.2. Existing testing techniques 
 
WAVES [20] is a framework for testing web application in a transparent way. 2 types of 
security problems are addressed, SQLIA and Cross site scripting. The testing technique 
consists on trying to perform an attack on web pages and then observing the behaviour of the 
web application. An enhanced crawler is used in order to retrieve the forms input and then 
injects malicious data. 
 
SecuBat [21] is a tool that allows to test web applications to check if they are vulnerable to 
SQLIA. Basically, SecuBat is a web vulnerability scanner. The authors tried it against popular 
websites. The tool was able to find potential vulnerable websites, among them companies and 
a finance ministry website. 

6.4.3. Adaptation for testing tools 
In order to evaluate SQLIA testing tools, we can use  the following strategy: 

� Checking in the tool works on unprotected application. 
� Removing protection randomly from only one form input in order to see if the tool 

uses all users input. 
� Removing protection randomly from only one web page in order to see if the tool uses 

all application web pages. 
� Introducing SQLIA vulnerability in unusual places, for example, in the program that 

handles the cookies and generates queries from cookies content. This will allow to see 
if the tool is capable of covering different types of SQLIA sources. 

  

6.4.4. Combining both adaptations 
It is interesting to combine both adaptations. this means weakening one security protection 
and evaluating the testing tool to see if it succeeded to benefit from the security breach 
created in the protection mechanism 
 

6.5. Results of mutation analysis study applied to SQLIA 

6.5.1. Input validation 

We apply traditional fault injection technique for input validation since its context is very 
similar to software testing. The fault injection strategy consists on focusing only on the input 
validation code. Then traditional mutation operators are applied. The final goal of this 
technique is to improve the security tests used to evaluate the security mechanism. 

6.5.2. Adaptation of fault injection for SQLIA advanced countermeasures 

In order to test the proposed techniques against SQLIA, we need a security fault model that is 
adapted to the context of SQLIA. 

We propose to apply a technique similar to what was proposed by Mathur et al. concerning 
environment perturbation [5]. The purpose of this approach is to evaluate the robustness of 
the mechanism when its environment is behaving badly. 
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Environment perturbation can be done in the following places: 

Database: The scheme of the database and its behaviour. For example: 

• making the database show all error messages. 
• Introducing unsafe behaviour in the stored procedure by using Exec(SQLQuery) that 

opens the door to SQLIA. 

The application code: 

• Weakening the application code by making it rely only on the security mechanism. 
• Making the application print the error messages coming from the database. 
• Modifying the application behaviour in a way that is different from the security 

mechanism assumptions. For example, some security mechanisms make the 
assumption that the query is constructed by making concatenation of string. So it is 
interesting to see if the security mechanism works when this is done differently. 

6.5.3. Adaptation for testing tools 

In order to evaluate SQLIA testing tools, we can use the following strategy: 

• Checking in the tool works on unprotected application. 
• Removing protection randomly from only one form input in order to see if the tool 

uses all users input. 
• Removing protection randomly from only one web page in order to see if the tool uses 

all application web pages. 
• Introducing SQLIA vulnerability in unusual places, for example, in the program that 

handles the cookies and generates queries from cookies content. This will allow to see 
if the tool is capable of covering different types of SQLIA sources. 

6.5.4. Combining both adaptations 

It is interesting to combine both adaptations. this means weakening one security protection 
and evaluating the testing tool to see if it succeeded to benefit from the security breach 
created in the protection mechanism. 

6.5.5. Applying fault injection to SQLIA countermeasures 

Before checking each type of SQLIA countermeasure, let us choose some mutants. We will 
define two types of mutants : 

• General mutants: They will be used for all approaches. 
• Specific mutants: They are adapted to the approach. They are made in order to behave 

in a way that will perturb the security mechanism. 

Specific mutants will be presented in the each approach section. The following general mutant 
are defined: 

• Mutant 1: The application displays all errors messages coming from the database. This 
is the default behaviour of the application. This case is realistic because sometimes the 
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developers forget to switch off the option that displays errors and debugging 
information in web pages. 

• Mutant 2: The application relies only on the security mechanism. No sanitizing 
function is used to filter user input. malicious character are accepted which opens the 
doors to SQLIA.  

• Mutant 3: The application uses a stored procedure that contains unsafe behaviour in it. 
It uses exec(SQLQuery) (that is defined in SQL Server databases and is vulnerable to 
SQLIA). 

 
SQLRand 

We test this approach by creating the following specific mutants: 

• Mutant S1: The application constructs some queries by reading files that contain those 
queries. 

• Mutant S2: The application uses stored procedures and dynamically created queries. 
Some application contain many modules that were developed by different teams so it 
is possible that some choose to use stored procedures and other choose to created 
directly the SQL queries in the code. 

In the following table, we present the results of the fault injection applied to SQLRand 

 

 Mutant 1 Mutant 2 Mutant 3 Mutant S1 Mutant S2 

Mutant 
killed? 

No Yes No No No 

 
Table 12 Fault injection applied to SQLRand 

 
Combining static and runtime analysis approach 

For this approach we define the following mutants: 

• Mutant S1: The application creates dynamic queries. The user is allowed to create his 
own queries or sub queries. 

• Mutant S2: The application uses a function to call the database pre-defined API (like 
Statement.execute(query)) and do not call directly this function after constructing 
every query. 

In the following table, we present the results of the fault injection applied to this approach: 

 

 Mutant 1 Mutant 2 Mutant 3 Mutant S1 Mutant S2 

Mutant 
killed? 

Yes Yes No No No 

 
Table 13 Fault injection applied to static and runtime analysis 
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Learning based approach 

The following mutants are defined for this approach: 

• Mutant S1: The application modules generates a lot of queries. This assumption is 
realistic because a large application may perform hundreds of queries. 

In the following table, we present the results of the fault injection applied to this approach: 

 

 Mutant 1 Mutant 2 Mutant 3 Mutant S1 

Mutant 
killed? 

Yes Yes Yes No 

 
Table 14 Fault injection applied to learning based approach 

 
String tainting based techniques 

For this approach we define the following mutant: 

• Mutant S1: The application constructs some queries by reading files that contain those 
queries. 

In the following table, we present the results of the fault injection applied to this approach: 

 

 Mutant 1 Mutant 2 Mutant 3 Mutant S1 

Mutant 
killed? 

Yes Yes No No 

 
Table 15 Fault injection applied to string tainting approach 

6.5.6. Summary of mutation analysis results 

 

Technique/ 
Results 

Mutant 1 Mutant 2 Mutant 3 Specific mutants 

SQLRand No Yes No 0/2 

Static and 
runtime 
analysis 

Yes Yes No 0/2 

Machine 
learning  Yes Yes Yes 0/1 

String 
tainting Yes Yes No 0/1 

 
Table 16 Summary of fault injection applied to SQLIA countermeasures 
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Table 16 present a summary of the mutation analysis results. It appears according to the study 
that the best approach is the learning based approach because it kills 3 mutants out of 4. In 
fact, it is the ideal approach because there is no way to bypass it since it knows the queries 
that the application perform and consequently it is not possible to perform unknown queries.  
In the next section, we propose some improvements based on the mutation analysis results. 
The purpose of these improvements is to increase the mutation score of these techniques and 
by the way overcome their drawbacks. 

6.6. Improvements of SQLIA countermeasures 

In this section, we present some improvements of the SQLIA countermeasures in order to 
overcome the limitations highlighted by the mutation analysis study. Combining techniques is 
a good strategy in order improve the results. After presenting the improvements, we present 
how to combine approaches. 

6.6.1. Improvement of SQLRand technique 
We suggest the following improvement. We can perform randomization to user input code. 
This means dynamically randomizing the input user string when it contains SQL keywords 
and commands. 

 

Example: 

SQL query: “Select * FROM users WHERE user = ‘“ + inputUser + “’ and password = ‘“ + 
inputPassword + “’;”; 

User name entered:  inputUser = “ ‘ or 1=1; --“   

   inputPassword = “blablabla” 

The user input become after randomization (when the key is 571)  : “‘ or571 1=1; --“ 

The query becomes then: 

Select * FROM users WHERE user =’ ‘ or571 1=1; -- and password = ‘blablabla’; 

When the query is executed an error occurs. It is important to note that when the user types 
legal input no randomization is done and the query is executed normally. 

6.6.2. Improvement of learning based approach 
We can make association in a finer level. The finest level is where the query is executed. the 
hotspots points where the execute function is called. 
The steps to follow : 

� Locate all hotspots. 
� Before executing the query perform a call to a checker. The checker contains a list of 

models corresponding to all queries normally executed from that location. 

6.6.3. Combining advanced approaches 
In order to benefit from the advantages of each technique and limit the drawbacks, we can 
think about combining 2 approaches. We present here some interesting ideas that can be 
investigated deeply. 
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A Learning system and SQL randomization 
The idea here is the combine the learning technique with SQLRand. The SQLRand will be 
applied as presented in the improvement proposal. This means that randomization is applied 
only the user injected parts of the query. In order to locate, the dynamic part of the query, we 
use a learning based technique. The system learns what are the parts or the query that change, 
Afterwards, it stores that information and then in the detection phase will randomize the 
dynamic parts of the query according to the known during the learning phase. 
 
Tainted string SQL and SQL randomization 
Tainted string can be used instead of the learning system. part of the query that contain the 
user input are tainted, then they are randomized before being executed. SQLIA will cause the 
query to crash due to randomization. 

6.7. Towards SQLIA robust security mechanisms 

This study of security mechanisms robustness related to SQLIA is still very incomplete but 
provides a first step in order to improve these mechanisms. The philosophy we applied to 
conduct this comparison is similar to the one we applied for security policies. However, in the 
case of SQLIA, the mutants we proposed are strongly connected to the security mechanisms 
and are used as a method to detect weaknesses. The improvement of the security mechanisms 
has been proposed when a potential weakness has been detected. This work can be completed 
by studying other contexts where mutation analysis and other testing techniques such us the 
bacteriological algorithm can be applied. 
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7. Conclusion 
In this report, we presented a new approach to deal with security testing. Our approach is 
inspired by mutation analysis which is a testing technique that proved its effectiveness in 
software testing. We adapted this technique to two security contexts.  
Firstly, we applied mutation analysis to the access control security model (OrBAC). the fault 
model (mutation operators) are defined at high level, to the ORBAC specification) and then is 
mapped to the implementation of the security model. We also identified a list of mutation 
operators illustrated with a running example. The results of the mutation analysis experiments 
were used to accomplish two objectives. The first one is for using mutation analysis in real 
cases, and make is feasible in practice. It consists in ranking the mutation operators to know 
the most important mutation operators that are necessary and sufficient to perform a good 
mutation analysis. This first study is a necessary step to apply mutation as a testing teschnique 
for security policies. The second objective is to empirically study the relation between 
security and functional tests and to compare between several criteria and strategies for 
security policy testing. 
During the second part, we adapted the mutation analysis to evaluate SQL injection 
countermeasures. There are many approaches in the literature to deal with SQLIA. We started 
by presenting these approaches, their advantages and their drawbacks. Then, we proposed a 
strategy that is based on fault injection to evaluate these techniques. Faults are not injected in 
the security mechanism itself but to its environment (the application and the database). We 
consider a 3-tiers application. Our goal is to evaluate the robustness of the security 
mechanism. To do so, we inject faults in the behaviour of the application and we check 
whether the security mechanism resists or not to this perturbation. To each fault corresponds a 
mutation and we presented two types of mutants: general mutants that are used for all 
approaches and specific mutants that are dedicated to a given security mechanism. 
 
With the mean of the “silver bullet” of mutation analysis, the report highlights the many 
issues a test expert has to deal with when facing the objective of testing a security policy and 
a security mechanism (such as SQLI countermeasures) for a real system. It shows that 
security policy correctness cannot be fully tested only with functional testing. Security 
appears as a specific testing objective with its test criteria and strategies. More fundamentally, 
the aspect of security mechanism testability in relation to system architecture appears as 
critical. Indeed, the way security mechanisms are spread over the system or centralized, the 
easiness or difficulty to relate a security rule to a piece of code are major issues to conduct the 
testing task. Future work may consider mutation as a way to compare various approaches to 
design a system for security (aspect weaving, traceability).  
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8. Glossary and acronyms 
False positive 
A wrong verdict which consists of rejecting something that should have been accepted. 
 
False negative 
A weak verdict which consists of accepting something that should have been rejected. 
 
Mutant 
A mutant is a version a program that contain one simple error (for example: a negation of a 
condition, plus instead of minus etc...). 
 
Mutation operator 
A mutation operator is used to inject a specific fault in the program and produce a mutant 
program containing this fault. 
 
Mutation score 
The mutation score (MS) computes the percentage of mutants killed by a test case: MS(t) = 
d/m, where d = dead mutants and m=all mutants (minus the equivalent ones). 
 
OrBAC 
Organization based access control is a security model. The main goal of OrBAC is to allow 
the policy designer to define a security policy independently of the implementation. The 
chosen method to fulfil this goal is the introduction of an abstract level. One important point 
in OrBAC is that each security policy is defined for and by an organization. Thus, the 
specification of the security policy is completely parameterized by the organization so that it 
is possible to handle simultaneously several security policies associated with different 
organizations. 
 
Security flaw 
An error of commission or omission in an information system (IS) that may allow protection 
mechanisms to be bypassed. 
 
Security mechanism 
A tool, piece of code or component (or combination of them) that protects an application from 
specific security attacks (like SQL injection etc…). It can be integrated in the application or 
be external to the application (for example controlling the data flow that goes to the 
application). 
 
Security policy 
A security policy defines the authorizations granted to users to access to the resources. A 
security policy that is based on OrBAC defines a set of security rules that can be 
« permission », « prohibition » or « obligation ». An example of security rule: 
permission(Organization,Role,Activity,View,Context). 
 
SQL injection (SQLIA) 
SQLIA is a technique that exploits a security vulnerability occurring in the database layer of 
an application. The vulnerability is present when user input is either incorrectly filtered for 
string literal escape characters embedded in SQL statements or user input is not strongly 
typed and thereby unexpectedly executed. It is in fact an instance of a more general class of 
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vulnerabilities that can occur whenever one programming or scripting language is embedded 
inside another. 
 
Test case 
A test case is a set of conditions or variables under which a tester will determine if a 
requirement or use case upon an application is partially or fully satisfied. In the report, we 
define a test case as a triplet: intent, input test sequence, oracle function. The intent may be 
either to test functional or security policy aspects 
 
Test criterion 
A test criterion specifies when a test cases set can be considered as adequate. A test criterion 
can be used to determine when a test set is sufficient for testing a piece of software, w.r.t. the 
effort and the expected quality of the resulting code. In practice, it is defined as a set of 
objects, taken from the specification or from the code, which must be exercised by the test set. 
In structural testing, executing each statement of the program under test is a basic test 
criterion. For security policy testing, covering each access control rule at least once is another 
basic criterion. 
 
Oracle 
The oracle function for a test case checks whether the result of the execution of the test case is 
correct or incorrect. In the case of mutation analysis, the oracle consists of comparing the 
result of the execution of the initial program with the mutant one. 
 
Test strategy 
A test strategy describes how the test cases are generated in order to reach a given test 
criterion. In the report, we compare an incremental test strategy, consisting of reusing 
functional test cases for SP testing, and independent test strategy, consisting in generating test 
cases from the OrBAC model. 
 
Taint checking  
It is a feature in some computer programming languages, such as Perl and Ruby, designed to 
increase security by preventing malicious users from executing commands on a host 
computer. Taint checks highlight specific security risks primarily associated with web sites 
which are attacked using techniques such as SQL injection or buffer overflow attack 
approaches. 
 
Vulnerability 
Weakness in a system allowing an attacker to violate the confidentiality, integrity, 
availability, access control, consistency or audit mechanisms of the system or the data and 
applications it hosts. 
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