senst
etagne

SUPEHIEVHE
o PSP LS TR i ORI, THIES

1==::B;i1

Mutation analysis applied to security tests

Master of research in computer science report

Author: Tejeddine Mouelhi
Supervisors: Yves Le Traon, Benoit Baudry

ENST Bretagne - June 2007

Acknowledgements

I would like to gratefully acknowledge the suppafriny advisors Yves le Traon and Benoit
Baudry. | am very grateful to them for their helpdvices.

1
2.

3.

Table of contents

Lo o (U T i o o OSSR 6
Background and defiNitioNS..........cocoiieiiieiieeee e et 7
2.1. MULALTON @NAIYSIS. ..ottt sttt ne e tesreeeesaeeneestesneeneeseeeneens 8
2.2. Fault injection applied 10 SECUNItY TESIS.......coiiiirirererese e 10
2.3. Functional testing vs. security policy tESINGccveeeriieeeeeee e 10
24. Definitions and differ ences between functional and security tests........cccocvveevvrvnenee. 11
Mutation applied to OrBAC seCurity MOccocoviieiiniineereeeee e 13
3.1 SECUN Y MULANT OPEN BLONS ...eeeiiieeeeieee ettt te s e e e ste e e e steseeeeesaeeneenes 13
1 700 00 I Y/ o Tl ol =Yg o [T g To [o] 1=] = Lo £ J PP PUPRPRRPR 14
3.1.2. Parameter Changing OPEIAtOrSuuuuriuemeeeetenrrrrrrerrerrrerreeaeeeeseesassssnnrarrrrrrrrereaaaeaeeaas 14
1 700 IOC T =W T 0= Yo o [T To [0T =] = Lo) P SRREERRR 15
3.1.4. HierarcChy mMutant OPEIatOrS.........ciiiiee s e eeeeeeeteeeeeeeeaaessessssss et rarrrereeaaaaaaeaaaessesanananns 15
3.1.5. Summary of security Mutation OPEratOrSccueeeerriiiiiiiiiiiieeiee e e e e e e e e e 15
3.2. Examples of OrBAC MULALION.........ccceeieie ettt nas
3.2.1. The use of type changing operators......... ...
3.2.2. The use of parameter changing operators.....
3.2.3. The use of the rule adding operator..............
3.2.4. The use of hierarchy mutant OPEIrALOrSo ceeeeeeteeiaeaaaaae et eee e e e e e e e e e e e e e e aaaanans
Case study and mutation frameWOrKccoiiiiirieneree e 18
41, CaseStUAY FeQUITEIMENTS. ..o ree et e e se e e steeneesteseeeeesseeneeseesneenees 18
4.2. Sample application OrBAC MOEcooiiiiii e 18
G TS = o N VA (U] =TS 19
44. Thebusinessmode and ar ChiteCIUIe..........coeiiiririiireree e 19
45, Deployment of the Security MOcooi s 22
4.6. MUEBEION TOO ...ttt sttt b nse b e 24
4.6.1. Generation Of MULANTSc.uuiiiie ettt e e e st e e e e s e e e e e e ennees 24
4.6.2. Oracle function for mutation @nNalYSISceeeeeiiiieeeiiei e e e e 25
4.6.3. GeNErated MULBNTS......ciiitiieiiie ettt e sttt e e e e st e et e e s arabe e e e e s anbbbeeeeesannneneeeas 26
OrBAC mutation analysisin action: results and COmments...........ccceeeveerercesieesennens 26
51. Security testS QUAalifiCaLIONcceiieii e 27
5.2, Security testSVS. fUNCLIONAl TESESccuiiieciicicee e 30
5.3. Conclusion for the use of mutation analysisfor SP testing..........ccoccevovvoeeinneeceneneenn. 34
Mutation analysis applied to SQL INJECLION.........cccvieereee e 35
6.1. SOQL iNJECLION @LLACKScccviiiieiesieciecie ettt st s e e a e re e e saesreennens 35
6.2. Countermeasures security mechanismsagainst SQL injectionccccceecvvereenvieennne 36
6.2.1. Basic security mechanisms based on input validatian................coooooevveiciiiiiiieeeee e, 36
6.2.2. Advanced SECUrity MECNANISIMSuuuuiiieeeeeeeierrrerererrrrree e e e e e e s e s s s s asss e ereeaaeeeeeeeaans 37
6.3. Qualitative criteriafor security mechaniSms comparisoncccceeeevvevenesvieseseenens 40
6.4. Fault injection applied t0 SQLIA ... e 41
6.4.1. Adaptation for SQLIA COUNIEMMEASUIESo eeaeeaeiaaaaaiiiitetbeereeeeeeeeaeaaaaaseaaaaaaannnnenes 41
6.4.2. EXiSting teSting tECHNIQUESuuiiiiiiiieei e a e e e e e 42
6.4.3. Adaptation fOr teStNG tOOISuiiiiiii e e e e e e r e e e e aeaa e e e e 42
6.4.4. Combining Doth adaptatiOnS.................w e e e e e e e e s srr— e rreaeaeeaeees 42

7.
8.
9.

6.5. Results of mutation analysis study applied to SQLIA ..o 42
6.5.1. INPUL VAIIALION ...t e e e e e e e e e e e e e e e s s et e e e e e e e e aaaaaaaaaenaaan 42
6.5.2. Adaptation of fault injection for SQLIA advanceduermeasures.........ccccvvvvereeeeeeeeeeeeeeennn 42
6.5.3. Adaptation fOr teStING tOOISiiiiiiie e e e e e a e e e e e e e e e 43
6.5.4. Combining both adaptatiOns.................. o e e e e e e e e srr e rrrraaaaaaeaas 43
6.5.5. Applying fault injection to SQLIA COUNtEIMEASUINESccceiieenirieiiirireeeeeeeeeeeeeeeeesssnnnenns 43
6.5.6. Summary of mutation analysis reSUILS........cooiririiiiiii e 45

6.6. Improvements of SQLIA COUNTErMEASUIES..........ervereerrereieieieriese st 46
6.6.1. Improvement of SQLRaNd teChNiqUE.......... oo 46
6.6.2. Improvement of learning based appProach ..o 46
6.6.3. Combining advanced apPrOACES...........uuiuiiiiiieiiiiiieee e e e e e e e 46

6.7. TowardsSQLIA robust security MechaniSMS..........ccccveeevereeciesi e eee e 47
1600 0 Tox [T Lo o PSSR P PP 48
GlOSSAry AN @CTONYMS.......coiiiiiieiie ettt s sreebe e e seesbesneesreensesneens 49
REFEIENCES. ... bbbttt b e b b e re e 51

List of figures

o R 1=t =T - I o0) = AU PUURRR 8
Fig 2. Example of equivalent MULANT ..o e 9
Fig 3. Mutation analySiS PrOCESSu . commeeeeeeeeeittniieasseeeeeeeeeeeeesseseaeennneeeeeressnnnnnns 9
Fig 4. Process to generate security policy tests fan access control model................... 1..1
Fig 5. hospital OrBAC MOl ENLILIESo eeeeeeeeriiriniiiiiaaeeeeeeeeeeeeeeeeseeeeeereeearernnnn.s 16
Fig 6. OrBAC entities for the LMS ... e 18
T I O 1Y/ | I =T o = Vo = o 20
Fig 8. Application arChitECIUIEoiiieeeeeee e e e e e e e eeeeeees 21
Fig 9. Security framework class MOUEl.......comeeieeiiiiiiiiee e 23
Fig 10. Security policy SeqUeNCe diagramceceeeeeeueiuummmiiiaraeeeeeeeeeeeeeeeeeesieeeeneeeeeenennn 24
Fig 11. Mutation result dialog DOXucccii i rr e e e e e e e 24
Fig 12. The mutant generator WINGAOWccccceeeeiiiiiieeeeeeeeeieeeeeiiiiiii e 25
Fig 13. MO1 operator strictly SUDSUMES MO2 . meeeeeeeeeiiiiiiiiiee e eeeeeeeeeeeveeeeeeeeeeees 27
Fig 14. Relation between OPerators.........ccccccaaiiiii e 30
FIg 15. SQL-FSM. ..ot reeemr ettt e ettt e e e e ee s e e e e e bbb b b e e ee e 37
Fig 16. SQL-FSM VIOIAtIONcoiiiiiiieieee ettt e et e e e e eenneeeseenaan s 37
Fig 17. SQLRANA arChitECIUIE...........uvee s e eeeeetetees s e s e e e e e e e e e e e eeeeeeeseennnneeessesnnnn s 38

List of tables

Table 1 OrBAC MuUtation OPEratOrS.........ccceeeeeeeuuiiiiiiiee e e e e e e e e e eeeeeeeeeeeeeaeennaarenn s 15
Table 2 Number of generated MULANTScccccceeiiiiiiiiiiee e 16
Table 3 - Number of generated mutants per OPeratOr..........cccceeeeeeeeeeeeeeeeeeieeeeieeeeeeee. 26
Table 4 Number of Minimal tESt SUILESeuummmerrnniiiiieiee e s 28
Table 5 Overlap of teSt SUILES DEIWEEN..... e eeeeeeeeeeieiiiiiiee e e e e e e e e e e eee e e e e e eeeaaeanns 29
Table 6 # of generated mutants with and withouflg ... 29
Table 7 Mutation analysis results by test CaASEEJORYuuueeiiiiieeeeeeeeieeeeeeees e 32
Table 8 Functional teStS @nalySIS.........cooiiiiiiiiiieeee e 32
Table 9 Overlap of CR2 and advanced teSt CASES wummm . iiiieeeeeiiiriieeieiiiiiee e eeeeeee e 33
Table 10 Independent vs. Incremental test gen@ratiategies.........cccvveeeeeeeiiiiieeiiieeens 34
Table 11 Comparison of SQLIA COUNtEIMEASUIES....cccevuuvreuiieieieeeeeeeeeeeeeeeeeeseeeesnnnnnees 41
Table 12 Fault injection applied t0 SQLRANG . cuuuuueevvvrrnnniiiiiiieieeeeeeeeeeeeeeiviieeeeeeeeeieaees 44
Table 13 Fault injection applied to static and metanalysis.............cccevvveviiiiiiiieeeenns 44
Table 14 Fault injection applied to learning baapgdroach..............cccoiiiiiieees 45
Table 15 Fault injection applied to string taint@gproach...........ccccoeeeveeeeeviiieeeeeveeeeeee 45
Table 16 Summary of fault injection applied to SRIdountermeasures............ccccceeeeeeeeennns 45

1. Introduction

According to the CERT [1], the number of reportednerabilities in 2006 was 8064 (5990
were reported in 2005, a 36% increase). As a careseg, and overall justification for this
research work, the international community needs agproaches to deal with these security
issues. One of the open challenges is to provide application developers with pragmatic
technigues to check that the security aspects mpemented according to the security
requirements. No trust can be built in securityeaspif the developers cannot even check that
these security aspects have been correctly impledemhe current report studies how
security can become a target for testing and wtiitbria can be applied to have some trust in
the security mechanism implementation. The godhisfwork is to offer a first trustable step
in a design for security process: it doesn’t aingémerate attacks but “only” to test that a
security mechanism is consistent with what it ispgsed to do.
Currently, an important effort is dedicated to sa@iite testing in development cycles, which
varies between 35 to 55% of the overall effort famoducing an application (from
requirements elicitation to system delivery to fiokents). Except ad-hoc penetration testing
techniques, very few works have been dedicatetig@dssue of testing security in the same
way functional aspects are tested. The first difficis to estimate test cases quality and
specify the faults specific to the domain (e.g.uskg flaws). Among the techniques for
estimating test qualitynutation analysiss the only one which builds confidence in testesa
in relation to an explicit fault model. .Mutationalysis consists of creating faulty versions of
a program and checking whether the test casedfarier — or not - to detect these injected
faults. This technique is usually used for threenmnpaurposes: estimating the efficiency of a
testing technique, measuring the robustness/faldiance of a system and as an objective to
generate tests (in that case, it is caltedation testiny) In this report, we adapt mutation and
perform studies for two different security aspeaftsa 3-tiers architectures, namely security
policy (access control) and SQL injection attadkstation analysis is used :

- as a way to compare functional tests and testsrgtukefor checking the correctness

of a security mechanisms (security policy testing),
- as an objective for testing security policies,
- to check the robustness of security mechanismarctimtext of SQL injection attacks
(SQLIA).

The first part of this report will focus on the atition of mutation analysis for testing access
control based security policies. The considerexss control model is OrBAC, an advanced
model developed by the SERES team in the RSM lalbheo ENST-Bretagne engineering
school. OrBAC is a security model for defining setyu policy access rules and the
implementation of these rules has to be tested fgiven deployed system. In this part of the
report, the use of mutation analysis is two-folch Gne hand, it serves for experimental
purposes as a technique to estimate the efficiefdgsting techniques for security. On the
other hand, the feasibility of the use of mutatfon generating tests is studied (mutation
testing). The OrBAC security model will be presehsand the mutation analysis adaptation
will be introduced using a simple case study. Bhigly, and the first results it provides, leads
to a ranking of the mutation operators (types géated faults) and gives a comparison of
security tests and functional tests. In additiesfibg strategies are evaluated using the results
of these experiments. The results and the studglwmtaed were submitted to the ISSRE
conference. The article title is “Testing secuptlficy: going beyond functional testing”. In
it, we present the results concerning the relabiemveen functional and security tests and the
comparison between the proposed strategies. Iniaadldive have submitted another article to
Mutation 2007 conference. The article title is “Mtbn analysis for security tests

qualification”. It presents in details the implentegion of the mutation analysis, the mutation
operators and the ranking of the operators.

In the second part, we apply the mutation analgpjgoach in the context of SQL injection

attacks (SQLIA) which are among the most importatthcks performed against web

applications. In the literature, several securitgchmnisms were proposed to deal with
SQLIA. We present the main ones and propose antestethodology based on fault injection

in order to estimate the robustness of each oktkesurity mechanisms. This study - rather
qualitative due to the duration of the internshipghlights the potential weaknesses of each
security mechanism and leads to appropriate impnews and countermeasures.

2. Background and definitions

Testing that a system is correct with respect tusgy is known as a hard task [2]. Among
the numerous identified difficulties we can firgtipt that security issues are handled at many
different places in a system (network, hardwareyese and client). Moreover, since
specifying the expected security qualities is carplit is very difficult to express the
expected result when building test cases for sgcuri

In this report, we restrict our study to 3-tier lpgtions, even if the proposed solutions can be
applied to other contexts (e.g. n-tiers architeegurAs shown in Fig 1, there are 3 main parts
in the application architecture; the databaseath@ication server and the interface. Mutation
analysis will be adapted to two different securégting contexts.

Firstly, we focus on OrBAC based access control ehagse for the 3-tier application.
Security test cases are generated to check thectoess of the implementation with respect
to those security rules. Today there is no systemey to derive test cases from a security
policy and no test adequacy criteria to assesguhéty of test cases for security. Thus, once
test cases have been produced, it is necessastitoage their quality in terms of ability to
detect securitflawsin the implementation.

In order to evaluate the quality of test casesskrurity, we adapt mutation analysis and
introduce new mutation operators that corresponiduti models for access control security
policies. We introduce a running example used lfastration. This example is based on a
library management system.

Secondly, mutation analysis will be applied to eaté SQL injection countermeasures. The
strategy used in this part consists on injectingdt$ainto security mechanism environment in
order to perturb the behaviour of the application.

Hacker

Tries o attack using S0L ingjections. Buffer
ovarfiows, expoits ..

Components
(Security mechanisms,
Or-BAL security rules)

Communicate

{Input validation,
- sacurity
protections) Coliaborate

—

Components
(Security mechanisms,
Or-BAC security rules)

Innacent user

OB

Security policy and access
rules based on Or-8AC
sacurily modal)

Uses the
application, do Interface

not aitack

Application

Fig 1. General context
In this section we present the mutation analysihrigjue. Then we present related works
concerning the application of the mutation analysithe context of security testing.

2.1. Mutation analysis

Mutation analysis technique was initially propodsdDeMillo [3] and consists in creating a
set erroneous versions of the program under tedgtate callednutants The goal for the
tester is then to write a series of tests which esak possible to distinguish the initial
program from all its mutants. This technique thwekes it possible to write relevant tests.

In practice, the mutants are created by submittiegorogram to operators that insert simple
errors* (changing the sign of a constant, repla@nthmetic operators...). Indeed, DeMillo
limits the analysis to the injection of simple es@nd makes the assumption that if a set of
tests can detect all the simple errors, then it lvdlable to detect more complex errors in the
initial program. If a test case applied on a mutastlts in an output that is different from the
output produced by the initial program, the testechas detected the mutant. The test case
killed the mutant, in the other case the mutant is aliNle. A mutant which is detected as
erroneous by a test case is said to be killed béydst case.

Among the generated mutants some are equivalethietanitial program, i.e. no input data
makes can distinguish the two programs. Fig 2tii&ies an example of equivalent mutant:
(from [4]).

Original program Mutant program

Function Win (T, T : integer) Function Win(T , T : integer)
refurn integer IS tetrn integer IS
LlinWal : integer, LinWal : integer,

Begin Begin
Mitrral:=I; Mlitrral: =TI,
if(T < I thers D% al — T, (T < Minval) tien Wlinff al —T,
returr (Mlin¥ al) return (TWlin® af)

End, End,

Fig 2. Example of equivalent mutant

In this example, the mutant program replaced | byn\Ml in the second instruction.
However, the previous instruction assigns to Mintha value 1. We can see that variables
MinVal=Il having same value, the mutant programgsiealent to the initial program.

It is important to determine equivalent mutantsause they must be removed from the set of
mutants to be killed. Without that there will bevae a set of tests able to detect all the
mutants since some will be impossible to deted, then we will not be able to rely on our
tests. The detection of equivalent mutants is galyedone by hand, which increases the cost
of the analysis of change. The tests cases arectinfsonted to the set of non-equivalent
mutants. In this report, we intend to generatdtyasecurity policy implementations, and on
constraint for the feasibility of the approach tostcontext is to avoid the creation of
equivalent mutant (from the security policy poihvew).

The objective of the mutation analysis is to estarthe efficiency of a test cases set, that is
its capacity in revealing faults (the fault revaglipower of a test case). It can be used to
compare test criteria, test strategies and anytdebhique. Thenutation scores an indicator
for the quality of the tests. Let d be the numidedtead mutants and m the number of mutants,
the mutation score MS is: MS(t) = d/m.

The process of mutation analysis is presentedgr8Fi

Class A

Miutant =
Generation e tAl

Selftest A

— Lautormated process
— == HMNon antormated process

Esror detected

| mutantaj &ilied

| mutantf] afive |
- _L N SelfTest OK!

[e _.::Diagnosis:;.—l— -| Equivalent mutant |

Fig 3. Mutation analysis process

2.2. Fault injection applied to security tests

To our knowledge, very few works proposed fauleation to security tests. In [5], Mathur et
al. applied fault injection to the application emviment. The application environment is
perturbed by modifying environment variables, filgsprocess used by the application under
test. Then the application has to resist to thigupeation and must not have an insecure
behaviour that may lead to security flaw. The atghapplied their technique to an existing
application used by Purdue university. This appiocais used by students and teacher. They
were able to find a security hole that representsahthreat. This technique is based on fault
injection and allows discovering new kinds of séguholes that are possible to find with
traditional techniques.

Furthermore, fault injection was applied in anotivary. Adaptative vulnerability analysis [6]
injects faults to the application data flow andemial variables. The objective is to identify
parts of application’s code that have insecure iehes when the state of the application is
perturbed.

In addition, fault injection was applied to backkkesting. The black box framework Fuzz [7]
uses fault injection by randomly creating data infou a given application. The goal of this
approach is to identify abnormal behaviour andhnec& that the application does not crash.

2.3. Functional testing vs. security policy testing

Testing system functions includes exercising maegusty mechanisms. The issue is to
determine whether testing functions provide enocghfidence in the security mechanisms.
We would like to know how to improve this confidenby selecting test cases specific to
security. Two strategies are proposed for produskcurity policy test cases, depending if
they are built in complement of existing functiotedt cases or independently from them.

In this section we present the overall processetivd test cases from requirements. In this
process we identify the main artefacts that mugproeluced for testing and propose precise
definitions for the notions used in this report.

The software lifecycle may vary, but the input imh@tion is always a requirement document
which includes the functional description of thesteyn as well as many extra-functional
concerns (performances, real-time, availabilitghtecal and architectural constraints ...).
Among these concerns, the security aspects ane wiiteed with the functional ones, as it will
be illustrated with the running example throughitna report. The requirement analysts have
to extract these aspects and express, on one hangeés cases and the business model and
on the other hand explicit the security policy Ire tform of an access control model. It is
composed of a set of security policy rules, eacthei specifying rights and restrictions of
actors on parts and resources of the system. Teimdas model (a class diagram + simple
dynamic models) focuses on the concepts which eeeed to derive functional aspects, in a
nominal use of the system. The security policy nmasoduce specific concepts, and reuse
most of the concepts and functions identified ia tlses cases and business model. As a
result, the security policy makes reference tolihginess and use case models, but includes
new concepts which are taken into account in tfieeeent process, either during design
(SecureUML [8]) or at deployment/coding steps. this section, we will detail these
differences.

Figure 4 highlights the fact that both the code #mal tests, which exercise this code, are
produced from the requirements by independent wllys.important point is that the security
policy test cases are obtained using the accessotomodel, while the functional test cases
are derived only from the uses cases (and busmesdgl). Security policy test cases are not
only dependent on the security policy but alsorredethe use cases and the business model.

10

In this report, the functional test cases (or systests in the sense of Briand’s work [9]) are
generated using the approach presented in [10gdbas the use cases improved with pre-
and post-conditions, called contracts. The funetiotest cases cover all the code
implementing the functions of the system. We wilidy how functional test cases can be
reused for testing security mechanisms.

‘ Functional i Security ‘

Requirements *

Access Control Model

Use Cases + contracts

Analysis Model

\

Design & Deployment Models

Design,

implementation

and test

Code Functional Tests
\ T Security policy tests

Fig 4. Processto generate security policy tests from an access control model

2.4. Definitions and differences between functional and security
tests

Security Policy:it describes thgyermissionsor prohibitions for people to any of the
resources of the system (it may apply to configuiieewall as well as to define who can
access a given service or data in a database).

The most advanced models ([11-13]) express rilas dpecify permissions or prohibitions
that apply only to specific circumstances, caltmhtexts For instance, in the health care
domain, physicians have special permissions inipemontexts, such as the context of
urgency. Also, some models provide means to speitiy different security policies
applicable to the various parts of an organizaijsub-organizations). At the end of this
specification process, the security policy spesifighat the permissions and prohibitions
should be in the system, in function of contextées and views. In this work we use OrBAC
[12, 13] as a specification language to defineateess control rules (a set of rules specifies a
security policy). Based on the simplified requirentseof this system, it is possible to derive a
set of access control rules using the OrBAC model.

System/functional testingthe activity which consists of generating and akeg test
cases which are produced based on the uses caddb@business models (e.g. analysis
class diagram and dynamic views) of the systemi(),. By opposition with security
tests, we call these tegtmctional

11

Security policy testing (SP testingf:denotes the activity of generating and executexj
cases which are derived specifically from a segypilicy. The objective of SP testing is
to reveal as many security flaws as possible.

Security flaw: A security flaw is the equivalent of a fault fomdétional testing. It
corresponds to an inconsistency between the sgcpolicy (the specification) and a
security mechanism (the implementation) whichveaéed at runtime.

Test casetn the report, we define a test case as a triptgent, input test sequence, oracle
function. Thententmay be either to test functional or security ppkspects.

Intent of a test cas&he intent of a test case is the reason why antitgst sequence and
an oracle function are associated to test a speeai$ipect of a system. It includes at least
the following information: (functional, names bkttested functions) for functional test
cases or (security policy, names of the testedrigcules) for SP ones.

SP oracle functionThe oracle function for a SP test case is a sjgeadgsertion which
interrogates the security mechanism. There aredifferent oracle functions:

* For permission, the oracle function checks thatdeerice is activated.
« For a prohibition, the oracle checks that the seevis not activated.

In our case, services are methods in the busingskcation, thus the oracle checks the
absence or presence of a method call. It has toobed that some data are constrained by
access control rules, but the oracle function dudscheck any data values (in the database)
because they are always accessed through a service.

The intent of thefunctional tests is not to observe that a security mechamssexecuted
correctly. For instance, for an actor of the systemo is allowed to access a given service, the
functional test intent consists of making this acexecute this service. Indirectly, the
permission check mechanism has been executed,dpécé#ic oracle function must be added
to transform this functional test into a securidfigy test.

A security flaw may occur:

- when an actor (person or program) of the system (has not) access to a resource
while the security policy stipulates it should (&ftould).

- when an actor (person or program) of the system(has) access to a resource while
no security policy exists for this particular actand when this resource is the object of
other security rules.

The second point corresponds to security test caiggdighting the incompleteness in the
security policy which leads to incorrect defaultwéty mechanismsWVe call such test cases
advanced security test cases in the following.

Examples:
Functional — a functional test case will make a borrower &oerand return a book.

Intent functional, test borrow and return for a uniquerkower
Oracle check that the book is available after it hasrbesturned

Security Policy — a SP test case will check that a borrower carotoa book to the library
the working days.

12

Intent security, permission for a borrower to borrow adk the working days.
Test sequencereate the context of a working day, make a boerdvorrow a book.

Oracle: interrogate the security mechanism and checkttigapermission has been computed
and given to the borrower.

3. Mutation applied to OrBAC security model

Mutation analysis is a technique for evaluating dhality of test cases. We propose to apply
it in the context of security penetration testsciBity tests and software tests share many
aspects. We can assimilate faults to security besaor defects in the protection mechanisms.
In addition, test scenarios can be assimilatectorsty attacks made by a hacker. In order to
apply mutation analysis to security tests we nedtht suitable mutation operators.
Since there are many different solutions to impletraecess control rules into the business
model, it is very difficult to define security fauhodels based on syntactic errors in the code.
We could inject classical mutation faults (arithimglogical etc.) in security mechanisms, but
the effect of these faults would be unpredictabletwa given security policy (and the verdict
difficult to define).
Mutation operators are defined independently frorplementation-specific details. Since the
access control rules are expressed with OrBAC, wleinthe faults at this level of
abstraction. The mutation operators are thus egpdesn OrBAC syntax. On one hand, this
approach has the advantage of defining faults @ahatactually related to the definition of
security rules (prohibition instead of permissiarpng role, etc.). On the other hand, the
difficulty consists in transforming mutation operet defined with OrBAC into faults in the
implementation.
For this study, we assume that traceability madrened maintained between OrBAC rules and
the corresponding code blocks in the implementatigsing this information, it is easier to
map mutant OrBAC rules to faults in the implemeotatHowever, in the general case, the
traceability information might not be available,tbe mapping between the rules and the code
might not be trivial. In that case it is not po$sito automatically generate the mutants. If we
still want the mutation analysis to be used, important to identify the most relevant subset
of operators, in order to produce the minimum migtaimat lead to the production of the best
security test cases. This is one of the objectivéhe case study. It will help to select a
sufficient subset of mutation operators.
In the following section, we present a set of miatatoperators that can be defined for
OrBAC rules. We illustrate these operators withregkes. Then, in next section we run a
case study to select the most relevant subsets@twarity mutation operators are divided in 4
categories:

» Type changing operators

» Parameter changing operators

» Hierarchy changing operators

» Adding rules operators

3.1. Security mutant operators

We identified 27 mutant operators. They are classih 4 categories:
> Rule type mutation operators
> Rule parameter mutation operators
» Rule adding or removing mutation operators
» Hierarchy mutant operators.

13

We will present all of these operators. We chosejiect some of the these operators. We will
explain in details the reasons. Then the selecpedlators will be presented in examples in
order to show how they can be used and the sedlaitg that are simulated by the resulting

policy.

3.1.1. Type changing operators

Type change operators pick a rule and modify petylhere are 3 types of rules: prohibition,
permission and obligations. Therefore, there gressible modifications:

Prohibition to permission

Permission to prohibition

Prohibition to obligation

Obligation to prohibition.

Permission to obligation

Obligation to permission

The first four operators simulate faults that ocduring the implementation. The obtained
policy allows a forbidden activity or prohibits anthorized activity.

The problem of operators 5 and 6 is that it isiclift to distinguish between obligation and
permission. Test cases are not able to validateahaobligation rule is used instead of a
permission one. For this reasons, we choose naist obligation rules and only use
prohibition rules. We only implement the first 2epptors (Prohibition to permission named
PRP and permission to prohibition named PPR).

ourwNE

3.1.2. Parameter changing operators

Parameter changing operators pick a rule and changeof its parameters. As there are 5
parameters the following operators are defined:

1. Change organization

2. Change role

3. Change activity

4. Change view

5. Change context
We can not replace a rule’s organization becausk egganization defines its own entities
and we may not have the role, activity, view andtert of the first organization defined for
the new organization.
If we have:
Perm ssion(orgl, rolel, activityl, vi ewl, cont ext 1)

We cannot replace it with:

Perm ssion(org2,rol el, activityl, vi ewl, cont ext 1)

We can only replace if org2 defines rolel, actiljtyiewl and contextl in its scope.

In addition, the notions of activity and view arghtly linked. In fact, the activity must be
related to the rule view. The following examplesirates this issue:

Rule used:

Perm ssion (Library, Adm nistrator, MdifyAccount, BorrowerAccount, default)

Rule to use instead:

Perm ssion (Library, Admnistrator, ReserveBook, BorrowerAccount, default)

Mbdi fyAccount cannot be replaced yserveBook becaus@eserveBook can not be attached to the
Bor rower Account View. The same problem appears when we changeutés view. In fact,
replacing views or activities can be done onlydotivities that are independent from views
(and can be applied to different views). For examglwe have the activityodi fy that may
be applied to 2 viewsor r ower Account @ndper sonnel Account then we can replaaer r over Account

by personnel Account. Therefore, the relevant operators are those ¢h@ripe role and the

14

context. These 2 operators are useful becausewiiegimulate cases where the security
policy is too permissive or too restrictive. Thesfione allows a user (the secretary) to do the
same activity allowed for another user. The secomel allows a user to perform the action
under another context. In this category, we onlgpkevo operators (Change role named RRD
and change context named CRD).

3.1.3. Rule adding operators

Instead of replacing an existing rule, the addulg operator introduces a new rule. The goal
of this operator is to simulate cases where thdamentation does something in addition to
the requirement. This is a typical security faulidamakes security faults different from
functional tests. The security breaches are cabgdte fact that the application behaves in
unexpected way, even if it satisfies all functiorequirements.

In order to obtain relevant rules, the add rulerafpe (hamed ANR) introduces rules that
contain an activity and a view that were alreadfingel by at least one rule in the initial
security policy. It is important to note that tligerator generates a lot of mutants.

3.1.4. Hierarchy mutant operators

OrBAC allows defining hierarchies for organisatipmsles, activities, views and contexts.
Then, a mutation operator can be used to changartiees by replacing a parameter by its
parent or one of its descendants.

1. Change organization hierarchies

2. Change role hierarchies

3. Change activity hierarchies

4. Change view hierarchies

5. Change context hierarchies
Due to the reasons explained in the previous sgdtie first operator is not used. In addition,
context and views hierarchies are not useful. laciice we do not define hierarchies for
contexts and views. In fact, we insist on hieragstior activities and roles.
The only useful operators in this category are afjoes 2 and 3. The hierarchy changing
operators that will be retained are: ‘change rukerdichies’ (named RPD) and ‘change
activity hierarchies’ (hamed APD).

3.1.5. Summary of security mutation operators
This table presents the retained operators that pi&sented in details in previous section.

M utation Description

Operator

PRP Prohibition rule replaced with permission

PPR Permission rule replaced with prohibition

RRD Rule role is replaced with different role

CRD Rule context is replaced with differen
context

RPD Rule role (a parent) replaced with one of its
descendants

APD Rule activity replaced with one of its
descendants

ANR New rule Added

Table 1 OrBAC Mutation operators

15

Number of mutants
The following table shows the number of each typenatant that can be generated. It is
function of the number of entities that are in thedel.

Operator name # generated mutants
Hierarchy changing operato # hierarchies levelsrtiles with entities (contained in hierarchies)
Addition of new rule operator #roles * #context# factivities and views)
Type changing operator # permission + #prohibition
Parameter changing operatar # entities * # rules

Table 2 Number of generated mutants

3.2. Examples of OrBAC mutation

We illustrate the use of security mutation opematoy presenting an example of security
policy. The context of the study case is a hospitsd specify these entities:

o? DiaPlanning
_ Doctor =
]l CentralHospital ﬁf} ? DoSurgeonzPlanning
Surgeon "

RennesHospital @2 DobertistPianning

ﬂ; DaDoctorReszearcherPlanning
ﬂf;? ConsultPatientRecords

Dentist

| ParisHospital
f DoctorRezearcher

f Secretary
Orgs Foles Activities
Patient
'ﬁ) % default
Cardiac % -
DertistPatient Ua"" me
TimeTakle rgency
Yiews Contexts

Fig 5. hospital OrBAC model entities

Some Rules are added:

We allow the secretary to do doctors planning.
permission(RennesHospital,Secretary, DoPlanning, Tatée, Default)
permission(RennesHospital,Surgeon,DoSurgeonsPlgnfimeTable,Default)
permission(RennesHospital,Dentist,DoDentistsPlagfiime Table,Default)
permission(RennesHospital,DoctorReasearcher,DoDBaasearcherPlanning, TimeTable,
Default)

We prohibit doctors to do the planning of otheesol
prohibition(RennesHospital,Surgeon,DoDentistsPlagiiiimeTable,Default)

16

prohibition(RennesHospital, Surgeon,DoDoctorReadearelanning, TimeTable,Default)
prohibition(RennesHospital,DoctorReasearcher,DoB3gsiPlanning, TimeTable,Default)
prohibition(RennesHospital, DoctorReasearcher,DogorgPlanning, TimeTable,Default)
prohibition(RennesHospital,Dentist,DoSurgeonsPlagiitimeTable,Default)
prohibition(RennesHospital,Dentist,DoDoctorReasdar®lanning, TimeTable,Default)

In the following section, one mutation operatorlviié applied for each category to show
what kinds of security violations are simulated.

3.2.1. The use of type changing operators
PPR operator:

permission(RennesHospital,Secretary, DoPlanning, Tatée, Default)

Became

prohobition(RennesHospital,Secretary,DoPlanningdiiable, Default)

By using this operator, the resulting mutant sirteddhe violation of non repudiation security
requirement.

3.2.2. The use of parameter changing operators

Applying RRD:
permission(RennesHospital,Secretary, DoPlanning, Tatée, Default)
Became
permission(RennesHospital,Doctor,DoPlanning, Timéd &efault)

This will allow doctors to do planning. There whié no conflicts because we defined rules or
roles that inherit from “doctor” and for activitigbat inherit from “DoPlanning”. So these
rules will be replaced by permission rule becaulme garent role and parent activity have
priority and descendants inherits parent rules.

This policy mutant allows activities that were faitben by the initial security policy.
Authorization security requirement is violated.

3.2.3. The use of the rule adding operator

Applying ANR, the following rule is added:
permission(RennesHospital,Secretary,DoPlanning, Tabée,Urgency)

A rule that defines the authorization granted torearies to do planning in context of
urgency is added. The resultant mutant simulagsdlse when the system is too permissive.

3.2.4. The use of hierarchy mutant operators

Applying APD:
permission(RennesHospital,Secretary,DoPlanning, Tatée, Default)
Become

permission(RennesHospital,Secretary DoDentistsRitaphimeTable,Default)

17

As the mutation operator reduces the scope of sgractivities, the resultant policy mutant
simulates the violation of non repudiation securgguirement.

4. Case study and mutation framework

We apply the OrBAC mutation analysis to a sampf@iegtion used to manage a library. We
start with a presentation the implementation ofrthéation tool in MotOrBAC. Afterwards,
We present the sample application OrBAC model &edatrchitecture of the security policy
deployment. Finally, we present the application #redsecurity mutation implementation and
the mutation analysis results.

4.1. Case study requirements

The purpose of the library management system (L&) offer services to manage books in
a public library. The books can be borrowed andrnetd by the users of the library on
working days. When the library is closed, users nah borrow books. When a book is
already borrowed, a user can make a reservatiaifbook. When the book is available, the
user can borrow it. The LMS distinguishes threeesypf users: public users who can borrow
5 books for 3 weeks, students who can borrow 1&k®&dor 3 weeks and teachers who can
borrow 10 books for 2 months.

The library management system is managed by anréstraitor who can create, modify and
remove accounts for new users. Books in the libeasy managed by a secretary who can
order books, add them in the LMS when they areveedid. The secretary can also fix the
damaged books in certain days dedicated to maintendVhen a book is damaged, it must
be fixed. While it is not fixed, this book can rim borrowed but it can be reserved by a user.
The director of the library has the same accesses.

The administrator and the secretary can consultabunts of users. All users can consult
the list of books in the library.

4.2. Sample application OrBAC model

We defines according to the requirements the fotligventities;

G,’}_ Borrowver Sctivity

ﬁ Borrower % defautt ﬂg BorrowBook
m\ Student % Helidsrys -O8 ReserveBook
L ﬁ} Teacher L ’?
I ReturnSook
% WorkingDays ” v
Personnel Gg Admindctivity
m Secretary % MaintenanceDay I8 Mansgesccess

Director Qg Crestefccount

L. Contexts :
m Addministrator I moditysccount
= Personnelfctivi
Roles — Baok *g o e
~~E DeliverBook
Borrowvwer Accournt 0 | G-;? FixBook
. PersonnelAccount qx ConsuliBorrovwerScoount
Views

Activities

Fig 6. OrBAC entitiesfor theLM S

The following roles are defined:
* Borrower roles : contain student and teacher
* Personnel roles : contain secretary (in charge amk$), administrator (in
charge of accounts, users), and the director.

18

Activities are classified depending on related solg&Ve differentiate between borrower

activities and administrator activities. Therefothere are 2 hierarchies; The borrower’s
activities and the personnel’s activities. Fig 6wh these roles. Note that personnel activities
are sub-activities of the administrator activitichese administrators have extended activities.

4.3. Security rules

The following rules are defined:

Types Organization Role Activity View Context
Permission| rennesLibraries Borrower BorrowerActivit Book WorkingDays
Prohibition | rennesLibraries Borrower BorrowerActyvi Book Holidays
Permission| rennesLibraries Administrator ManageAsce PersonnelAccount| default
Permission| rennesLibraries Administrator CreateAoto BorrowerAccount | default
Permission| rennesLibraries Administrator ModifyAaob BorrowerAccount | default
Permission| rennesLibraries Administrator ConsultBeerAccount | BorrowerAccount | default
Permission| rennesLibraries Administrator FixBook ridaverAccount MaintenanceDay
Permission| rennesLibraries Administrator DeliverBoo BorrowerAccount MaintenanceDay
Prohibition | rennesLibraries Secretary ManageAccess PersonnelAccount | default
Prohibition | rennesLibraries Secretary CreateAccount BorrowerAccount | default
Prohibition | rennesLibraries Secretary ModifyAccount BorrowerAccount | default
Permission| rennesLibraries Secretary ConsultBorAweeunt | BorrowerAccount | default
Permission| rennesLibraries Secretary FixBook Book ainténanceDay
Permission| rennesLibraries Secretary DeliverBook okBo MaintenanceDay
Permission| rennesLibrarigs Director ConsultBorrdveeount | BorrowerAccount | default
Prohibition | rennesLibraries Director ManageAccess ersBnnelAccount | default
Prohibition | rennesLibraries Director CreateAccount BorrowerAccount | default
Prohibition | rennesLibraries Director ModifyAccount BorrowerAccount | default
Permission| rennesLibraries Director FixBook Book ifananceDay
Permission| rennesLibraries Director DeliverBook Boo MaintenanceDay

It is important to note that rules are derived blage the parameters hierarchy. For example
the rule:

» Permission(rennesLibraries,Borrower,BorrowerActvook,WorkingDays)
Based on hierarchies shown in Fig 6, the followlgs are automatically derived:
Permission(rennesLibraries,Student,BorrowBook,BatkkingDays)
Permission(rennesLibraries, Student,GiveBackBoadB#orkingDays)
Permission(rennesLibraries, Student,ReserveBook,BéarkingDays)
Permission(rennesLibraries, Teacher, BorrowBook,BéakkingDays)
Permission(rennesLibraries, Teacher, GiveBackBoodkBNorkingDays)
Permission(rennesLibraries, Teacher, ReserveBoakBdorkingDays)

YVVVYVYYVY

The current security policy does not have any octsfl

4.4. The business model and architecture

The UML class diagram is shown by Fig 7:

19

User
Role 0.1 [*harrow()
+rEservel)
i)
-UserRole +deliver() 0.1
& +giveBack()
+zetRepaired|)
+setDamaged()
Account
—— Borrower -UserAccount ZF‘
[I
AN lr BorrowerAccount PersonnelAccount
Administrator Director Secretary
Teacher Student
1 Book -
1
| Hexecute|) i
BookState ERSIE ST TR - -Commands

+reserve() winterface:

+hormow() BookEvent

+idzliver) +execlife|)

+giveBack()

Hix(} £|3

| P | | |
Available
bl Fix Borrow Reserve Deliver
+reservel)
:‘;\-?:'B?QU :ﬂb:[r;uw[j temecute() +executel) rrexecutel) +executel)
[I
Reserved Ordered BeingFixed SetDamaged SetRepaired GiveBack
+reserve() Hreserve|) Hresenve|) +execute|) rexecute() +execute)
+horrow() +daliver() deliver)

We managed to define an UML model that does nal-bade the security policy in it. For
example we do not define a methbdrrow in the borrower class because it implements a
security policy rule by construction in the modallgwing only a borrower to borrow) and
therefore this rule cannot be violated or changiediact a generic model allows us to have a
dynamic implementation of the security policy. T$exurity policy is in charge of deciding
whether an activity requested by a user under afgpeontext and performed under a certain

Fig 7. UML Classdiagram

view is allowed or prohibited.

20

User interfce layer

\Web pages

.

Business services layer

Security policies
(Generc
framework)

Use Contains Use ‘ _ _
Implmantation of Business sarvices

rules) Or-BAC modal ‘ classes

Crata
(Absiract Or-Bac

Business objects
{implamenting
business logic)

F Y

adapted to
application logic

L &

Data access layer

Data accass Data transfer
ohjacts objects
Access,modify

Fig 8. Application architecture

In addition to the model presented above, we uBer8-architecture, as shown in Fig 8. Is it
important to note that all user interactions wkik aipplication are handled by service classes.
These classes are implementation of facade desitjerp. They take as parameters (among
others) the user who requested the activity. Th@iagiion business logic is located in the
service layer. Service classes interact with theriace and call the business objects classes.
In addition, they call the data access objects whihitread or modify the database. Also, the
data access layer is in charge of doing the mappétgeen the database and the application
objects. It contains requests and methods thatecdsta transfer objects. These objects are
transferred to service classes who create busoigssts.

Before performing the activity, the services methgerform a security check in order to
verify that the activity is allowed by the securjpplicy. If it is prohibited then a security

exception is thrown. In order to illustrate thest’'$ focus on the following example. It shows a
method in the servicBorrowerAccountServicihat updates the borrower account:

public void updateBorrowerAccount(User borrower, BarerAccount borrowerAccount, User connectedUserpvis
BSException, SecuritPolicyViolationException {

ServiceUtils.checkSecurity(connectedUser, LiyBacurityModel. MODIFYACCOUNT_METHOD,
LibrarySecurityModel. BORROWERACCOUNT _VIEW, LibrarySecyhtodel. DEFAULT_CONTEXT);

This method takes as arguments a borrower, itsuacqonodified) and the connected user

21

(the one who asks for modifying the account). Tihst instruction makes a call to the method
‘checkSecurity This method checks if the security policy allows prohibits the
‘connectedUser’ to perform the activity (hergbrarySecurityModel. MODIFYACCOUNT_METHOD
under the book view I(fbrarySecurityModel. BORROWERACCOUNIEW’) and in the default context.

The ‘checkSecurityimay raise 2 security exceptions:

* ‘SecurityViolationExceptionwhen a security rule is violated. This happertsew a
prohibited activity is requested.

» ‘UndefinedSecurityPolicyExceptionwhen no security rule is defined for the
requested parameters.

The code of this function is shown bellow:

public static void checkSecurity(User user, Methodpctivity, Class view, Context context) throws
SecuritPolicyViolationException, UndefinedSecuriiPygException {

String result;

/I call the security service
result = ServiceBO.securitPolicyService.&sscurityPolicy(user.getRole().getClass(),activitgywijcontext);
/I it is prohibited
if(result.equals(SecurityPolicyServicelfidee. PROHIBITION_AUTH))

throw new SecuritPolicyViolationExcept{"Security policy violation. The requested adjivs prohibited");
/l'it is undefined
if(result.equals(SecurityPolicyServicelfidee. UNDEFINED _AUTH))

throw new UndefinedSecuritPolicyExcepfi'undefined security policy behaviour. The resmomo the requested
parameters is undefined.");

4.5. Deployment of the security model

In order to deploy the security model, we follow&steps:
» Create a generic security policy framework
e Implement the security policy library

The generic framework is not dependant of the émantation. Therefore, it can be used
with any OrBAC based security policy. In this senti the security policy UML model is
presented. Then, the framework execution and uskag/n by a sequence diagram showing
how the security mechanism is triggered.

Fig. 9 shows the UML model of the security framekvor

22

sinterfaces
SecurityPolicyServicelnterface

e schackSecurtyPolicy(roleClass, Achivifylethod, viewGiass, ContexiClass)()
SecurityModelInterface -uses yroficyt i uy}!"r?uhﬂ:ﬁ . 0

+define SecuntyModelMapping)
+gefAuthorizations|)

+inithMapping() 1
+HoadSecunt }rRufE.?_[J'

|

SecurityModel

SecurityPolicyService

HoreatefuthFromRS(ResultSet))
+HoadSecurityRules()

LibrarySecurityModel

HnltMapping()
+defineSecurityModelMapping)

Fig 9. Security framework class model

It is important to point out that the only classtths related to the implementation is
“LibrarySecurityModel”. This class implements 2 alast methods:

* initMapping: initializes the constants containirg tapplication classes and methods
that will be used to map OrBAC roles, activitieews and contexts.

« defineSecurityModelMapping: defined the mappingnsstn OrBAC entities and the
application classes and methods (created by inigihay).

The “SecurityModel” class loads security rules frtira database and creates the collection of
OrBAC security rules. The only class that will balled by the application is the
“SecurityPolicyService” service class. This servatecks the security policy in order to find
out if the requested activity (knowing the userrdhe context and the view) is allowed or
prohibited. Fig 10 shows how the security framewisrksed by the application (when a user
tries to borrow a book during holidays which isdigiden by the security policy):

23

Lser Sarvicelltils SecurityPolicyService SecurityPalicyldadal

| I I
I | | |
. L

borrowBoak() checkSecurity(user activityClass viewClass context) CheckSacurity]]

getMapping

The current context is holidays B‘ Return orBAC entities

getAuthorizations

Return authorizations

Retum auth. type

&l

Throws a security policy violation exceptioni)

Fig 10. Security policy sequence diagram

All methods of services classes that implementaurity policy rule call “checkSecurity”
method in “ServiceUtils” before performing theiaot Then the security policy service uses
the security model to get the OrBAC entities mappgdthe parameters. Afterward, the
service searches for a rule using the calculat&AQrentities (in the presented case it is a
prohibition rule). Finally, ServiceUtils raises ecsirity policy violation exception when it find
out that the requested activity is forbidden.

4.6. Mutation tool

4.6.1. Generation of mutants

The mutant generator is implemented as part ofMogOrBAC tool that implements the
OrBAC security model. The goal of this tool is ttoe security administrators to specify and
define an OrBAC based security policy model.

We added a module that generates security polickama When the security policy is
defined the tool creates the security mutantsudes interface is shown in Fig 12.

Mutants generator x|

@ These mutants were generated
*17 : By replacing Permission rule by a Prohibition one.
*17 : By replacing rule Role.
*13: By replacing rule Activity.
* 25 By adding rules.

- An SGL file was successfully created.
- Mutants saved as MotCOrBAC files.

Fig 11. Mutation result dialog box

24

The user can choose the number of generated mitargach category. Then the tool creates
MotOrBAC security policy files and/or an SQL scripat creates a database table containing
all the mutant rules (each mutant policy havingheue id).

I‘?Security policy mutants generator 1[

Please select which operators to uge.
Created filss will be added in a directory named 'mutants’

Types changing Peremeter remplacor | Higrarchy changing Add rule opsrator
Operator

Mutart
Replace rule role 173:
1 3

Replace rule activity 32

[Exportto databass [¥]save as MotOrBAC files

Cancel

Fig 12. The mutant generator window

The mutation tool uses MotOrBAC libraries to gee tburrent security policy rules list,
entities as well as hierarchies. In addition, thetation tool uses MotOrBAC modules to
check if conflicts exist and resolves them. In caseonflict, it means that the mutated rule is
in conflict with another. The conflict is automatily solved by giving the highest priority to
the mutated rule. The result is that this rulengplemented or executed in priority. The
numbers of generated mutants are shown in a dim&gas presented in Figure 11). For our
experiments, we generated all the possible muttortsanking the mutation operators.

4.6.2. Oracle function for mutation analysis

In order to decide whether a mutant is killed ot, mee use an oracle function that checks the
difference between the output of the mutant polioplementation and the correct security
policy one. The security mechanism prints the aughtion that was granted to the requested
action into a file. The oracle function thus cotssia comparing the files that are produced by
the mutant and the original policy. We present lagrexample of 2 different outputs:

Output of the application using initial securitylipy:

INFO nain root - Permission granted for the requested action reserveBook BORRONER

Output of the application using mutant securityigol

WARN mai n root - Requested action prohibited reserveBook BORRONER

Information about the operator used to generatentutant:

Operator used: Type Changi ng Operator

Rul e to change:
Perm ssion (rennesLi braries, Borrower, ReserveBook, Book, WrkingDays).

Rul e to use instead:
Prohi bitionp (rennesLibraries, Borrower, ReserveBook, Book, WbrkingDays).

25

This oracle function, by comparing the behaviouthaf initial program with the seeded one,

is sufficient to determine that a test case killawant. For a practical use, this comparison is
not possible and the tester must define an expietle function or manually establish the

verdict. This is another reason why it is importaot generate only the necessary and
sufficient number of mutants.

4.6.3. Generated mutants

Table 3 gives the number of generated mutants perator. The ANR operator generates
much more mutants since it adds a non specifiedrégaule. The number of generated
mutants thus reflects the fact that all the posstlalses have not been specified in the security
policy. To our own experience, this is quite usubke specification focuses on the most
critical and important case, and often consideas ahdefault behaviour is acceptable. Testing
these cases allow the default policy to be exedcimed allow to highlight lack in the
specification. On the other hand, they are fewamist generated from hierarchy changing
operators because the specification doesn’t intteainany hierarchical entities.

Operator category Op. name # mutants
Rule type changing operator PPR 22

PRP 19
Rule parameter changing operatorf RRD 60

CRD 60
Hierarchy changing operator RPD 5

APD 5
Rule adding operator ANR 200
All 371

Table 3 - Number of generated mutants per operator

5. OrBAC mutation analysis in action: results and

comments

In this section, we present the results of the GEBAutation. There are 2 main objectives for
this study.

The first objective is to provide a ranking of thmitation operators. This ranking will be
based on the mutation analysis results.

The second objective is to study the relation betwsoftware test cases and security test
cases. In fact, testing functions includes exangisnany security mechanisms. The issue is to
determine whether testing functions provide enocghfidence in the security mechanisms.

Then we want to know how to improve this confidegeselecting test cases specific to

security. Two strategies are studied for produsiecurity policy test cases, depending if they
are built in complement of existing functional teases or independently from them.

Before presenting the results, we present somenitefis in order to help clarifying the
subtle differences between functional and secymitijcy testing.After this sub-section, we
will start with presenting the experimentation il and the strategy used to decide how to
rank the operators. Afterwards, in the last sultisec we study the relation between
functional tests and security tests.

26

5.1. Security tests qualification

Experimental protocol

The first step consists of generating minimal test suites peratit operator, w.r.t. the
following definition:

Definition: minimal test suiteA test suite is minimal for a set of mutants ifé ttest cases
it includes have a 100% mutation score and, if whetest case is removed, the
mutation score decreases.

We note TS(nhame of operator) the minimal test sugieded to kill all the mutants generated
with this operator. In this study, an importantoeffhas been allocated for generating the test
cases and minimizing the test suites. Since itffiewlt to have much less than a test case by
security rule, we believe the minimal test suites@ose from the optimum. For instance, the
minimal test suite of 36 test cases selected fongithe basic mutation operators is equal to
the number of non generic security policy rules.

The second stegonsists of comparing the mutation operators. Tohisparison leads to a
ranking, which is obtained with two criteria. Thiest one determines whether a mutation
operator can replace another. This aspect is aaptoy the notion osubsume relationship
When two mutation operators are equivalent, anghein can replace the other without loss
of efficiency for the generated test cases. To shaghich of the two mutation operators can
be removed, we consider the number of generatedntsuas a second criterion.

Definition: subsume relationship (->A mutation operator MO1 strictly subsumes MO2
(MO1 -> MO?2) if:

a) the minimal test suite TS(MO1) also reaches @%d0nutation score for the MO2
mutants

b) the minimal test suite TS(MOZ2) does not reach 16@2MO1 mutants.

MO1 and MO2 are equivalent (MOl <-> MO2) if TS(MOdBaches 100% on MO2
mutants and TS(MO2) reaches 100% on MO1 mutants.

Fig 13 illustrates the definition. MO1 -> MO2 sintte test suite for MOL1 is sufficient to Kill
all mutants generated with MO2. Conversely, MO2stidesubsume MOL1 since its minimal
test suite only kills 80% of the mutants createthvilO1. We can thus consider that MO2
can be removed, since it is not needed when quadify test suite. MO1 precedes MO2 in the
ranking. In case of equivalence, one of the twoatmonh operators is useless. To determine
which one can be removed, we consider that it ileb& generate less mutants (due to the
execution times, and to the effort needed for gemeg these mutants when done manually).
So, the ranking relation is defined as follows.

TS1 TS2

%

100% 100%

< 200%
MO1 MO2
Fig 13. MO1 operator strictly subsumes M 02

Definition: mutation operators ranking (>).

MO1 > MO2 iff: MO1 -> MO2 or ((MO1<->MO2) and |{MO1 mutants}| < |{MO2
mutants}|)

27

This ranking only orders partially mutation operatdf a mutation operator is not ranked, it
is independent and necessary for a relevant tedifigation process.

Ranking of mutation operators

First, the mutation analysis was applied with eadnimal test suite for each mutation
operator. The results were deceiving since no cke@ding appear. We then consider minimal
test suites for couples of mutation operators: PR (Rule type changing operators), RRD-
CRD (Rule parameter changing operator) and RPD-fAfBrarchy changing operator). The
results for the size of the minimal test suites digplayed in the table bellow. The
relationships between minimal test suites are:

TS(RRD-CRD) = TS(PPR-PRP)

TS(RPD-APD) TS(PPR-PRP)

| TS(PPR-PRP) TS(ANR) | = 21 test cases

So, both PPR-PRP and RRD-CRD operators subsunffRBEeAPD operator. PPR-PRP and
RRD-CRD are equivalent for the subsume relationsfigking into account the second
criterion, the number of generated mutants peraiperwe obtain the following ranking:
PPR-PRP -> RRD-CRD -> RPD-APD

This result shows that the PPR-PRP operator shoelldsed in priority, thus avoiding the
creation of most mutants.

Operator category OoP Size of minimal test
suites
Rule type changing operator PPR
36
PRP
Rule parameter changing operator RRD
36
CRD
Hierarchy changing operators RPD
4
APD
Rule adding operator ANR 154

Table 4 Number of minimal test suites

The ANR and PPR-PRP operators are not comparalitetis ranking. Some test cases are
shared by both minimal test suites (21 test). Hindetbellow shows the overlap between the
test suites, in terms of respective mutation scorbe minimal test suite for ANR Kills 59.3
% of the non-ANR mutants. On the other hand, thRPRP test suite only covers 17% of
the ANR mutants. The ANR mutants are thus necedsarycannot replace the PPR-PRP
operator. PPR-PRP and ANR are not comparable, endeaommended operators. On this
case study, the ANR operator is the most costigims of generated mutants. This number
may vary, depending on the completeness of accessot rules. The fewer rules are
specified, the more mutants this operator genersltesbelieve that it is likely that the rules
do not specify all the combinations explicitly, ahat this operator is the most costly. On the
other hand, the PPR-PRP operator will generate mortants when more rules are added. In
a general case, there is thus a balance in the eluoflgenerated mutants between PPR-PRP
and ANR.

28

all mutants ANR

except ANR
TS(PPR-PRP) 100% 17%
TS(ANR) 59.3% 100%

Table 5 Overlap of test suites between
PPR-PRP and ANR operators

Removing mutants generating conflicts

To reduce the number of mutants to be generatedemvarked that the mutants which caused
a conflict (which is solved by giving priority tdvé mutant rule) are the more easy to Kkill.
Table 6 presents the number of mutants which geereonflicts per operator. Bellow we
present an example of such conflict. The examplstiates that two test cases, generated to
kill mutants without conflicts, kill this mutant ¥ conflict.

Operator used: RRD
Initial rule:
Prohibition(Library,Secretary,ManageAccess,PersdAneount,Default)

Mutated rule:
Prohibition(Library,Administrator,ManageAccess,PenselAccount, Default)

The seeded rule is in conflict with another rule:
Permission(Library,Administrator,ManageAccess,ParsgAccount,Default)

The two tests that kill this security policy mutant
Test 1: Test that secretary cannot manage access
Test 2: Test that admin can manage access.

These two tests are already generated to kill nisitaithout conflicts.

Operator category | With Without
conflicts | conflicts

Rule type changing - 41

operator

Rule parametef 23 97

changing operator

Hierarchy changing - 10

operators

Rule adding 33 167

operator

Total 56 315

Table 6 # of generated mutantswith and without conflicts

So, several test cases, from the minimal testsuwiestematically kill these mutants. It means
that these mutants are not necessary. Indeed, wee ha
TS(RRD-CRD with conflicts)] TS(RRD-CRD without conflicts)

TS(RRD-CRD without conflicts) corresponds to théteswf 36 test cases needed both for
Rule type and Rule parameter changing operators. fBist suite is also minimal for the

29

mutants RRD-CRD which do not cause conflicts. Amahig set, only 12 test cases are
needed to kill mutants with conflicts which compase TS(RRD-CRD with conflicts)
minimal test suite.
TS(ANR with conflicts)[J TS(ANR without conflicts)
But TS(ANR with conflicts)J TS(PPR-PRP) and TS(ANR with conflicts) correspotala
minimal test suite of 21 test cases (which are akact intersection of the TS(ANR) and
TS(PPR-PRP) test suites.
It means that if the PPR-PRP and ANR operatorsised, the minimal test suite of PPR-PRP
kills the mutants with conflict generated with ANRombining these two operators allows
removing the mutants with conflicts generated with ANR operator. Around 18% of the
mutants (those with conflicts) can be removed withamy loss of relevance for the generated
test cases.
We study why these mutants could be removed andcxp&nation is interesting, since it
corresponds, for security testing, to the ‘coupkfigct’ analyzed by Offutt et al. [14]. In fact,
when a mutated rule causes a conflict, it has grmaanon at least two rules: this fault is
equivalent to two sequential mutations without tiotH.
In conclusion, some operators are more relevamt tithers for improving the quality of
security test cases. We present a ranking of thet os®ful mutation operators:

1. Adding rules operators

1. Rule type changing operators

2. Rule parameter changing operators

3. Hierarchy changing operators

RRD-CRD

PPR-PRP

Fig 14. Relation between operators

Fig 14 displays this ranking, and highlights therap between ANR and the other operators.
All these operators generate mutants which inténsgth the adding rule operator. Adding
rules operators are the most interesting becawse dimulate cases that are not tested by
functional tests. As shown by the results, theythee most difficult to kill, regarding the
number of test cases needed to detect its generatithts. Only advanced security test cases
are able to kill mutants without conflicts creatsdthis operator.

5.2. Security tests vs. functional tests

Two test criteria are studied in order to selest ases from an OrBAC security policy
model.

CR1 -The criterion 1 (CR1) is satisfied iff a test casgenerated for each primary access
control rule of the security model.

30

In the case of the LMS, we have 20 such primargsiuln the case of a generic rule, a test
case testing one instance of this rule is consitasesufficient.

CR2 -The criterion 2 (CR2) is satisfied iff a test caseenerated for each primary and
secondary rule of the security model, except tmege rules.

In that case, 35 test cases are generated corgispgaio the 42 total access control rules
minus the 7 generic ones. The CR2 criterion isngfeo than CR1, since it forces the coverage
of all secondary rules.

Advanced SP test case®dvanced SP test castst exercise the default/non specified
aspects of the security policy.

These test cases are selected to kill mutants gwewith a specific mutation operator
(ANR) presented in the next section.

Functional test caseHl:corresponds to system tests, in the senseaieegenerated based
on the use cases of the system under test.

We used the approach based on use cases + corjpreetsand post-conditions) to generate
the functional test cases. The automated generaiobtained using the UCTS (Use Case
Transition System) presented in [10]. The genertgsticases cover the nominal code (code
implementing the specified use of use cases) gratteof the robustness code of the system
under test (unexpected use of a use case andisdesitliations when the use case execution
fails).

Security test cases obtained with CR1 or CR2 shtedtiaspects which are not the explicit
objective of functional tests, e.g. that all protin rules that are not tested by functional
tests.

Test strategies

We study whether the functional test cases canskd tor security policy testing. Reusing
functional test cases implies adapting them follieitly testing the security policy. The intent
of the functional test becomescurityand details the SP rules which are tested byrpeti
test sequence. The test oracle does not checkdirecthess of the service results, but
interrogates the security mechanism and checkbefexpected permission/prohibition is
executed.

So, we consider two types of strategies dependimgtiver we reuse the existing test cases or
not.

Incremental strategyt denotes the strategy for producing security teses which reuse
existing test cases.

An example of incremental test strategy consistsrenfsing functional test cases, then
completing them with one of the CR1 or CR2 criteaiad finally completing the resulting test
suite with advanced test cases.

Independent strategyfhis strategy consists of selecting functional, t88t cases and
Advanced SP test cases independently.

31

We will compare and discuss in the case study aévacremental strategies and the
independent one. The goal is to highlight the miaayes that arise when selecting test cases
for the security policy aspect.

Issue 1: Relationships/differences between functional tests and security ones

The first experiments we performed aim at studyumngther the faults detected by functional
test cases differ from (are included in or interseth) the ones detected by test cases
dedicated to the security policy. While the funoaibtests, which cover 100% of the code,
necessarily execute security mechanisms, they ghanlly focus on the success/failure of
method/service sequence executions.

When reusing functional test cases with the objectif testing security, the intent changes
and thus it is necessary to modify the associatstidracle. This task may be costly in the
general case, depending on the difficulty to rethtefunctional test sequence to the security
mechanisms it should exercise.

Table 8 summarizes the number of functional tesegaThe table shows that some test cases
do not trigger the security mechanisms. It corresisao the execution of code which is not
related to the security policy. It confirms theuition that functional test objectives differ
from the objective of explicitly testing securityeehanisms.

Table 7 second column shows that the functionaldeses, adapted to security, can kill most
(78%), but not all, basic operators’ mutants. Comicg, the ANR operator, the functional
test cases are not efficient (11%): it is due tofttt that the ANR operator generates security
flaws which are outside the scope of the specifioatin conclusion, the overlap of functional
aspect and security policy is high, but the funwidest cases do not kill all security mutants.
It appears as a meaningful task to generate tessaaith the explicit objective of testing the
security policy.

Functional CR1 CR2
#T est Cases 42 20 35
Rule type changing operator 35/41 85% 38/41 9QR2% 411/ 100%
Rule parameter changing operator 90/120 7p% 101/120% | 120/12Q 100%
Hierarchy changing operators 10/10 100940/10 | 100% 10/10 | 100%
Overall score with basic security | 135/171| 78% | 149/171| 87% | 171/171] 100%
operators
Rule adding operator (ANR) 22/20011% | 28/200 | 14% | 33/200 | 17%
Overall scorewith all operators 157/371| 42% | 177/371] 47% | 204/371| 55%
Table 7 Mutation analysisresults by test cases category
test cases
Tests that do not that trigger sec. mechanisms 7
Tests that trigger security mechanisms 35
All tests 42

Table 8 Functional testsanalysis

Issue 2: Comparingtest criteria

Table 7 third and fourth columns present the mamatesults for CR1 and CR2 test criteria.
The 20 test cases selected with CR1 are more ezffithan the functional test cases, since

32

with fewer test cases the final mutation scoreighdr. However, this criterion is not efficient
to reach a 100% mutation score on basic mutantse(geed with all operators except ANR).

In conclusion, the CR2 criterion is necessary e a full coverage of basic mutants, and
appears as good trade-off between functional antl, @Rerms of efficiency (mutation score)
and cost (#test cases) for detecting security flafvsorollary conclusion is that a large
number of basic mutants are quite easy to killc&ithe hard-to-kill mutants are the most
interesting ones (because they require the moatiesft test cases), another study would
consist of ranking the mutation operators so timdy bard-to-kill mutants are generated. This
study is beyond the objective of this report butésessary to offer a realistic mutation-based
approach to test security policies. This reportutms on the test selection problem for
security policy and the question of sufficient mitaperator does not impact the conclusions
we draw (in the worse case, we consider more mutaah necessary since some mutants are
coupled).

We remark that the CR2 criterion allows coveringtapl7% of the ANR mutants. While
basic security mutants force the tests to coverspgeeified security rules, the ANR ones are
useful to check the robustness of the system ie chglefault or underspecified policies.
Combining both operators provides a good critetmmguide the tester when generating the
test cases.

The advanced security test casa® test cases which are explicitly generated-deroto Kill

all the ANR mutants. In this approach, we are usmgant score as the test criterion. We do
not use mutation for analysis purpose (to compese driteria or testing technique) but as a
test selection technique. In the case mutants gigaercannot be fully automated, it makes
this test selection technique impossible to applgwever, the study we propose provides
interesting results, in terms of test selectioorefind test quality.

Issue 3: Advanced vs. basic security tests

The issue here is to compare the test cases sktkectever the security rules with CR2 (and
which kill all mutants except ANR) and the advanseturity tests which are generated in
order to Kill all the ANR mutants. Table 9 presethis overlap between these two approaches.
It is interesting to note that the advanced seguast cases kill up to 60% of the basic
security mutants. On the other hand, the test ceskested with CR2 only kill 17%. The
effort to kill the ANR mutants is much more impart§154) than for killing the basic security
mutants (35).

#Htest Basic ANR
cases security
mutants
CR2 35 100% 17%
Advanced |154 59.3% 100%
SecC. tests

Table 9 Overlap of CR2 and advanced test cases

In conclusion, the test selection based on the ANRants cannot replace the CR2 criterion.
CR2 and advanced security test cases are not cablpaand are both recommended, the
first to efficiently test the specification, thecead to cover non-specified cases (robustness).
Issue 4: Incremental vs. independent test strategies

The issue now is to study whether we can leveragegneremental approach to save test
generation effort. Table 10 recalls the numberest ttases generated with the following
strategies: the independent approach (we do naterdéunctional test cases) reusing the
functional test cases, completing them to reachCiR2 criterion and to kill all ANR mutants

33

(Incremental from functional strategygenerating test cases to reach the CR2 criterion
completing them to kill all ANR mutantdngr. from CR2 strategy

The first incremental strategy seeks to take berfiefim the existing functional test cases
(which have to be adapted for security), the seam&lstarts from the CR2 test criterion.

Even if quantitative results are displayed, the parnson is difficult because the effort to
adapt functional test cases to security cannoiabdyeestimated in a general case. It depends
on the system to be tested. It may be neglectetistthe case for our study since the security
mechanisms are centralized and can be quite edslrved. In a general case, adapting these
test cases may be as costly as generating setesitgases. In Table 11, we put two values
that correspond to the case when the cost of attaptean be neglected in parenthesis. This
issue is related to the problem of security medmasi testability (controllability and
observability).

Funct. | Basic Security | Advanced Security | Total

Strategy CR2

Independent - 35 154 189

Incremental from functional (42) 21 133 196
(154)

Incr. from CR2 - 35 133 168

Table 10 Independent vs. Incremental test generation strategies

It appears that the independent generation of beestarity and advanced test cases is the
most costly. With any incremental strategy, we needenerate 133 test cases to kill all
advanced security mutants (saving 21 test casesrajéon). The final ranking between the
two incremental strategies depends on the adaptatest of functional test cases and may
vary from a system under test to another. Onlytds¢ experts may estimate this adaptation
cost. If it can be neglected, reusing functionak teases and completing them is the most
interesting strategy. Another decision has to lertavhich is to put an important effort for
testing the security policy robustness (killing AMRitants).

5.3. Conclusion for the use of mutation analysis for SP testing

The objectives of the study are two-fold:

First, it proposes mutation operators for secypitficy testing. To qualify a set of security
policy test cases, a classical mutation analysiapglied with these ‘security’ mutants. In
practice, it may be costly to implement all typésecurity mutants, especially if it must be
done manually. We thus performed detailed experisyaas rigorously as possible, on a 3-
tiers architecture example (a library system) tecea sufficient subset. The hardest-to-kill
security mutant operators are those which mustdmemted in priority. If this initial study
has to be completed with others, the first regeigal that we can limit the types and number
of generated mutants. The ranking shows that tweradpr types are necessary: rule type
changing operator (PPR and PRP) and rule addingatmpe(ANR). Combining these two
operators also leads to another minimization ofgiseerated mutants: only mutants which do
not cause conflicts in the security rule have tafgated. It is due to the fact they introduce at
least two coupled elementary faults (coupling djfé&/hile PPR-PRP mutants force the test
to cover the specified security rules, the ANR oaesuseful to check the robustness of the
system in case of default or underspecified pdicizlombining both operators provide a good
criterion to guide the tester when generating ésé¢ ¢ases.

34

Secondly, the study focused on comparing functiarad security policy testing, and on
estimating the interest of two test selection gatand two test strategies. The study does not
answer the many issues security policy testinglésdiut allows underlining them and shows
that testing a security policy is a specific taskich is complementary from the functional
testing oneWe proposed a first methodology to select tests;aséh various test selection
criteria based on the security policy (specificatior on mutation (code based). Finally, we
distinguish test selection for testing the “nomirsacurity policy rules from the advanced test
selection that aims at testing the robustnesseftécurity policy. The first test cases can be
derived from CR2 test criterion. We use ANR mutaassa suitable criterion for testing
security policy robustness. To conclude concerrimg use of mutation as a sSP testing
technique, the studies must be balanced by comsidero qualitative aspects that makes the
approach feasible or not:

- the possibility, or not, to adapt functional teases to test a security policy,

- the interest of advanced security tests regardiegrhportant additional effort it may

require.

6. Mutation analysis applied to SQL Injection

A lot of web applications use back end databas@d. iBjection is one of the simplest and
well known attacks that can easily be used to danmagto perform illegal actions against
these web applications. However, it is surprisimat mmany web applications are vulnerable to
this attack. It is very easy for hackers to findnanable websites and attack them using the
SQL injection technique.

In this section we study how to adapt mutation gsialto the context of SQL injection
attacks. We start with a brief presentation of 9Qéction attack. Then we present the most
interesting approaches used to cope with SQL iigjechttacks. Afterwards, we propose a
strategy to adapt Mutation analysis to qualify S@kection countermeasures and to evaluate
the testing tools. Afterwards, the results of motatanalysis applied to SQL injection
countermeasures are presented. Then, based oestiitssrand the mutants, we propose some
improvements that can be applied to SQL injectimuntermeasures to overcome the
limitations exposed by the mutation analysis study.

6.1. SQL injection attacks

SQL injection attacks exploit the fact that somebvepplications do not perform the input
data validation, and create SQL query strings dyoalig. The aim of SQL injection attack is
to append SQL statements inside the application @@y and execute a different query.

In order to understand the SQL injection, let usufbon the following example, this code is
used inside a java class. (It is a “hello worldample always presented by reports to show
the SQL injection technique):

String unsafeQuery = “Select * FROM users WHEREruse“ + inputUser + “ and
password = “ + inputPassword + ;"

A rogue user (or a hacker) may type thisngaitUserandinputPassword
InputUser? ‘or 1=1; --

inputPassword? Nothing

Now we end up with the following query:

35

unsafeQuery = “Select * FROM users WHERE user =of’ 1=1; --* and password =
‘Nothing’;

The last part of the query that starts from “--fgaored. It is considered as comment because
the string*--* indicates a commeniThe query that will be executed is this one:

Select * FROM users WHERE user = “ or 1=1;

This query is a tautology and will return all usérsthis case, the attacker succeeded to log in
(illegally).

6.2. Countermeasures security mechanisms against SQL injection

6.2.1. Basic security mechanisms based on input validation

Many approaches were proposed to deal with SQIctiojes based attacks. Input validation is
an obvious approach that is easy to implement. elfage 3 different options for input
validations [15]:

e Massage data to get valid data.
e Reject illegal characters.
e Accept only authorized characters

data massage consists on escaping data. For ex#ntpée user types:‘[or 1=1--]. This
string becomes:”"[or 1=1] or [\" or 1=1]. The query will be executed as expected and there
will be no harm. This technique has drawbacks. l[$teof suspicious data is not finite and
new suspicious characters are added all the tintkegends on new versions of SQL database
that may use new reserved words or on hackers wheni new techniques etc...). For
example, SQL server databases uses the characterdélimit dates. This character was not
in the list of suspicious characters and hackees itdo perform attacks.

Furthermore, the developers may limit the inputadangth. In this case, data massage is
insufficient. Here is an example [15]:

If the user name length is limited to 16, a user nype (see that inputUser contains 16
characters, it is done intentionnaly):

inputUser? aaaaaaaaaaaaaaa’
inputPassword ?; shutdown; --

The application will try to escape the quote loda¢ the end of inputUser. The problem is
that the escape character is ignored since thenssee length is limited to 16. The query
becomes.

unsafeQuery = “Select * FROM users
WHERE user = ‘aaaaaaaaaaaaaaa”’ and password =;‘5shutdown; --*

This query shutdowns the server. Because it looksi$er name Zdaaaaaaaaaaaaaa” and
password = “; |. Then theshutdowncommand is launched (a dangerous attack reached its
goal).

The technique of rejecting illegal data consistsemhoving all suspicious characters used as
input. The string will not contain characters likeor “--“ that may be used to perform an
SQL injection attack. The main drawback of thisrapgh is that we do not know all possible
dangerous characters (as explained above).

36

The last technique (accepting only authorized ipponsists of accepting only letters and
numbers. This is the most efficient technique bsedatimakes impossible an SQL injection
attacks since the input data will never contairspaguious characters.

The main drawback of input validation is that itpsone to a many false negatives. For
example, a user can type his name (say) O’Briaithiicase, the application may consider
the input data as an attack since it contains ek dharacter (‘). In addition, as explained
above this technique does not guarantee that wiéhee no false positive because there is no
complete and final list of bad data. Furthermore,kmow that if the third technique (Accept
only authorized characters) is implemented the iegipdbn will be completely immune to
SQL injection attacks. This is obvious because deliers and numbers are accepted. The
disadvantage of this approach is that applicatisersi (whose names are for example
O’Brian, O'Connor or Bassington-Bassington) mayusef to have their name written
differently (and become OBrian or O Brian). Moreqvstrongly restricting input data
sometimes makes no sense. Why would we forbid tissrs search for things like
“director_at_company.com" (special character us&{f)01/12/03" (no alphabetic characters
at all) and so on?

6.2.2. Advanced security mechanisms

Many approaches were proposed in the literature. phésent here some of the most
interesting techniques used to protect from SQé&atpn attacks (SQLIA).

SQLIA detection: combining static and runtime analysis

In [16], the authors propose a technique to de8@QLIA. If an SQLIA is detected the
application rejects the query and does not exdatukestatic analysis tool is used to create an
SQL Finite State MachingSQL-FSM) for each query. Figure 15 shows an examplSQL-
FSM [16] (the query represented“Belect * FROM user WHERE login = " + input “”).
SQL-FSM for applications programs are constructiédiree, not at runtime.

SELECT _ ddemsifier = FROM | ddengifier WHERE idensifer

% ' = {oser) = llogind

= ; i derntifher
L) & e B, L
- (VAR

Fig 15. SQL-FSM

During runtime, SQL-FSM representing the executgebry (containing input data, a
potential SQLIA) is created then compared with &tgL-FSM for that query that was created
before (off-line). If the dynamically created SQueyy does not conform to the expected
guery then it is rejected (An attempt of SQLIA)géie 16 shows an example SQL-FSM
violation (from [16]). The input data is¢r 1=1 --] .

- ! idenafiar ' OR _ igemafier
f: L C (B i b
- {hacker) 1}
- . denifier —_—
i L Lt L

{1}

Fig 16. SQL-FSM violation

37

The main drawback of this approach is the additiomatime analysis overhead. The authors
propose solutions to overcome this problem by reduthe number or scanned queries.

SQLRand: aradical shift

This technique was proposed by Stephen W. Boyd.dtld]. They apply instruction-set
randomization against code-injection attacks (nyabuffer overflow based attacks) to the
problem of SQL injection. The idea behind the cqids to create randomized instances of
the SQL query language by using random keyword® 3BQL keywords (like select or
update etc...) are appended by a random number callegly. All application queries are
randomized inside code scripts or sources. Thde-eandomizing proxys used to recover
the query (the proper SQL syntax) and send it thtalthse management system. The
malicious input is rejected by the proxy parserit ases unknown keywords (the assumption
is made that the user will not be able to gueswvahee of the key).

For example, we have the following query:

SELECT gender, avg(age) FROM c¢s101.students WHERRt = ‘$dept’ GROUP BY
gender

To randomize the query, a utility appends autorafiyiche key (here it is 571):

SELECT571 gender, avg(age) FROM571 csl101.studati&ERES71 dept = ‘$dept’
GROUP571 BY571 gender

A rogue user may attempt to typeot 1=1; --* the query became :

SELECT571 gender, avg(age) FROM571 c¢s101.studl¢HEERES71 dept =" or 1=1; --
GROUP571 BY571 gender

The SQLIA fails because when the parser tries tgeéthis query the “or” is identified as
unknown keyword since it does not contain the Keg1”.

The figure 17 presents the architecture propose8@lyRand approach (from [17]) :

Web Server Databaze Server

Randomized _ Standard

SQL S0L =]

Client - OB ﬁ

—— ; —s Middle- Froxy 3

HTTF Ecripta P— o
Requests

Fesult Result b

Set s=t

Fig 17. SQLRand architecture

The drawback of this approach is that it requiresetbpers to adopt a new programming

38

paradigm. Moreover, it is difficult to apply to lagy software as it requires the medication of
all applications queries.

String tainting based techniques

Several approaches relying on tainting are propasduke literature. We present one of these
approaches named positive tainting that was prapbgdialfond and Orso [18].

Positive tainting consists on marking query strihgsd-coded in the applications tainted as
safe. Application strings are identified as trust€den the user input strings added by the
user are tainted unsafe. A new library called M&ta® is used to extend the behaviour of
Java Standard classes. The MetaString objects tinaidafe characters in the string.

This allows to check the part of query added byuber to test that no SQL reserved words
are injected into the query.
This allows to detect malicious SQL code injectedhie query.
This approach works as follow:
e All trusted strings are marked (hard-coded partg are marked trusted)
e Before executing a query a test is done. It chéu&sall reserved words are tainted as
trusted.

In order to illustrate this approach the Figurepi@sents a high level overview of this system
[18].

| |
| Additional Trust |
| Policies [

Developer

Additional |
Trusted Sources |
and Markings |

String Initializer Protected
Application and Web
Instrumenter

Legitimate Query

Database
Application

i Data
URL"HTML

s

Users
Fig 18. Overview of positivetainting approach

This technique was implemented in a tool named W#sBgeting only applications written in
Java . The tool uses a library to modify the Jaytednde files by replacing all String
declarations by a new class named MetaString tlaksnas tainted the hard-coded strings
and leaves untainted the dynamically added data.addition, the bytecode classes are
scanned to find all database calls in order to keva Metachecker class that tests the query
before authorising the execution of that query. Metachcker uses an SQL parser that the
query is valid.

39

A learning based approach

This approach [19] is based on the idea that aficappn always performs the same types
and models of SQL queries and if a new kind of gueperformed then this is an indicator of
a possible SQLIA.
This approach works as follows:
e During a training period the security mechanismeall the models of queries that
can be performed by the application.
e The security mechanism monitors checks every gperformed by the application to
see if it is linked with an already known modelitlis not then an alert is raised.

The security mechanism is located between the gjmn and the database server.
Therefore, if is completely independent from theplaation language and platform. The

figure 19 presents an overview of the system (ffb@gj).

One limitation mentioned by the authors for thiprach is that it might not detect attacks
when the structure of the malicious query matchesstructure of another accepted query. In
this case, the attacker changed the query in athaymakes it similar to another query

normally used by the application. The security na@i$m is not able to detect this attack.
This potential shortcoming can be overcome by ntaktile association at a finer level.

qp; Provider H Parser HFeature Selector
! i H

> v 3 A
SELECT x FROM y i P
WHERE a='User' AND : : :
i
b=3 OR c="str’ -3 Iz'

Fig 19. Overview of the learning based approach

Profiles

~Models

6.3. Qualitative criteria for security mechanisms comparison

We introduce a comparison of the approaches weepted above. We use the following
criteria to compare the different techniques:
» Deployment cost:
» High cost: manual modification of application code.
» Medium cost: semi automatic deployment.
> Low cost: fully automated deployment.
> Runtime overhead
> High: important overhead.
» Low: neglected overhead.

40

» Complexity of the approach
> Complex: the use of the technique requires a lefffoft and knowledge.
» Not complex: the technique is simple to use andoyep
> Portability
» Platform and language independent.
» Language dependent.

In the following table, we present this comparison:

Deployment Runtime complexity Portability
cost overhead

Input validation High Low Not comple No
Static and runtim Low Low Complex No
validation
SQLRand Medium Low Complex Yes
Tainted string Low Low Complex No
learning machine Low Low Not complex Yes

Table 11 Comparison of SQLIA counter measures

6.4. Fault injection applied to SQLIA

6.4.1. Adaptation for SQLIA countermeasures

In order to test the proposed techniques againki/AQ@ve need a security fault model that is
adapted to the context of SQLIA.

We propose to apply a technique similar to what pragposed by Mathur et al. concerning
environment perturbation [5]. The purpose of thppraach is to evaluate the robustness of
the mechanism when its environment is behavingybadl

Environment perturbation can be done in the foltayplaces:

Database: The database scheme and the databas®bethzor example:
e making the database show all error messages.
e Introducing unsafe behaviour in the stored procedyr using execSQL that open the
door to SQLIA.

The application code:

e Weakening the application code by making it reliyanm the security mechanism.

e Making the application print the error message ognfiom the database.

e Modifying the application behaviour in a way that different from the security
mechanism assumptions. For example, some securgghanisms make the
assumption that the query is constructed by makomgratenation of string. So it is
interesting to see if the security mechanism werken this is done differently.

41

6.4.2. Existing testing techniques

WAVES [20] is a framework for testing web applicatiin a transparent way. 2 types of
security problems are addressed, SQLIA and Crass ssripting. The testing technique

consists on trying to perform an attack on web payel then observing the behaviour of the
web application. An enhanced crawler is used ireotd retrieve the forms input and then

injects malicious data.

SecuBat [21] is a tool that allows to test web aapions to check if they are vulnerable to
SQLIA. Basically, SecuBat is a web vulnerabilityasoer. The authors tried it against popular
websites. The tool was able to find potential vidine websites, among them companies and
a finance ministry website.

6.4.3. Adaptation for testing tools

In order to evaluate SQLIA testing tools, we cae uke following strategy:

e Checking in the tool works on unprotected applaati

e Removing protection randomly from only one formubpn order to see if the tool
uses all users input.

e Removing protection randomly from only one web pemgerder to see if the tool uses
all application web pages.

e Introducing SQLIA vulnerability in unusual placdsy example, in the program that
handles the cookies and generates queries fromeasoo&ntent. This will allow to see
if the tool is capable of covering different typE#sSQLIA sources.

6.4.4. Combining both adaptations

It is interesting to combine both adaptations. thisans weakening one security protection
and evaluating the testing tool to see if it sudegleto benefit from the security breach
created in the protection mechanism

6.5. Results of mutation analysis study applied to SQLIA

6.5.1. Input validation

We apply traditional fault injection technique fimput validation since its context is very

similar to software testing. The fault injectiomaségy consists on focusing only on the input
validation code. Then traditional mutation operstare applied. The final goal of this

technique is to improve the security tests usezl/t&duate the security mechanism.

6.5.2. Adaptation of fault injection for SQLIA advanced countermeasures

In order to test the proposed techniques againki/AQ@ve need a security fault model that is
adapted to the context of SQLIA.

We propose to apply a technique similar to what pragposed by Mathur et al. concerning

environment perturbation [5]. The purpose of thppraach is to evaluate the robustness of
the mechanism when its environment is behavingybadl

42

Environment perturbation can be done in the foltayyplaces:
Database: The scheme of the database and its behavor example:

« making the database show all error messages.
« Introducing unsafe behaviour in the stored procedwyr using Exec(SQLQuery) that
opens the door to SQLIA.

The application code:

« Weakening the application code by making it rel{yan the security mechanism.

« Making the application print the error messagesingrfrom the database.

« Modifying the application behaviour in a way that different from the security
mechanism assumptions. For example, some securgghamisms make the
assumption that the query is constructed by makogratenation of string. So it is
interesting to see if the security mechanism werken this is done differently.

6.5.3. Adaptation for testing tools
In order to evaluate SQLIA testing tools, we cae the following strategy:

« Checking in the tool works on unprotected applarati

+ Removing protection randomly from only one formubpn order to see if the tool
uses all users input.

« Removing protection randomly from only one web pewgerder to see if the tool uses
all application web pages.

+ Introducing SQLIA vulnerability in unusual placdsr example, in the program that
handles the cookies and generates queries fromesoéntent. This will allow to see
if the tool is capable of covering different typE#sSQLIA sources.

6.5.4. Combining both adaptations

It is interesting to combine both adaptations. thisans weakening one security protection
and evaluating the testing tool to see if it sudegeto benefit from the security breach
created in the protection mechanism.

6.5.5. Applying fault injection to SQLIA countermeasures

Before checking each type of SQLIA countermeaskatels choose some mutants. We will
define two types of mutants :

« General mutants: They will be used for all appreach
« Specific mutants: They are adapted to the approduty are made in order to behave
in a way that will perturb the security mechanism.

Specific mutants will be presented in the each @ggr section. The following general mutant
are defined:

« Mutant 1: The application displays all errors mgsesacoming from the database. This
is the default behaviour of the application. Trase is realistic because sometimes the

43

developers forget to switch off the option thatpthys errors and debugging
information in web pages.

Mutant 2: The application relies only on the sedgumechanism. No sanitizing
function is used to filter user input. maliciousachcter are accepted which opens the
doors to SQLIA.

Mutant 3: The application uses a stored procechakdontains unsafe behaviour in it.
It uses exec(SQLQuery) (that is defined in SQL 8edatabases and is vulnerable to
SQLIA).

SQL Rand

We test this approach by creating the followingcgpemutants:

In the f

Mutant S1: The application constructs some qudnyeeading files that contain those
gueries.

Mutant S2: The application uses stored procedundsdgnamically created queries.

Some application contain many modules that wereldeed by different teams so it

is possible that some choose to use stored proegdand other choose to created
directly the SQL queries in the code.

ollowing table, we present the resultsha fault injection applied to SQLRand

Mutant 1 Mutant 2 Mutant 3 Mutant S1 Mutant S2

Mutant
killed?

No Yes No No No

Table 12 Fault injection applied to SQL Rand

Combining static and runtime analysis approach

For this approach we define the following mutants:

In the f

Mutant S1: The application creates dynamic quefies. user is allowed to create his
own queries or sub queries.

Mutant S2: The application uses a function to ttedl database pre-defined API (like
Statement.execute(query)) and do not call diretttlg function after constructing
every query.

ollowing table, we present the resultsha tault injection applied to this approach:

Mutant 1 Mutant 2 Mutant 3 Mutant S1 Mutant S2

Mutant
killed?

Yes Yes No No No

Table 13 Fault injection applied to static and runtime analysis

44

L earning based approach
The following mutants are defined for this appraach

+ Mutant S1: The application modules generates aflajueries. This assumption is
realistic because a large application may perfoumdheds of queries.

In the following table, we present the resultshaf fault injection applied to this approach:

Mutant 1 Mutant 2 Mutant 3 Mutant S1

Mutant Yes Yes Yes No
killed?

Table 14 Fault injection applied to lear ning based appr oach
String tainting based techniques
For this approach we define the following mutant:

« Mutant S1: The application constructs some qudryeeading files that contain those
queries.

In the following table, we present the resultshaf fault injection applied to this approach:

Mutant 1 Mutant 2 Mutant 3 Mutant S1

Mutant Yes Yes No No
killed?

Table 15 Fault injection applied to string tainting approach

6.5.6. Summary of mutation analysis results

Technique/ Mutant 1 Mutant 2 Mutant 3 Specific mutants
Results

SQLRand No Yes No 0/2

Static and

runtime Yes Yes No 0/2

analysis

MaCh.Ine Yes Yes Yes 0/1

learning

St.nn.g Yes Yes No 0/1

tainting

Table 16 Summary of fault injection applied to SQLIA counter measures

45

Table 16 present a summary of the mutation anafgsiglts. It appears according to the study
that the best approach is the learning based agproacause it kills 3 mutants out of 4. In

fact, it is the ideal approach because there isvap to bypass it since it knows the queries
that the application perform and consequently itaspossible to perform unknown queries.

In the next section, we propose some improvemessed on the mutation analysis results.
The purpose of these improvements is to increasentitation score of these techniques and
by the way overcome their drawbacks.

6.6. Improvements of SQLIA countermeasures

In this section, we present some improvements efSQLIA countermeasures in order to

overcome the limitations highlighted by the mutatamalysis study. Combining techniques is
a good strategy in order improve the results. Aftersenting the improvements, we present
how to combine approaches.

6.6.1. Improvement of SQLRand technique

We suggest the following improvement. We can penrfeandomization to user input code.
This means dynamically randomizing the input useng when it contains SQL keywords
and commands.

Example:

SQL query:Select * FROM users WHERE user = * + inputUser“+and password = *“ +
inputPassword + *';”;

User name entered:inputUser =** or 1=1; --“
inputPassword = blablabla”
The user input become after randomization (wherkéyes 571) : “or571 1=1; --*
The query becomes then:
Select * FROM users WHERE user'gr571 1=1; -- and password =blablabla’;

When the query is executed an error occurs. Injgortant to note that when the user types
legal input no randomization is done and the qisgegxecuted normally.

6.6.2. Improvement of learning based approach

We can make association in a finer level. The fitegel is where the query is executed. the
hotspots points where the execute function is dalle
The steps to follow :
» Locate all hotspots.
» Before executing the query perform a call to a kkecThe checker contains a list of
models corresponding to all queries normally exadditom that location.

6.6.3. Combining advanced approaches

In order to benefit from the advantages of eachrtiggie and limit the drawbacks, we can
think about combining 2 approaches. We present Benee interesting ideas that can be
investigated deeply.

46

A Learning system and SQL randomization

The idea here is the combine the learning technigitte SQLRand. The SQLRand will be
applied as presented in the improvement proposat means that randomization is applied
only the user injected parts of the query. In otddocate, the dynamic part of the query, we
use a learning based technique. The system ledrasate the parts or the query that change,
Afterwards, it stores that information and thenthe detection phase will randomize the
dynamic parts of the query according to the knowring) the learning phase.

Tainted string SQL and SQL randomization

Tainted string can be used instead of the learaysem. part of the query that contain the
user input are tainted, then they are randomizéarddeing executed. SQLIA will cause the
guery to crash due to randomization.

6.7. Towards SQLIA robust security mechanisms

This study of security mechanisms robustness eliEteSQLIA is still very incomplete but
provides a first step in order to improve these masms. The philosophy we applied to
conduct this comparison is similar to the one weliad for security policies. However, in the
case of SQLIA, the mutants we proposed are stroogiynected to the security mechanisms
and are used as a method to detect weaknessesnpiltzzement of the security mechanisms
has been proposed when a potential weakness hasletted. This work can be completed
by studying other contexts where mutation analgsid other testing techniques such us the
bacteriological algorithm can be applied.

47

7. Conclusion

In this report, we presented a new approach to wdéhl security testing. Our approach is
inspired by mutation analysis which is a testinghteque that proved its effectiveness in
software testing. We adapted this technique toggaurity contexts.

Firstly, we applied mutation analysis to the acasmsrol security model (OrBAC). the fault
model (mutation operators) are defined at highllaeethe ORBAC specification) and then is
mapped to the implementation of the security modét. also identified a list of mutation
operators illustrated with a running example. Tégutts of the mutation analysis experiments
were used to accomplish two objectives. The fire# & for using mutation analysis in real
cases, and make is feasible in practice. It cangistanking the mutation operators to know
the most important mutation operators that are ssug and sufficient to perform a good
mutation analysis. This first study is a necesssep to apply mutation as a testing teschnique
for security policies. The second objective is topeically study the relation between
security and functional tests and to compare betwseveral criteria and strategies for
security policy testing.

During the second part, we adapted the mutationysisato evaluate SQL injection
countermeasures. There are many approaches iteitzture to deal with SQLIA. We started
by presenting these approaches, their advantagetham drawbacks. Then, we proposed a
strategy that is based on fault injection to evi@uhese techniques. Faults are not injected in
the security mechanism itself but to its environtn@gne application and the database). We
consider a 3-tiers application. Our goal is to eatd the robustness of the security
mechanism. To do so, we inject faults in the behaviof the application and we check
whether the security mechanism resists or notisopérturbation. To each fault corresponds a
mutation and we presented two types of mutantsemgérmutants that are used for all
approaches and specific mutants that are deditai@diven security mechanism.

With the mean of the “silver bullet” of mutation awsis, the report highlights the many
issues a test expert has to deal with when fatiagbjective of testing a security policy and
a security mechanism (such as SQLI countermeastoesa real system. It shows that
security policy correctness cannot be fully testedy with functional testing. Security
appears as a specific testing objective with g ¢eteria and strategies. More fundamentally,
the aspect of security mechanism testability iratreh to system architecture appears as
critical. Indeed, the way security mechanisms g@real over the system or centralized, the
easiness or difficulty to relate a security ruletpiece of code are major issues to conduct the
testing task. Future work may consider mutatiora &gy to compare various approaches to
design a system for security (aspect weaving, afaitiey).

48

8. Glossary and acronyms

False positive
A wrong verdict which consists of rejecting someththat should have been accepted.

False negative
A weak verdict which consists of accepting someghirat should have been rejected.

Mutant
A mutant is a version a program that contain ongk error (for example: a negation of a
condition, plus instead of minus etc...).

M utation operator
A mutation operator is used to inject a specifigltfan the program and produce a mutant
program containing this fault.

M utation score
The mutation score (MS) computes the percentagautnts killed by a test case: MS(t) =
d/m, where d = dead mutants and m=all mutants (srine equivalent ones).

OrBAC

Organization based access control is a securityemdthe main goal of OrBAC is to allow
the policy designer to define a security policydpdndently of the implementation. The
chosen method to fulfil this goal is the introdoatiof an abstract level. One important point
in OrBAC is that each security policy is defined fand by an organization. Thus, the
specification of the security policy is completg@lgrameterized by the organization so that it
is possible to handle simultaneously several sscyolicies associated with different
organizations.

Security flaw
An error of commission or omission in an informatsystem (IS) that may allow protection
mechanisms to be bypassed.

Security mechanism

A tool, piece of code or component (or combinatdthem) that protects an application from
specific security attacks (like SQL injection etc.lt)can be integrated in the application or
be external to the application (for example cotitrigl the data flow that goes to the
application).

Security policy

A security policy defines the authorizations grante users to access to the resources. A
security policy that is based on OrBAC defines & sk security rules that can be
« permission », « prohibition » or «obligation »An example of security rule:
permission(Organization,Role,Activity,View,Context)

SQL injection (SQLIA)

SQLIA is a technique that exploits a security vudiility occurring in the database layer of
an application. The vulnerability is present wheseruinput is either incorrectly filtered for
string literal escape characters embedded in S@lersents or user input is not strongly
typed and thereby unexpectedly executed. It isaat &n instance of a more general class of

49

vulnerabilities that can occur whenever one prognamg or scripting language is embedded
inside another.

Test case

A test case is a set of conditions or variableseunghich a tester will determine if a
requirement or use case upon an application isapigror fully satisfied. In the report, we
define a test case as a triplgttent, input test sequence, oracle function. Titent may be
either to test functional or security policy asgect

Test criterion

A test criterion specifies when a test cases sebeaconsidered as adequate. A test criterion
can be used to determine when a test set is sirffiéor testing a piece of software, w.r.t. the

effort and the expected quality of the resultingleoln practice, it is defined as a set of

objects, taken from the specification or from thee, which must be exercised by the test set.
In structural testing, executing each statementhef program under test is a basic test
criterion. For security policy testing, coveringchaccess control rule at least once is another
basic criterion.

Oracle

The oracle function for a test case checks whetteeresult of the execution of the test case is
correct or incorrect. In the case of mutation asiglythe oracle consists of comparing the
result of the execution of the initial program witle mutant one.

Test strategy

A test strategy describes how the test cases arergjed in order to reach a given test
criterion. In the report, we compare an incremenést strategy, consisting of reusing

functional test cases for SP testing, and indepertdst strategy, consisting in generating test
cases from the OrBAC model.

Taint checking

It is a feature in some computer programming laggeasuch as Perl and Ruby, designed to
increase security by preventing malicious usersnfrexecuting commands on a host
computer. Taint checks highlight specific securigks primarily associated with web sites
which are attacked using techniques such as SQtctiop or buffer overflow attack
approaches.

Vulnerability

Weakness in a system allowing an attacker to \golt#ie confidentiality, integrity,
availability, access control, consistency or auméchanisms of the system or the data and
applications it hosts.

50

9. References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

CERT http://www.cert.org/stats/cert_stats.thm|cited.

Thompson, H.HWhy security testing is har¢tEEE Security & Privacy Magazine, 20054): p. 83 -
86.

DeMillo, R., R. Lipton, and F. Saywar#iints on Test Data Selection : Help For The Praatic
ProgrammerlEEE Computer, 19781(4): p. 34 - 41.

Offutt, A.J., et al.An Experimental Determination of Sufficient Mut@perators. ACM Transactions
on Software Engineering and Methodology, 199@): p. 99 - 118.

Du, W. and A.P. MathurTesting for Software Vulnerability Using Environrhd®erturbation in
International Conference on Dependable Systemd\mtadorks 2000.

Ghosh, A., T. O'Connor, and G. McGrawn automated approach for identifying potential
vulnerabilities in softwarein IEEE Symposium on Security and Privat998.

B. Miller, et al.,Fuzz revisited: A re-examination of the reliabilitfyunix utilities and service4995.
Lodderstedt, T., D. Basin, and J. DossecureUML: A UML-Based Modeling Language for Model-
Driven Security in Proceedings of the 5th International Conference Tme Unified Modeling
Language 2002.

Briand, L. and Y. Labich& UML-based approach to System TestBgftware and Systems Modeling,
2002.1(1): p. 10 - 42.

Nebut, C., et alAutomatic Test Generation: A Use Case Driven ApphodEEE Transactions on
Software Engineering, 2006.

D. F. Ferraiolo, et alRroposed NIST standard for role-based access corfGM Transactions on
Information and System Security, 20@{3): p. 224-274.

A. Abou EI Kalam, et alQrganization Based Access Coniriml IEEE 4th International Workshop on
Policies for Distributed Systems and Netwo@03.

F. Cuppens, N. Cuppens-Boulahia, and M.B. G#oHigh-level conflict management strategies in
advanced access control modétsWorkshop on Information and Computer Security (06%2006.
Offutt, A.J.,Investigations of the software testing couplinge&@ffACM Transactions on Software
Engineering and Methodology, 19941): p. 5 - 20.

Anley, C. Advanced SQL Injection in SQL Server Applications [cited; Available from:
http://www.nextgenss.com/reports/advansgtinjection.pdf.

Muthuprasanna M., Ke Wei, and Kothd&fliminating SQL Injection Attacks - A Transparergfénse
Mechanismin Web Site Evolutiar2006.

S. W. Boyd and A.D. KeromytiSQLrand : Preventing SQL Injection AttaéRACNS 2004.

William G. J. Halfond, Alessandro Orso, andM&nolios. Using positive tainting and syntax-aware
evaluation to counter SQL injection attacks Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software enginee20§6.

F Valeur, D Mutz, and G. Vign& Learning-Based Approach to the Detection of S@iacks in
Intrusion and Malware Detection and Vulnerabilitgsessmen005.

YW Huang, et alWeb application security assessment by fault igacand behavior monitoringn
International World Wide Web Conferen@903.

A.A, A, An automated universal server level solution folLSiQection security flawin International
Conference on Electrical, Electronic and Compueagineering 2004

51

