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Abstract. In this paper, we study how mutation 

analysis can be adapted to qualify test cases aiming at 
testing a security policy. The objective is to make test 
cases efficient to reveal erroneous implementations of 
a security policy. The notion of security policy testing 
is studied and mutation operators are defined in 
relation with the security rules. To make the approach 
applicable in practice we discus and empirically rank 
the security mutation operators from the most to the 
least difficult to kill. The empirical study is a library 
software, which is implemented with a typical 3-tiers 
architecture. 

1 Introduction 

Testing that a system is correct with respect to 
security is known as a hard task [1]. Among the 
numerous identified difficulties we can first point that 
security issues are handled at many different places in 
a system (network, hardware, server and client). 
Moreover, since specifying the expected security 
qualities is complex, it is very difficult to express the 
expected result when building test cases for security.   

In this work, we focus on a particular type of 
security that consists of assuring access control to 
sensitive data in a 3-tier application. From a testing 
point of view, we leverage the fact that access control 
models exist [2-4] and are used to specify security 
policies. Indeed, these languages allow expressing 
rules for the permissions or authorizations to access 
services and data. The set of rules is called a security 
policy. The particular language used in this paper is 
called OrBAC. Once specified with OrBAC [5], a 
security policy must be implemented in the business 
application (in Java in our example). Security test cases 
are generated to check the correctness of the 
implementation with respect to those security rules. . 

Today there is no systematic way to derive test 
cases from a security policy and no test adequacy 
criteria to assess the quality of test cases for security. 
Thus, once test cases have been produced, it is 

necessary to estimate their quality in terms of ability to 
detect security flaws in the implementation.  

In order to evaluate the quality of test cases for 
security, this paper adapts mutation analysis and 
introduces new mutation operators that correspond to 
fault models for access control security policies. To our 
knowledge, very few works have modelled faults 
related to security issues. In [6], Du et al. inject faults 
in the application’s environment. This consists in 
modifying environment variables, files or processes 
used by the application under test. In [7] Ghosh injects 
faults in the application’s data flow and internal 
variables to identify pieces of code which behavior is 
insecure. However, none of these faults targets the 
implementation of access control policies. 

In section 2 we introduce a running example used 
for illustration through the paper. This example is 
based on a library management system. In section 3, 
we rapidly introduce the issue for security policy 
testing. Section 4 presents a set of mutation operators 
for access control test qualification. At last section 5 
presents a case study that allows us to select a relevant 
subset of operators to qualify security test cases.  

2 Example 

This section introduces an example based on a 
library management system. Based on the simplified 
requirements of this system, it is possible to derive a 
set of access control rules that are modeled using 
OrBAC. We use these rules to illustrate the main 
feature of the OrBAC language. 

2.1 Library management system 

The purpose of the library management system 
(LMS) is to offer services to manage books in a public 
library. The books can be borrowed and returned by 
the users of the library on working days. When the 
library is closed, users can not borrow books. When a 
book is already borrowed, a user can make a 
reservation for this book. When the book is available, 



the user can borrow it. The LMS distinguishes three 
types of users: public users who can borrow 5 books 
for 3 weeks, students who can borrow 10 books for 3 
weeks and teachers who can borrow 10 books for 2 
months. 

The library management system is managed by an 
administrator who can create, modify and remove 
accounts for new users. Books in the library are 
managed by a secretary who can order books, add them 
in the LMS when they are delivered. The secretary can 
also fix the damaged books in certain days dedicated to 
maintenance. When a book is damaged, it must be 
fixed. While it is not fixed, this book can not be 
borrowed but it can be reserved by a user. The director 
of the library has the same accesses than the secretary 
and he can also consult the accounts of the employees. 

The administrator and the secretary can consult all 
accounts of users.  All users can consult the list of 
books in the library. 

2.2 Modeling a security policy with OrBAC 

From the previous requirements for the LMS, it is 
possible to distinguish 5 different roles: public users, 
students, teachers, administrator and secretary. It is 
also possible to identify several rules that authorize or 
forbid access to data or services of the LMS.  

OrBAC allows defining a set of security rules. A 
rule can be a permission, prohibition or obligation. 
Each rule has 5 parameters (called entities):  the 
organization, the role, the activity, the view and the 
context.  To increase modularity for the definition of 
security rules, OrBAC enables the definition of 
hierarchies of entities. In that case, rules defined on 
high level entities are inherited by the sub-entities.  

From the LMS requirements, we identify the entities 
displayed in Figure 1. The graphical representation is 
the one from MotOrBAC. First, we identify the 
services which are constrained by security rule. They 
are called activities in OrBAC. All users can perform 
three activities: borrow, reserve, return a book. Since 
all these activities are associated to the same rules, we 
define a high-level activity called BorrowerActivity. 
This means that all rules defined on the super activity 
will apply on sub activities. There are also a number of 
administrative tasks that can be executed. Since the 
administrator is allowed to execute all these tasks we 
define a super activity AdminActivity. The activities 
that inherit from PersonnelActivity are the activities 
that are permitted for the director and the secretary.  

Concerning the data (called views in OrBAC) that 
are restricted with access control, we identify the 
notion of book and of account. There are two type of 
account: borrower and personnel accounts. 

In this paper, the context corresponds to a temporal 
dimension that appears in access control rules for the 
LMS system. In the requirements, we clearly identify 
Holidays, WorkingDays, MaintenanceDay and a 
default context which is used to define rules that are 
related to no specific time.  

The last type of entities that needs to be defined 
concerns the roles. In the requirements we distinguish 
two main categories of roles: the users and the 
administrative personnel. We define the Borrower role 
which captures the role of user. Since Teacher and 
Student are two specific types of users, we model 
them as two sub-roles for Borrower. Concerning the 
personnel, we distinguish three categories: 
Administrator, Secretary, and Director.  

ContextsViews

ActivitiesRolesOrganisations 

ContextsViews

ActivitiesRolesOrganisations 

 
Figure 1 - OrBAC entities for the LMS 

Once all the entities are defined, they can be used to 
specify access control rules. Again, these rules are 
derived from the requirements. For example, 
requirements specify that users are allowed to borrow 
books only when the library is opened. This rule is 
defined as follows: 
Permission(Library, Borrower, 
BorrowerActivity, Book, WorkingDays) 

The first parameter for this permission rule is the 
organization. Since there is only one organization in 
our example we give a very generic name Library. 
The other parameters are entities that have been 
defined previously.  

Other example of rules include the prohibition to 
borrow a book during holidays, the permission for an 
administrator to manage the accounts for the personnel 
and the borrowers or the permission for the secretary to 
consult borrower accounts. These examples can be 
expressed as follows: 
Prohibition (Library, Borrower, 
BorrowerActivity, Book, Holidays) 



Permission(Library, Administrator, 
ManageAccess, PersonnelAccount, default) 

Permission(Library, Administrator, 
CreateAccount, BorrowerAccount, default) 

Permission(Library, Secretary, 
ConsultBorrowerAccount, BorrowerAccount, 
default) 

One issue when specifying control access rules is 
that conflicting rules may appear. These conflicts can 
occur when 2 opposite rules have exactly the same 
parameters.  

For example the following two rules are conflicting: 
Permission(Library, Borrower, 
BorrowerActivity, Book, WorkingDays) 

Prohibition(Library, Borrower, 
BorrowerActivity, Book, WorkingDays) 

It is important to point out that conflicts may also 
occur when the parameters of the rule are not exactly 
the same. In the case a parameter in one rule inherits 
from a parameter in an opposite rule, the two rules are 
conflicting.  

For example, in the following two rules, Teacher 
inherits from Borrower, thus the rules are conflicting: 
Permission(Library, Borrower, 
BorrowerActivity, Book, WorkingDays) 

Prohibition(Library, Teacher, 
BorrowerActivity, Book, WorkingDays) 

An important benefit of using OrBAC is that the 
rules can be processed by a tool called MotOrBAC [8] 
that automatically detects the conflicting rules in the 
definition of a security policy. One way to solve the 
conflicts consists in assigning priorities to rules. The 
rule with the highest priority is executed.  

3 Testing a security policy 
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Figure 2 - Testing the security policy 

When the security policy has been defined from the 
requirements, conflicts can be checked with 
MotOrBAC. Then, these rules must be taken into 
account in the implementation of the business 
application. There is no automatic solution to generate 
code for a security harness on the business application. 

As described in Figure 2, the implementation is thus 
manual and consists in selecting the different places in 
the source code where security rule apply and add the 
necessary code.  

Since the implementation of OrBAC rules in the 
application is manual, it is necessary to validate that it 
is correct. Specific test cases have to be designed to 
detect errors in the implementation of security errors 
that can entail security flaws. Testers can use the 
OrBAC specification to build those test cases. Once the 
test cases are defined, they have to be executed on the 
application. We have developed a harness to 
automatically run a set of test cases on the 
implementation and produce a verdict that reveals the 
presence or absence of a security flaw. When testing 
security rules, we look for prohibitions that can be 
violated and permissions that are not available.  

There is no commonly agreed technique to derive 
test cases from security policy rules, and there exists 
no test adequacy criteria to assess the quality of the 
produced test cases. Thus, we propose to adapt 
mutation analysis to validate the test cases. As it is 
detailed in the next section, we define a number of 
mutation operators that model faults that can occur 
when implementing a security policy.  

4 Security mutation operators 

In this section, we discuss the issue of adapting 
mutation analysis to security, we propose security 
policy mutation operators and discuss their meaning. 

4.1 Defining operators for OrBAC 

Since there are many different solutions to 
implement access control rules into the business 
model, it is very difficult to define security fault 
models based on syntactic errors in the code. We could 
inject classical mutation faults (arithmetic, logical etc.) 
in security mechanisms, but the effect of these faults 
would be unpredictable w.r.t. a given security policy 
(and the verdict difficult to define).  

In this section we define mutation operators 
independently from implementation-specific details. 
Since the access control rules are expressed with 
OrBAC, we model the faults at this level of 
abstraction. The mutation operators are thus expressed 
on OrBAC syntax. On one hand, this approach has the 
advantage of defining faults that are actually related to 
the definition of security rules (prohibition instead of 
permission, wrong role, etc.). On the other hand, the 
difficulty consists in transforming mutation operators 
defined with OrBAC into faults in the implementation.  

For this work, we maintain traceability matrices 
between OrBAC rules and the corresponding code 



blocks in the implementation. Using this information, it 
is easier to map mutant OrBAC rules to faults in the 
implementation. However, in the general case, the 
traceability information might not be available, or the 
mapping between the rules and the code might not be 
trivial. In that case it is not possible to automatically 
generate the mutants. If we still want the mutation 
analysis to be used, it is important to identify the most 
relevant subset of operators, in order to produce the 
minimum mutants that lead to the production of the 
best security test cases. This is the objective of the case 
study to select a sufficient subset of mutation 
operators. 

In the following we present a set of mutation 
operators that can be defined for OrBAC rules. We 
illustrate these operators with examples. Then, in next 
section we run a case study to select the most relevant 
subset. The security mutation operators are divided in 4 
categories: 

 Type changing operators 
 Parameter changing operators 
 Hierarchy changing operators 
 Adding rules operators 

4.2 Type changing operators 

Type change operators pick a rule and modify its 
type. There are 3 types of rules: prohibition, 
permission and obligations. Therefore, there are 6 
possible modifications:  
1. Prohibition to permission 
2. Permission to prohibition 
3. Prohibition to obligation 
4. Obligation to prohibition. 
5. Permission to obligation 
6. Obligation to permission 
The first four operators simulate faults that occur 

during the implementation. The obtained policy allows 
a forbidden activity or prohibits an authorized activity. 
Let us focus on some examples obtained by the first 2 
operators: 
Rule used: 
Permission (Library, Secretary, 
ConsultBorrowerAccount, BorrowerAccount, 
default) 

Rule to use instead:  
Prohibition (Library, Secretary,    

ConsultBorrowerAccount, BorrowerAccount, 
default) 

Rule used: 
Prohibition(Library,Student,GiveBackBook, 
Book, Holidays) 

Rule to use instead:  
Permission(rennesLibraries,Student,GiveBackBoo
k, Book, Holidays) 

Operators 5 and 6 switch between permission and 
obligation. The problem is that it is difficult to 
distinguish between obligation and permission. Test 
cases are not able to validate that an obligation rule is 
used instead of a permission one. For this reasons, we 
choose not to use obligation rules and only use 
prohibition rules. We only implement the first 2 
operators (Prohibition to permission named PRP and 
permission to prohibition named PPR). 

4.3 Parameter changing operators 

Parameter changing operators pick a rule and 
change one of its parameters. As there are 5 parameters 
the following operators are defined: 

1. Change organization 
2. Change role 
3. Change activity 
4. Change view 
5. Change context 

We can not replace a rule’s organisation because 
each organisation defines its own entities and we may 
not have the role, activity, view and context of the first 
organisation defined for the new organisation. If we 
have: 
Permission(org1,role1,activity1,view1,context1
) 

We cannot replace it with: 
Permission(org2,role1,activity1,view1,context1
) 

We can only replace if org2 defines role1, activity1, 
view1 and context1 in its scope. 

In addition, the notions of activity and view are 
tightly linked. In fact, the activity must be related to 
the rule view. The following example illustrates this 
issue: 
Rule used: 
Permission (Library, Administrator, 
ModifyAccount, BorrowerAccount, default) 

Rule to use instead:  
Permission (Library, Administrator, 
ReserveBook, BorrowerAccount, default) 

ModifyAccount cannot be replaced by ReserveBook 
because ReserveBook can not be attached to the  
BorrowerAccount view.  The same problem appears 
when we change the rule’s view. In fact, replacing 
views or activities can be done only for activities that 
are independent from views (and can be applied to 
different views). For example, if we have the activity 
Modify that may be applied to 2 views 
BorrowerAccount and PersonnelAccount then we can 
replace BorrowerAccount by PersonnelAccount. 
Therefore, the relevant operators are those changing 



the role and the context. We show 2 examples of these 
operators’ results: 

 
Rule used: 
Permission (Library, 
Administrator,ModifyAccount, BorrowerAccount, 
default) 

Rule to use instead:  
Permission (Library, Secretary,ModifyAccount, 
BorrowerAccount, default) 

Rule used: 
Permission (Library, Student, BorrowBook, 
BorrowerAccount, WorkingDays) 

Rule to use instead:  
Permission (Library, Student, BorrowBook, 
BorrowerAccount, Holidays) 

These 2 operators are useful because they will 
simulate cases where the security policy is too 
permissive or too restrictive. The first one allows a 
user (the secretary) to do the same activity allowed for 
another user. The second one allows a user to perform 
the action under another context. In this category, we 
only keep two operators (Change role named RRD and 
change context named CRD). 

4.4 Hierarchy changing operators 

Or-BAC allows defining hierarchies for 
organisations, roles, activities, views and contexts. 
Then, a mutation operator can be used to change 
hierarchies by replacing a parameter by its parent or 
one of its descendants. 

1. Change organization hierarchies 
2. Change role hierarchies 
3. Change activity hierarchies 
4. Change view hierarchies 
5. Change context hierarchies 

Due to the reasons explained in the previous section, 
the first operator is not used. In addition, context and 
views hierarchies are not useful. In practice we do not 
define hierarchies for contexts and views. In fact, we 
insist on hierarchies for activities and roles.  

The only useful operators in this category are 
operators 2 and 3. 
Examples: 
Change role hierarchies, rule used: 
Permission (Library,Borrower,reserveBook, 
Book,WorkingDays) 

Rule to use instead:  
Permission (Library, Teacher,reserveBook, 
Book,WorkingDays) 

Change activity hierarchies, rule used: 
Permission (Library, Student,BorrowerActivity, 
Book,WorkingDays) 

Rule to use instead:  
Permission (Library, Student,BorrowBook, 
Book,WorkingDays.  

 The hierarchy changing operators that will be retained 
are: ‘change rule hierarchies’ (named RPD) and 
‘change activity hierarchies’ (named APD). 

4.5 Add rule operators 

Instead of replacing an existing rule, the adding rule 
operator introduces a new rule. The goal of this 
operator is to simulate cases where the implementation 
does something in addition to the requirement. This is 
a typical security fault and makes security faults 
different from functional tests. The security breaches 
are caused by the fact that the application behaves in 
unexpected way, even if it satisfies all functional 
requirements. 

In order to obtain relevant rules, the add rule 
operator (named ANR) introduces rules that contain an 
activity and a view that were already defined by at 
least one rule in the initial security policy. It is 
important to note that this operator generates a lot of 
mutants.  
Examples: 
Added rule: 
Permission 
(Library,Borrower,consultPersonnelAccount, 
PersonnelAccount,MaintenanceDay) 

Added rule: 
Permission (Library,Secretary,ManageAccess , 
PersonnelAccount,MaintenanceDay) 

4.6 Security mutation operators 

Table 1 presents the retained operators that were 
presented in details in previous section.  

Table 2 shows the number of each type of mutant 
that can be generated. It is function of the number of 
entities that are in the model.  

Table 1 – Mutation operators for OrBAC rules 

Mutation 
Operator 

Description 

PRP Prohibition rule replaced with permission 

PPR Permission  rule replaced with prohibition 

RRD Rule role is replaced with different  role 

CRD Rule context is replaced with different context 

RPD Rule role (a parent) replaced with one of its descendants 

APD Rule activity replaced with one of its descendants 

ANR New rule Added 

 



Table 2 - Number of generated mutants 
Operator name # generated mutants 

Hierarchy changing 
operator 

:# hierarchies levels * #number rules with 
entities (contained in hierarchies) 

Addition of new rule 
operator 

#roles * #contexts * #  
(activities and views) 

Type changing 
operator 

# permission,  #prohibition 

Parameter changing 
operator 

# entities * # rules 

5 Implementation and case study results 

5.1 Objectives and experimental protocol  

The goal of this study is to analyse which mutation 
operators are the most useful to check the efficiency a 
security policy test suite. As for the principles of 
selective mutation [9], we would like to determine a 
subset of sufficient mutation operators. The issue is to 
determine which mutants are easier to kill and thus 
keep only the hard-to-kill mutants. This study is even 
more critical to make the approach feasible in a general 
case, when the generation of mutants can not be fully 
automated from the security policy rules.  

This study has been designed for this objective, as 
an “ideal” lab case, in order to obtain general results. 
The generation of mutant security mechanisms is fully 
automated, allowing the presented experimental 
protocol to be applied.  The first step consists of 
generating minimal test suites per mutation operator, 
w.r.t. the following definition: 

Definition: minimal test suite. A test suite is 
minimal for a set of mutants iff the test cases it 
includes have a 100% mutation score and, if 
when a test case is removed, the mutation score 
decreases. 

We note TS(name of operator) the minimal test suite 
needed to kill all the mutants generated with this 
operator. In this study, an important effort has been 
allocated for generating the test cases and minimizing 
the test suites. Since it is difficult to have much less 
than a test case by security rule, we believe the 
minimal test suites are close from the optimum. For 
instance, the minimal test suite of 36 test cases selected 
for killing the basic mutation operators is equal to the 
number of non generic security policy rules.  

The second step consists of comparing the mutation 
operators. This comparison leads to a ranking, which is 
obtained with two criteria. The first one determines 
whether a mutation operator can replace another. This 
aspect is captured by the notion of subsume 
relationship. When two mutation operators are 
equivalent, any of them can replace the other without 
loss of efficiency for the generated test cases. To 

choose which of the two mutation operators can be 
removed, we consider the number of generated mutants 
as a second criterion.   

Definition: subsume relationship (->). A mutation 
operator MO1 strictly subsumes MO2 (MO1 -> 
MO2) if:  

a) the minimal test suite TS(MO1) also reaches a 
100% mutation score for the MO2 mutants  

b) the minimal test suite TS(MO2) does not reach 
100% for MO1 mutants.  

MO1 and MO2 are equivalent (MO1 <-> MO2) 
if TS(MO1) reaches 100% on MO2 mutants and 
TS(MO2) reaches 100% on MO1 mutants. 

Figure 3 illustrates the definition. MO1 -> MO2 
since the test suite for MO1 is sufficient to kill all 
mutants generated with MO2. Conversely, MO2 
doesn’t subsume MO1 since its minimal test suite only 
kills 80% of the mutants created with MO1. We can 
thus consider that MO2 can be removed, since it is not 
needed when qualifying a test suite. MO1 precedes 
MO2 in the ranking. In case of equivalence, one of the 
two mutation operators is useless. To determine which 
one can be removed, we consider that it is better to 
generate less mutants (due to the execution times, and 
to the effort needed for generating these mutants when 
done manually). So, the ranking relation is defined as 
follows. 

TS1 TS2

MO2MO1

100% 100%
100%

< 100%

TS1 TS2

MO2MO1

100% 100%
100%

< 100%

 
Figure 3 - MO1 operator strictly subsumes MO2 

Definition: mutation operators ranking (>).  

MO1 > MO2  iff: 

 MO1 -> MO2  

or ( (MO1<->MO2 )  

and |{MO1 mutants}| < |{MO2 mutants}| ) 

This ranking only orders partially mutation 
operators. If a mutation operator is not ranked, it is 
independent and necessary for a relevant test 
qualification process. 

5.2 Mutation tool  

a Generation of mutants 
The mutant generator is implemented as part of the 

MotOrBAC tool that implements the OrBAC security 



model. The goal of this tool is to allow security 
administrators to specify and define an OrBAC based 
security policy model.  

We added a module that generates security policy 
mutants.  When the security policy is defined the tool 
creates the security mutants. Its user interface is shown 
in Figure 5.  

 

 
Figure 4 Mutation result dialog box 

The user can choose the number of generated 
mutants for each category. Then the tool creates 
MotOrBac security policy files and/or an SQL script 
that creates a database table containing all the mutant 
rules (each mutant policy having a unique id). 

   

 
Figure 5 - The mutant generator window 

The mutation tool uses MotOrBac libraries to get 
the current security policy rules list, entities as well as 
hierarchies. In addition, the mutation tool uses 
MotOrBac modules to check if conflicts exist and 
resolves them. In case of conflict, it means that the 
mutated rule is in conflict with another. The conflict is 
automatically solved by giving the highest priority to 
the mutated rule. The result is that this rule is 
implemented or executed in priority. The numbers of 
generated mutants are shown in a dialog box (as 
presented in Figure 4). For our experiments, we 
generated all the possible mutants, for ranking the 
mutation operators. 

 

b Oracle function for mutation analysis 
In order to decide whether a mutant is killed or not, 

we use an oracle function that checks the difference 
between the output of the mutant policy 
implementation and the correct security policy one. 
The security mechanism prints the authorization that 
was granted to the requested action into a file. The 
oracle function thus consists in comparing the files that 
are produced by the mutant and the original policy. We 
present here an example of different outputs: 

 
Output of the application using initial security policy: 
 
INFO main root - Permission granted for the 
requested action reserveBook BORROWER 
 
Output of the application using mutant security policy: 
 
WARN main root - Requested action prohibited 
reserveBook BORROWER 
 
Information about the operator used to generate this 
mutant: 
 
Operator used: Type Changing Operator 
 
Rule to change:  
Permission (rennesLibraries,Borrower, 
ReserveBook, Book, WorkingDays). 
 
Rule to use instead: 
Prohibitionp (rennesLibraries, Borrower, 
ReserveBook, Book, WorkingDays). 

 
This oracle function, by comparing the behaviour of 

the initial program with the seeded one, is sufficient to 
determine that a test case kills a mutant. For a practical 
use, this comparison is not possible and the tester must 
define an explicit oracle function or manually establish 
the verdict. This is another reason why it is important 
to generate only the necessary and sufficient number of 
mutants. 

5.3 Case study architecture 

The case study application has a typical 3-tiers 
architecture widely used for web application. Figure 6 
presents the main characteristics of this architecture.  

The security mechanism implementing the Or-BAC 
based security policy is located in the business layer, in 
the service methods. Before performing the requested 
action, the method calls the security mechanism that 
checks if the security policy allows of forbids that 
action.  When the action is prohibited a security policy 
violation exception is raised and thrown to the caller, 
otherwise (when the action is allowed) nothing is done 



and the execution of the action is pursued by the 
service method. There are two possible behaviours: 
• The requested action is allowed: The security 

mechanism leaves the application continue 
normally. 

• The requested action is prohibited: The security 
mechanism raises a security exception that 
interrupts the execution of the method. This 
exception is then handled by the caller. 

 
Figure 6 - The 3-tiers architecture for the LMS 

When we implemented the security policy, we 
maintained traceability links between the OrBAC rules 
and the corresponding blocks of code. This means that 
we are able to modify the security rules used by the 
application and introduce a mutant rule. The mutation 
analysis runs as follows: 

• Tests are executed against the initial security 
policy. 

• The output is saved in a file 
• The policy is replaced with a mutant policy 

and the logger output is saved in a different 
file 

• The 2 files are compared with the oracle 
function defined in the previous section. If 
behaviours are different then the mutant is 
killed otherwise it is still alive and the test did 
not succeed to find the security fault. 

5.4 Results and analysis 

Table 3 gives the number of generated mutants per 
operator. The ANR operator generates much more 
mutants since it adds a non specified security rule. The 
number of generated mutants thus reflects the fact that 
all the possible cases have not been specified in the 
security policy. To our own experience, this is quite 

usual: the specification focuses on the most critical and 
important case, and often considers that a default 
behaviour is acceptable. Testing these cases allow the 
default policy to be exercised and allow to highlight 
lack in the specification.  On the other hand, they are 
few mutants generated from hierarchy changing 
operators because the specification doesn’t introduce 
many hierarchical entities. 

Ranking mutation operators 
First, the mutation analysis was applied with each 

minimal test suite for each mutation operator. The 
results were deceiving since no clear ranking appear. 
We then consider minimal test suites for couples of 
mutation operators: PPR-PRP (Rule type changing 
operators), RRD-CRD (Rule parameter changing 
operator) and RPD-APD (Hierarchy changing 
operator). The results for the size of the minimal test 
suites are displayed in Table 4. The relationships 
between minimal test suites are the following: 

TS(RRD-CRD) = TS(PPR-PRP) 
TS(RPD-APD) ⊂ TS(PPR-PRP) 
| TS(PPR-PRP) ∩ TS(ANR) | = 21 test cases 

Table 3 - Number of generated mutants per 
operator 

Operator category Op. name # mutants 
PPR 22 Rule type changing operator 
PRP 19 
RRD 60 Rule parameter changing operator 
CRD 60 
RPD 5 Hierarchy changing operator 
APD 5 

Rule adding operator ANR 200 
All  371 

So, both PPR-PRP and RRD-CRD operators 
subsume the RPD-APD operator. PPR-PRP and RRD-
CRD are equivalent for the subsume relationship. 
Taking into account the second criterion, the number of 
generated mutants per operator, we obtain the 
following ranking: 

PPR-PRP -> RRD-CRD -> RPD-APD 
This result shows that the PPR-PRP operator should 

be used in priority, thus avoiding the creation of most 
mutants.  

The ANR and PPR-PRP operators are not 
comparable with this ranking. Some test cases are 
shared by both minimal test suites (21 test). Table 5 
shows the overlap between the test suites, in terms of 
respective mutation scores. The minimal test suite for 
ANR kills 59.3 % of the non-ANR mutants. On the 
other hand, the PPR-PRP test suite only covers 17% of 
the ANR mutants. The ANR mutants are thus 
necessary but cannot replace the PPR-PRP operator. 
PPR-PRP and ANR are not comparable, and are 
recommended operators. On this case study, the ANR 
operator is the most costly in terms of generated 



mutants. This number may vary, depending on the 
completeness of access control rules. The fewer rules 
are specified, the more mutants this operator generates. 
We believe that it is likely that the rules do not specify 
all the combinations explicitly, and that this operator is 
the most costly. On the other hand, the PPR-PRP 
operator will generate more mutants when more rules 
are added. In a general case, there is thus a balance in 
the number of generated mutants between PPR-PRP 
and ANR.    

Table 4 – Number of minimal test suites 
Operator category OP 

 
Size of 
minimal 

test suites 
 

PPR Rule type changing operator 

PRP 

 
36 

RRD Rule parameter changing operator 

CRD 

 
36 

RPD Hierarchy changing operators 

APD 

 
4 

Rule adding operator ANR 154 
 

Table 5 - Overlap of PPR-PRP,  ANR test suites 
 all mutants except 

ANR 
ANR 

TS(PPR-PRP) 100% 17% 
TS(ANR) 59.3% 100% 

Removing mutants generating conflicts 
To reduce the number of mutants to be generated, 

we remarked that the mutants which caused a conflict 
(which is solved by giving priority to the mutant rule) 
are the more easy to kill. The Table 6 presents the 
number of mutants which generated conflicts per 
operator. Figure 7 shows an example of such a conflict. 
It illustrates that two test cases, generated to kill 
mutants without conflicts, kill this mutant with 
conflict.  

So, several test cases, from the minimal test suites, 
systematically kill these mutants. It means that these 
mutants are not necessary. Indeed, we have: 

TS(RRD-CRD with conflicts) ⊂  
TS(RRD-CRD without conflicts) 

TS(RRD-CRD without conflicts) corresponds to the 
suite of 36 test cases needed both for Rule type and 
Rule parameter changing operators. This test suite is 
also minimal for the mutants RRD-CRD which do not 
cause conflicts. Among this set, only 12 test cases are 
needed to kill mutants with conflicts which compose 
the TS(RRD-CRD with conflicts) minimal test suite. 

TS(ANR with conflicts) ⊄ TS(ANR without 
conflicts)  

But TS(ANR with conflicts) ⊂ TS(PPR-PRP) and 
TS(ANR with conflicts) corresponds to a minimal test 
suite of 21 test cases (which are the exact intersection 
of the TS(ANR) and TS(PPR-PRP) test suites.  

Table 6 - Number of mutants with and without 
conflicts 

Operator 
category 

With 
conflicts 

Without 
conflicts 

Rule type 
changing operator 

- 41 
 

Rule parameter 
changing operator 

23 
 

97 
 

Hierarchy 
changing 
operators 

- 10 
 

Rule adding 
operator 

33 
 

167 
 

Total 56 315 

 
Operator used: RRD 

Initial rule: 
Prohibition(Library,Secretary,ManageAccess, 
PersonnelAccount,Default) 
 
Mutated rule: 
Prohibition(Library,Administrator,ManageAccess, 
PersonnelAccount, Default) 
 
The seeded rule is in conflict with another rule: 
Permission(Library,Administrator,ManageAccess, 
PersonnelAccount,Default) 
 
The two tests that kill this security policy mutant: 
 
Test 1: Test that secretary cannot manage access 
Test 2: Test that admin can manage access. 
 
These two tests are already generated to kill mutants 
without conflicts. 

Figure 7 – A mutant causing conflicts generates 
at least two elementary faults which are killed by 

two test cases. 

It means that if the PPR-PRP and ANR operators 
are used, the minimal test suite of PPR-PRP kills the 
mutants with conflict generated with ANR. Combining 
these two operators allows removing the mutants with 
conflicts generated with the ANR operator. Around 
18% of the mutants (those with conflicts) can be 
removed without any loss of relevance for the 
generated test cases. 



We study why these mutants could be removed and 
the explanation is interesting, since it corresponds, for 
security testing, to the ‘coupling effect’ analyzed by 
Offutt et al. [10]. In fact, when a mutated rule causes a 
conflict, it has an impact on at least two rules: this fault 
is equivalent to two sequential mutations without 
conflicts. 

Analysis and conclusion 
In conclusion, some operators are more relevant 

than others for improving the quality of security test 
cases. We present a ranking of the most useful 
mutation operators: 

1. Adding rules operators 
1. Rule type changing operators 
2. Rule parameter changing operators 
3. Hierarchy changing operators 

 

ANR

PPR-PRP 

RRD-CRD 

RPD-APD

ANR

PPR-PRP 

RRD-CRD 

RPD-APD

  
Figure 8. Relation between operators 

Figure 8 displays this ranking, and highlight the 
overlap between ANR and the other operators. All 
these operators generate mutants which intersect with 
the adding rule operator. Adding rules operators are the 
most interesting because they simulate cases that are 
not tested by functional tests. As shown by the results, 
they are the most difficult to kill, regarding the number 
of test cases needed to detect its generated mutants. 
Only advanced security test cases are able to kill 
mutants without conflicts created by this operator.  

6 Conclusion 

This paper proposes mutation operators for security 
policy testing. To qualify a set of security policy test 
cases, a classical mutation analysis is applied with 
these ‘security’ mutants. In practice, it may be costly to 
implement all types of security mutants, especially if it 
must be done manually. We thus performed detailed 
experiments, as rigorously as possible, on a 3-tiers 
architecture example (a library system) to select a 
sufficient subset. The hardest-to-kill security mutant 
operators are those which must be generated in 
priority. If this initial study has to be completed with 
others, the first results reveal that we can limit the 
types and number of generated mutants. The ranking 

shows that two operator types are necessary: rule type 
changing operator (PPR and PRP) and rule adding 
operator (ANR). Combining these two operators also 
leads to another minimization of the generated 
mutants: only mutants which do not cause conflicts in 
the security rule have to be created. It is due to the fact 
they introduce at least two coupled elementary faults 
(coupling effect). While PPR-PRP mutants force the 
test to cover the specified security rules, the ANR ones 
are useful to check the robustness of the system in case 
of default or underspecified policies. Combining both 
operators provide a good criterion to guide the tester 
when generating the test cases. 
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