
 Mutation analysis for security tests qualification
Tejeddine Mouelhi,

Yves Le Traon
2, rue de la Châtaigneraie

CS 17607
35576 Cesson Sévigné Cedex, France

Benoit Baudry
IRISA- 35042 Rennes Cedex,

France
bbaudry@irisa.fr

Abstract. In this paper, we study how mutation

analysis can be adapted to qualify test cases aiming at
testing a security policy. The objective is to make test
cases efficient to reveal erroneous implementations of
a security policy. The notion of security policy testing
is studied and mutation operators are defined in
relation with the security rules. To make the approach
applicable in practice we discus and empirically rank
the security mutation operators from the most to the
least difficult to kill. The empirical study is a library
software, which is implemented with a typical 3-tiers
architecture.

1 Introduction

Testing that a system is correct with respect to
security is known as a hard task [1]. Among the
numerous identified difficulties we can first point that
security issues are handled at many different places in
a system (network, hardware, server and client).
Moreover, since specifying the expected security
qualities is complex, it is very difficult to express the
expected result when building test cases for security.

In this work, we focus on a particular type of
security that consists of assuring access control to
sensitive data in a 3-tier application. From a testing
point of view, we leverage the fact that access control
models exist [2-4] and are used to specify security
policies. Indeed, these languages allow expressing
rules for the permissions or authorizations to access
services and data. The set of rules is called a security
policy. The particular language used in this paper is
called OrBAC. Once specified with OrBAC [5], a
security policy must be implemented in the business
application (in Java in our example). Security test cases
are generated to check the correctness of the
implementation with respect to those security rules. .

Today there is no systematic way to derive test
cases from a security policy and no test adequacy
criteria to assess the quality of test cases for security.
Thus, once test cases have been produced, it is

necessary to estimate their quality in terms of ability to
detect security flaws in the implementation.

In order to evaluate the quality of test cases for
security, this paper adapts mutation analysis and
introduces new mutation operators that correspond to
fault models for access control security policies. To our
knowledge, very few works have modelled faults
related to security issues. In [6], Du et al. inject faults
in the application’s environment. This consists in
modifying environment variables, files or processes
used by the application under test. In [7] Ghosh injects
faults in the application’s data flow and internal
variables to identify pieces of code which behavior is
insecure. However, none of these faults targets the
implementation of access control policies.

In section 2 we introduce a running example used
for illustration through the paper. This example is
based on a library management system. In section 3,
we rapidly introduce the issue for security policy
testing. Section 4 presents a set of mutation operators
for access control test qualification. At last section 5
presents a case study that allows us to select a relevant
subset of operators to qualify security test cases.

2 Example

This section introduces an example based on a
library management system. Based on the simplified
requirements of this system, it is possible to derive a
set of access control rules that are modeled using
OrBAC. We use these rules to illustrate the main
feature of the OrBAC language.

2.1 Library management system

The purpose of the library management system
(LMS) is to offer services to manage books in a public
library. The books can be borrowed and returned by
the users of the library on working days. When the
library is closed, users can not borrow books. When a
book is already borrowed, a user can make a
reservation for this book. When the book is available,

the user can borrow it. The LMS distinguishes three
types of users: public users who can borrow 5 books
for 3 weeks, students who can borrow 10 books for 3
weeks and teachers who can borrow 10 books for 2
months.

The library management system is managed by an
administrator who can create, modify and remove
accounts for new users. Books in the library are
managed by a secretary who can order books, add them
in the LMS when they are delivered. The secretary can
also fix the damaged books in certain days dedicated to
maintenance. When a book is damaged, it must be
fixed. While it is not fixed, this book can not be
borrowed but it can be reserved by a user. The director
of the library has the same accesses than the secretary
and he can also consult the accounts of the employees.

The administrator and the secretary can consult all
accounts of users. All users can consult the list of
books in the library.

2.2 Modeling a security policy with OrBAC

From the previous requirements for the LMS, it is
possible to distinguish 5 different roles: public users,
students, teachers, administrator and secretary. It is
also possible to identify several rules that authorize or
forbid access to data or services of the LMS.

OrBAC allows defining a set of security rules. A
rule can be a permission, prohibition or obligation.
Each rule has 5 parameters (called entities): the
organization, the role, the activity, the view and the
context. To increase modularity for the definition of
security rules, OrBAC enables the definition of
hierarchies of entities. In that case, rules defined on
high level entities are inherited by the sub-entities.

From the LMS requirements, we identify the entities
displayed in Figure 1. The graphical representation is
the one from MotOrBAC. First, we identify the
services which are constrained by security rule. They
are called activities in OrBAC. All users can perform
three activities: borrow, reserve, return a book. Since
all these activities are associated to the same rules, we
define a high-level activity called BorrowerActivity.
This means that all rules defined on the super activity
will apply on sub activities. There are also a number of
administrative tasks that can be executed. Since the
administrator is allowed to execute all these tasks we
define a super activity AdminActivity. The activities
that inherit from PersonnelActivity are the activities
that are permitted for the director and the secretary.

Concerning the data (called views in OrBAC) that
are restricted with access control, we identify the
notion of book and of account. There are two type of
account: borrower and personnel accounts.

In this paper, the context corresponds to a temporal
dimension that appears in access control rules for the
LMS system. In the requirements, we clearly identify
Holidays, WorkingDays, MaintenanceDay and a
default context which is used to define rules that are
related to no specific time.

The last type of entities that needs to be defined
concerns the roles. In the requirements we distinguish
two main categories of roles: the users and the
administrative personnel. We define the Borrower role
which captures the role of user. Since Teacher and
Student are two specific types of users, we model
them as two sub-roles for Borrower. Concerning the
personnel, we distinguish three categories:
Administrator, Secretary, and Director.

ContextsViews

ActivitiesRolesOrganisations

ContextsViews

ActivitiesRolesOrganisations

Figure 1 - OrBAC entities for the LMS

Once all the entities are defined, they can be used to
specify access control rules. Again, these rules are
derived from the requirements. For example,
requirements specify that users are allowed to borrow
books only when the library is opened. This rule is
defined as follows:
Permission(Library, Borrower,
BorrowerActivity, Book, WorkingDays)

The first parameter for this permission rule is the
organization. Since there is only one organization in
our example we give a very generic name Library.
The other parameters are entities that have been
defined previously.

Other example of rules include the prohibition to
borrow a book during holidays, the permission for an
administrator to manage the accounts for the personnel
and the borrowers or the permission for the secretary to
consult borrower accounts. These examples can be
expressed as follows:
Prohibition (Library, Borrower,
BorrowerActivity, Book, Holidays)

Permission(Library, Administrator,
ManageAccess, PersonnelAccount, default)

Permission(Library, Administrator,
CreateAccount, BorrowerAccount, default)

Permission(Library, Secretary,
ConsultBorrowerAccount, BorrowerAccount,
default)

One issue when specifying control access rules is
that conflicting rules may appear. These conflicts can
occur when 2 opposite rules have exactly the same
parameters.

For example the following two rules are conflicting:
Permission(Library, Borrower,
BorrowerActivity, Book, WorkingDays)

Prohibition(Library, Borrower,
BorrowerActivity, Book, WorkingDays)

It is important to point out that conflicts may also
occur when the parameters of the rule are not exactly
the same. In the case a parameter in one rule inherits
from a parameter in an opposite rule, the two rules are
conflicting.

For example, in the following two rules, Teacher
inherits from Borrower, thus the rules are conflicting:
Permission(Library, Borrower,
BorrowerActivity, Book, WorkingDays)

Prohibition(Library, Teacher,
BorrowerActivity, Book, WorkingDays)

An important benefit of using OrBAC is that the
rules can be processed by a tool called MotOrBAC [8]
that automatically detects the conflicting rules in the
definition of a security policy. One way to solve the
conflicts consists in assigning priorities to rules. The
rule with the highest priority is executed.

3 Testing a security policy

Security
policy rules

Business
application

Security
test cases

Execute

Verdict

Manual task
Automatic

Figure 2 - Testing the security policy

When the security policy has been defined from the
requirements, conflicts can be checked with
MotOrBAC. Then, these rules must be taken into
account in the implementation of the business
application. There is no automatic solution to generate
code for a security harness on the business application.

As described in Figure 2, the implementation is thus
manual and consists in selecting the different places in
the source code where security rule apply and add the
necessary code.

Since the implementation of OrBAC rules in the
application is manual, it is necessary to validate that it
is correct. Specific test cases have to be designed to
detect errors in the implementation of security errors
that can entail security flaws. Testers can use the
OrBAC specification to build those test cases. Once the
test cases are defined, they have to be executed on the
application. We have developed a harness to
automatically run a set of test cases on the
implementation and produce a verdict that reveals the
presence or absence of a security flaw. When testing
security rules, we look for prohibitions that can be
violated and permissions that are not available.

There is no commonly agreed technique to derive
test cases from security policy rules, and there exists
no test adequacy criteria to assess the quality of the
produced test cases. Thus, we propose to adapt
mutation analysis to validate the test cases. As it is
detailed in the next section, we define a number of
mutation operators that model faults that can occur
when implementing a security policy.

4 Security mutation operators

In this section, we discuss the issue of adapting
mutation analysis to security, we propose security
policy mutation operators and discuss their meaning.

4.1 Defining operators for OrBAC

Since there are many different solutions to
implement access control rules into the business
model, it is very difficult to define security fault
models based on syntactic errors in the code. We could
inject classical mutation faults (arithmetic, logical etc.)
in security mechanisms, but the effect of these faults
would be unpredictable w.r.t. a given security policy
(and the verdict difficult to define).

In this section we define mutation operators
independently from implementation-specific details.
Since the access control rules are expressed with
OrBAC, we model the faults at this level of
abstraction. The mutation operators are thus expressed
on OrBAC syntax. On one hand, this approach has the
advantage of defining faults that are actually related to
the definition of security rules (prohibition instead of
permission, wrong role, etc.). On the other hand, the
difficulty consists in transforming mutation operators
defined with OrBAC into faults in the implementation.

For this work, we maintain traceability matrices
between OrBAC rules and the corresponding code

blocks in the implementation. Using this information, it
is easier to map mutant OrBAC rules to faults in the
implementation. However, in the general case, the
traceability information might not be available, or the
mapping between the rules and the code might not be
trivial. In that case it is not possible to automatically
generate the mutants. If we still want the mutation
analysis to be used, it is important to identify the most
relevant subset of operators, in order to produce the
minimum mutants that lead to the production of the
best security test cases. This is the objective of the case
study to select a sufficient subset of mutation
operators.

In the following we present a set of mutation
operators that can be defined for OrBAC rules. We
illustrate these operators with examples. Then, in next
section we run a case study to select the most relevant
subset. The security mutation operators are divided in 4
categories:

 Type changing operators
 Parameter changing operators
 Hierarchy changing operators
 Adding rules operators

4.2 Type changing operators

Type change operators pick a rule and modify its
type. There are 3 types of rules: prohibition,
permission and obligations. Therefore, there are 6
possible modifications:
1. Prohibition to permission
2. Permission to prohibition
3. Prohibition to obligation
4. Obligation to prohibition.
5. Permission to obligation
6. Obligation to permission
The first four operators simulate faults that occur

during the implementation. The obtained policy allows
a forbidden activity or prohibits an authorized activity.
Let us focus on some examples obtained by the first 2
operators:
Rule used:
Permission (Library, Secretary,
ConsultBorrowerAccount, BorrowerAccount,
default)

Rule to use instead:
Prohibition (Library, Secretary,

ConsultBorrowerAccount, BorrowerAccount,
default)

Rule used:
Prohibition(Library,Student,GiveBackBook,
Book, Holidays)

Rule to use instead:
Permission(rennesLibraries,Student,GiveBackBoo
k, Book, Holidays)

Operators 5 and 6 switch between permission and
obligation. The problem is that it is difficult to
distinguish between obligation and permission. Test
cases are not able to validate that an obligation rule is
used instead of a permission one. For this reasons, we
choose not to use obligation rules and only use
prohibition rules. We only implement the first 2
operators (Prohibition to permission named PRP and
permission to prohibition named PPR).

4.3 Parameter changing operators

Parameter changing operators pick a rule and
change one of its parameters. As there are 5 parameters
the following operators are defined:

1. Change organization
2. Change role
3. Change activity
4. Change view
5. Change context

We can not replace a rule’s organisation because
each organisation defines its own entities and we may
not have the role, activity, view and context of the first
organisation defined for the new organisation. If we
have:
Permission(org1,role1,activity1,view1,context1
)

We cannot replace it with:
Permission(org2,role1,activity1,view1,context1
)

We can only replace if org2 defines role1, activity1,
view1 and context1 in its scope.

In addition, the notions of activity and view are
tightly linked. In fact, the activity must be related to
the rule view. The following example illustrates this
issue:
Rule used:
Permission (Library, Administrator,
ModifyAccount, BorrowerAccount, default)

Rule to use instead:
Permission (Library, Administrator,
ReserveBook, BorrowerAccount, default)

ModifyAccount cannot be replaced by ReserveBook
because ReserveBook can not be attached to the
BorrowerAccount view. The same problem appears
when we change the rule’s view. In fact, replacing
views or activities can be done only for activities that
are independent from views (and can be applied to
different views). For example, if we have the activity
Modify that may be applied to 2 views
BorrowerAccount and PersonnelAccount then we can
replace BorrowerAccount by PersonnelAccount.
Therefore, the relevant operators are those changing

the role and the context. We show 2 examples of these
operators’ results:

Rule used:
Permission (Library,
Administrator,ModifyAccount, BorrowerAccount,
default)

Rule to use instead:
Permission (Library, Secretary,ModifyAccount,
BorrowerAccount, default)

Rule used:
Permission (Library, Student, BorrowBook,
BorrowerAccount, WorkingDays)

Rule to use instead:
Permission (Library, Student, BorrowBook,
BorrowerAccount, Holidays)

These 2 operators are useful because they will
simulate cases where the security policy is too
permissive or too restrictive. The first one allows a
user (the secretary) to do the same activity allowed for
another user. The second one allows a user to perform
the action under another context. In this category, we
only keep two operators (Change role named RRD and
change context named CRD).

4.4 Hierarchy changing operators

Or-BAC allows defining hierarchies for
organisations, roles, activities, views and contexts.
Then, a mutation operator can be used to change
hierarchies by replacing a parameter by its parent or
one of its descendants.

1. Change organization hierarchies
2. Change role hierarchies
3. Change activity hierarchies
4. Change view hierarchies
5. Change context hierarchies

Due to the reasons explained in the previous section,
the first operator is not used. In addition, context and
views hierarchies are not useful. In practice we do not
define hierarchies for contexts and views. In fact, we
insist on hierarchies for activities and roles.

The only useful operators in this category are
operators 2 and 3.
Examples:
Change role hierarchies, rule used:
Permission (Library,Borrower,reserveBook,
Book,WorkingDays)

Rule to use instead:
Permission (Library, Teacher,reserveBook,
Book,WorkingDays)

Change activity hierarchies, rule used:
Permission (Library, Student,BorrowerActivity,
Book,WorkingDays)

Rule to use instead:
Permission (Library, Student,BorrowBook,
Book,WorkingDays.

 The hierarchy changing operators that will be retained
are: ‘change rule hierarchies’ (named RPD) and
‘change activity hierarchies’ (named APD).

4.5 Add rule operators

Instead of replacing an existing rule, the adding rule
operator introduces a new rule. The goal of this
operator is to simulate cases where the implementation
does something in addition to the requirement. This is
a typical security fault and makes security faults
different from functional tests. The security breaches
are caused by the fact that the application behaves in
unexpected way, even if it satisfies all functional
requirements.

In order to obtain relevant rules, the add rule
operator (named ANR) introduces rules that contain an
activity and a view that were already defined by at
least one rule in the initial security policy. It is
important to note that this operator generates a lot of
mutants.
Examples:
Added rule:
Permission
(Library,Borrower,consultPersonnelAccount,
PersonnelAccount,MaintenanceDay)

Added rule:
Permission (Library,Secretary,ManageAccess ,
PersonnelAccount,MaintenanceDay)

4.6 Security mutation operators

Table 1 presents the retained operators that were
presented in details in previous section.

Table 2 shows the number of each type of mutant
that can be generated. It is function of the number of
entities that are in the model.

Table 1 – Mutation operators for OrBAC rules

Mutation
Operator

Description

PRP Prohibition rule replaced with permission

PPR Permission rule replaced with prohibition

RRD Rule role is replaced with different role

CRD Rule context is replaced with different context

RPD Rule role (a parent) replaced with one of its descendants

APD Rule activity replaced with one of its descendants

ANR New rule Added

Table 2 - Number of generated mutants
Operator name # generated mutants

Hierarchy changing
operator

:# hierarchies levels * #number rules with
entities (contained in hierarchies)

Addition of new rule
operator

#roles * #contexts * #
(activities and views)

Type changing
operator

permission, #prohibition

Parameter changing
operator

entities * # rules

5 Implementation and case study results

5.1 Objectives and experimental protocol

The goal of this study is to analyse which mutation
operators are the most useful to check the efficiency a
security policy test suite. As for the principles of
selective mutation [9], we would like to determine a
subset of sufficient mutation operators. The issue is to
determine which mutants are easier to kill and thus
keep only the hard-to-kill mutants. This study is even
more critical to make the approach feasible in a general
case, when the generation of mutants can not be fully
automated from the security policy rules.

This study has been designed for this objective, as
an “ideal” lab case, in order to obtain general results.
The generation of mutant security mechanisms is fully
automated, allowing the presented experimental
protocol to be applied. The first step consists of
generating minimal test suites per mutation operator,
w.r.t. the following definition:

Definition: minimal test suite. A test suite is
minimal for a set of mutants iff the test cases it
includes have a 100% mutation score and, if
when a test case is removed, the mutation score
decreases.

We note TS(name of operator) the minimal test suite
needed to kill all the mutants generated with this
operator. In this study, an important effort has been
allocated for generating the test cases and minimizing
the test suites. Since it is difficult to have much less
than a test case by security rule, we believe the
minimal test suites are close from the optimum. For
instance, the minimal test suite of 36 test cases selected
for killing the basic mutation operators is equal to the
number of non generic security policy rules.

The second step consists of comparing the mutation
operators. This comparison leads to a ranking, which is
obtained with two criteria. The first one determines
whether a mutation operator can replace another. This
aspect is captured by the notion of subsume
relationship. When two mutation operators are
equivalent, any of them can replace the other without
loss of efficiency for the generated test cases. To

choose which of the two mutation operators can be
removed, we consider the number of generated mutants
as a second criterion.

Definition: subsume relationship (->). A mutation
operator MO1 strictly subsumes MO2 (MO1 ->
MO2) if:

a) the minimal test suite TS(MO1) also reaches a
100% mutation score for the MO2 mutants

b) the minimal test suite TS(MO2) does not reach
100% for MO1 mutants.

MO1 and MO2 are equivalent (MO1 <-> MO2)
if TS(MO1) reaches 100% on MO2 mutants and
TS(MO2) reaches 100% on MO1 mutants.

Figure 3 illustrates the definition. MO1 -> MO2
since the test suite for MO1 is sufficient to kill all
mutants generated with MO2. Conversely, MO2
doesn’t subsume MO1 since its minimal test suite only
kills 80% of the mutants created with MO1. We can
thus consider that MO2 can be removed, since it is not
needed when qualifying a test suite. MO1 precedes
MO2 in the ranking. In case of equivalence, one of the
two mutation operators is useless. To determine which
one can be removed, we consider that it is better to
generate less mutants (due to the execution times, and
to the effort needed for generating these mutants when
done manually). So, the ranking relation is defined as
follows.

TS1 TS2

MO2MO1

100% 100%
100%

< 100%

TS1 TS2

MO2MO1

100% 100%
100%

< 100%

Figure 3 - MO1 operator strictly subsumes MO2

Definition: mutation operators ranking (>).

MO1 > MO2 iff:

 MO1 -> MO2

or ((MO1<->MO2)

and |{MO1 mutants}| < |{MO2 mutants}|)

This ranking only orders partially mutation
operators. If a mutation operator is not ranked, it is
independent and necessary for a relevant test
qualification process.

5.2 Mutation tool

a Generation of mutants
The mutant generator is implemented as part of the

MotOrBAC tool that implements the OrBAC security

model. The goal of this tool is to allow security
administrators to specify and define an OrBAC based
security policy model.

We added a module that generates security policy
mutants. When the security policy is defined the tool
creates the security mutants. Its user interface is shown
in Figure 5.

Figure 4 Mutation result dialog box

The user can choose the number of generated
mutants for each category. Then the tool creates
MotOrBac security policy files and/or an SQL script
that creates a database table containing all the mutant
rules (each mutant policy having a unique id).

Figure 5 - The mutant generator window

The mutation tool uses MotOrBac libraries to get
the current security policy rules list, entities as well as
hierarchies. In addition, the mutation tool uses
MotOrBac modules to check if conflicts exist and
resolves them. In case of conflict, it means that the
mutated rule is in conflict with another. The conflict is
automatically solved by giving the highest priority to
the mutated rule. The result is that this rule is
implemented or executed in priority. The numbers of
generated mutants are shown in a dialog box (as
presented in Figure 4). For our experiments, we
generated all the possible mutants, for ranking the
mutation operators.

b Oracle function for mutation analysis
In order to decide whether a mutant is killed or not,

we use an oracle function that checks the difference
between the output of the mutant policy
implementation and the correct security policy one.
The security mechanism prints the authorization that
was granted to the requested action into a file. The
oracle function thus consists in comparing the files that
are produced by the mutant and the original policy. We
present here an example of different outputs:

Output of the application using initial security policy:

INFO main root - Permission granted for the
requested action reserveBook BORROWER

Output of the application using mutant security policy:

WARN main root - Requested action prohibited
reserveBook BORROWER

Information about the operator used to generate this
mutant:

Operator used: Type Changing Operator

Rule to change:
Permission (rennesLibraries,Borrower,
ReserveBook, Book, WorkingDays).

Rule to use instead:
Prohibitionp (rennesLibraries, Borrower,
ReserveBook, Book, WorkingDays).

This oracle function, by comparing the behaviour of

the initial program with the seeded one, is sufficient to
determine that a test case kills a mutant. For a practical
use, this comparison is not possible and the tester must
define an explicit oracle function or manually establish
the verdict. This is another reason why it is important
to generate only the necessary and sufficient number of
mutants.

5.3 Case study architecture

The case study application has a typical 3-tiers
architecture widely used for web application. Figure 6
presents the main characteristics of this architecture.

The security mechanism implementing the Or-BAC
based security policy is located in the business layer, in
the service methods. Before performing the requested
action, the method calls the security mechanism that
checks if the security policy allows of forbids that
action. When the action is prohibited a security policy
violation exception is raised and thrown to the caller,
otherwise (when the action is allowed) nothing is done

and the execution of the action is pursued by the
service method. There are two possible behaviours:
• The requested action is allowed: The security

mechanism leaves the application continue
normally.

• The requested action is prohibited: The security
mechanism raises a security exception that
interrupts the execution of the method. This
exception is then handled by the caller.

Figure 6 - The 3-tiers architecture for the LMS

When we implemented the security policy, we
maintained traceability links between the OrBAC rules
and the corresponding blocks of code. This means that
we are able to modify the security rules used by the
application and introduce a mutant rule. The mutation
analysis runs as follows:

• Tests are executed against the initial security
policy.

• The output is saved in a file
• The policy is replaced with a mutant policy

and the logger output is saved in a different
file

• The 2 files are compared with the oracle
function defined in the previous section. If
behaviours are different then the mutant is
killed otherwise it is still alive and the test did
not succeed to find the security fault.

5.4 Results and analysis

Table 3 gives the number of generated mutants per
operator. The ANR operator generates much more
mutants since it adds a non specified security rule. The
number of generated mutants thus reflects the fact that
all the possible cases have not been specified in the
security policy. To our own experience, this is quite

usual: the specification focuses on the most critical and
important case, and often considers that a default
behaviour is acceptable. Testing these cases allow the
default policy to be exercised and allow to highlight
lack in the specification. On the other hand, they are
few mutants generated from hierarchy changing
operators because the specification doesn’t introduce
many hierarchical entities.

Ranking mutation operators
First, the mutation analysis was applied with each

minimal test suite for each mutation operator. The
results were deceiving since no clear ranking appear.
We then consider minimal test suites for couples of
mutation operators: PPR-PRP (Rule type changing
operators), RRD-CRD (Rule parameter changing
operator) and RPD-APD (Hierarchy changing
operator). The results for the size of the minimal test
suites are displayed in Table 4. The relationships
between minimal test suites are the following:

TS(RRD-CRD) = TS(PPR-PRP)
TS(RPD-APD) ⊂ TS(PPR-PRP)
| TS(PPR-PRP) ∩ TS(ANR) | = 21 test cases

Table 3 - Number of generated mutants per
operator

Operator category Op. name # mutants
PPR 22 Rule type changing operator
PRP 19
RRD 60 Rule parameter changing operator
CRD 60
RPD 5 Hierarchy changing operator
APD 5

Rule adding operator ANR 200
All 371

So, both PPR-PRP and RRD-CRD operators
subsume the RPD-APD operator. PPR-PRP and RRD-
CRD are equivalent for the subsume relationship.
Taking into account the second criterion, the number of
generated mutants per operator, we obtain the
following ranking:

PPR-PRP -> RRD-CRD -> RPD-APD
This result shows that the PPR-PRP operator should

be used in priority, thus avoiding the creation of most
mutants.

The ANR and PPR-PRP operators are not
comparable with this ranking. Some test cases are
shared by both minimal test suites (21 test). Table 5
shows the overlap between the test suites, in terms of
respective mutation scores. The minimal test suite for
ANR kills 59.3 % of the non-ANR mutants. On the
other hand, the PPR-PRP test suite only covers 17% of
the ANR mutants. The ANR mutants are thus
necessary but cannot replace the PPR-PRP operator.
PPR-PRP and ANR are not comparable, and are
recommended operators. On this case study, the ANR
operator is the most costly in terms of generated

mutants. This number may vary, depending on the
completeness of access control rules. The fewer rules
are specified, the more mutants this operator generates.
We believe that it is likely that the rules do not specify
all the combinations explicitly, and that this operator is
the most costly. On the other hand, the PPR-PRP
operator will generate more mutants when more rules
are added. In a general case, there is thus a balance in
the number of generated mutants between PPR-PRP
and ANR.

Table 4 – Number of minimal test suites
Operator category OP

Size of
minimal

test suites

PPR Rule type changing operator

PRP

36

RRD Rule parameter changing operator

CRD

36

RPD Hierarchy changing operators

APD

4

Rule adding operator ANR 154

Table 5 - Overlap of PPR-PRP, ANR test suites
 all mutants except

ANR
ANR

TS(PPR-PRP) 100% 17%
TS(ANR) 59.3% 100%

Removing mutants generating conflicts
To reduce the number of mutants to be generated,

we remarked that the mutants which caused a conflict
(which is solved by giving priority to the mutant rule)
are the more easy to kill. The Table 6 presents the
number of mutants which generated conflicts per
operator. Figure 7 shows an example of such a conflict.
It illustrates that two test cases, generated to kill
mutants without conflicts, kill this mutant with
conflict.

So, several test cases, from the minimal test suites,
systematically kill these mutants. It means that these
mutants are not necessary. Indeed, we have:

TS(RRD-CRD with conflicts) ⊂
TS(RRD-CRD without conflicts)

TS(RRD-CRD without conflicts) corresponds to the
suite of 36 test cases needed both for Rule type and
Rule parameter changing operators. This test suite is
also minimal for the mutants RRD-CRD which do not
cause conflicts. Among this set, only 12 test cases are
needed to kill mutants with conflicts which compose
the TS(RRD-CRD with conflicts) minimal test suite.

TS(ANR with conflicts) ⊄ TS(ANR without
conflicts)

But TS(ANR with conflicts) ⊂ TS(PPR-PRP) and
TS(ANR with conflicts) corresponds to a minimal test
suite of 21 test cases (which are the exact intersection
of the TS(ANR) and TS(PPR-PRP) test suites.

Table 6 - Number of mutants with and without
conflicts

Operator
category

With
conflicts

Without
conflicts

Rule type
changing operator

- 41

Rule parameter
changing operator

23

97

Hierarchy
changing
operators

- 10

Rule adding
operator

33

167

Total 56 315

Operator used: RRD

Initial rule:
Prohibition(Library,Secretary,ManageAccess,
PersonnelAccount,Default)

Mutated rule:
Prohibition(Library,Administrator,ManageAccess,
PersonnelAccount, Default)

The seeded rule is in conflict with another rule:
Permission(Library,Administrator,ManageAccess,
PersonnelAccount,Default)

The two tests that kill this security policy mutant:

Test 1: Test that secretary cannot manage access
Test 2: Test that admin can manage access.

These two tests are already generated to kill mutants
without conflicts.

Figure 7 – A mutant causing conflicts generates
at least two elementary faults which are killed by

two test cases.

It means that if the PPR-PRP and ANR operators
are used, the minimal test suite of PPR-PRP kills the
mutants with conflict generated with ANR. Combining
these two operators allows removing the mutants with
conflicts generated with the ANR operator. Around
18% of the mutants (those with conflicts) can be
removed without any loss of relevance for the
generated test cases.

We study why these mutants could be removed and
the explanation is interesting, since it corresponds, for
security testing, to the ‘coupling effect’ analyzed by
Offutt et al. [10]. In fact, when a mutated rule causes a
conflict, it has an impact on at least two rules: this fault
is equivalent to two sequential mutations without
conflicts.

Analysis and conclusion
In conclusion, some operators are more relevant

than others for improving the quality of security test
cases. We present a ranking of the most useful
mutation operators:

1. Adding rules operators
1. Rule type changing operators
2. Rule parameter changing operators
3. Hierarchy changing operators

ANR

PPR-PRP

RRD-CRD

RPD-APD

ANR

PPR-PRP

RRD-CRD

RPD-APD

Figure 8. Relation between operators

Figure 8 displays this ranking, and highlight the
overlap between ANR and the other operators. All
these operators generate mutants which intersect with
the adding rule operator. Adding rules operators are the
most interesting because they simulate cases that are
not tested by functional tests. As shown by the results,
they are the most difficult to kill, regarding the number
of test cases needed to detect its generated mutants.
Only advanced security test cases are able to kill
mutants without conflicts created by this operator.

6 Conclusion

This paper proposes mutation operators for security
policy testing. To qualify a set of security policy test
cases, a classical mutation analysis is applied with
these ‘security’ mutants. In practice, it may be costly to
implement all types of security mutants, especially if it
must be done manually. We thus performed detailed
experiments, as rigorously as possible, on a 3-tiers
architecture example (a library system) to select a
sufficient subset. The hardest-to-kill security mutant
operators are those which must be generated in
priority. If this initial study has to be completed with
others, the first results reveal that we can limit the
types and number of generated mutants. The ranking

shows that two operator types are necessary: rule type
changing operator (PPR and PRP) and rule adding
operator (ANR). Combining these two operators also
leads to another minimization of the generated
mutants: only mutants which do not cause conflicts in
the security rule have to be created. It is due to the fact
they introduce at least two coupled elementary faults
(coupling effect). While PPR-PRP mutants force the
test to cover the specified security rules, the ANR ones
are useful to check the robustness of the system in case
of default or underspecified policies. Combining both
operators provide a good criterion to guide the tester
when generating the test cases.

7 References

1. Thompson, H.H., Why security testing is hard.
IEEE Security & Privacy Magazine, 2003.
1(4): p. 83 - 86.

2. B. D. Joshi, J., et al., Security models for web-
based applications. Communications of the
ACM, 2001. 44(2): p. 38 - 44.

3. D. F. Ferraiolo, et al., Proposed NIST
standard for role-based access control. ACM
Transactions on Information and System
Security, 2001. 4(3): p. 224–274.

4. S. I. Gavrila and J.F. Barkley. Formal
Specification for Role Based Access Control
User/Role and Role/Role Relationship
Management. in Third ACM Workshop on
Role-Based Access Control. 1996.

5. Abou El Kalam, A., et al. Organization Based
Access Control. in International Workshop on
Policies for Distributed Systems and Networks
2003. Lake Come, Italy.

6. Du, W. and A.P. Mathur. Testing for Software
Vulnerability Using Environment
Perturbation. in International Conference on
Dependable Systems and Networks. 2000.

7. Ghosh, A., T. O’Connor, and G. McGraw, An
automated approach for identifying potential
vulnerabilities in software, in IEEE
Symposium on Security and Privacy. 1998.

8. Cuppens, F. MotOrBAC. 2007 [cited 2007;
Available from:
http://motorbac.sourceforge.net/index.php?pa
ge=home&lang=en.

9. Offutt, A.J., et al., An Experimental
Determination of Sufficient Mutant Operators.
ACM Transactions on Software Engineering
and Methodology, 1996. 5(2): p. 99 - 118.

10. Offutt, A.J., Investigations of the software
testing coupling effect. ACM Transactions on
Software Engineering and Methodology,
1992. 1(1): p. 5 - 20.

