
Modeling and Integrating Aspects into Component Architectures

Lydia Michotte Robert B. France Franck Fleurey
Prism CNRS Lab

Versailles University
 France

Departement of Computer
Science Colorado State

University, Colorado, USA

IRISA
Rennes
France

lydia.michotte@prism.uvsq.fr france@cs.colostate.edu ffleurey@irisa.fr

Abstract

Dependable software systems are difficult to
develop because developers must understand and
address several interdependent and pervasive
dependability concerns. Features that address
pervasive dependability concerns such as error
detection and recovery tend to crosscut application
architecture and thus understanding and changing
their descriptions can be difficult. Separating these
features at the architectural level allows one to better
understand and reuse them and thus can lead to better
analysis and evolution of the features during design. In
this paper we illustrate how an Aspect Oriented
Modeling (AOM) technique can be used to model
dependability aspects of component architectures
separately from other aspects. The AOM architectural
model used to illustrate the approach in this paper
consists of a component primary view describing the
base architecture and a component template aspect
model describing a fault tolerance feature that
provides error detection and recovery services.

1. Introduction

Developers of critical component-based software
systems often must address pervasive fault tolerance
concerns in their designs. A concern [1] is a problem
and a set of properties determining acceptable
solutions. Features that address pervasive fault
tolerance concerns may not be conveniently
encapsulated in a component. These crosscutting
features can be difficult to understand, analyze and
change because their descriptions are not localized in a
single place.

Support for the separation of fault tolerance
concerns early in the design cycle [3] [2] [4]can help

reduce late and costly architectural changes. One
approach to separation of concerns is Aspect Oriented
Modeling (AOM) [1] [6] [17]. We have not
encountered any previous work on the aspect oriented
modeling of component architectures. In this paper the
major contribution is to extend the AOM approach to
support separation of crosscutting features in
component architectures. A component architecture
consists of software components, their structural
relationships and their behavioral dependencies [16].
We focus only on modeling structural aspects of
component architecture. Each component is associated
with one or more provided or required interfaces. A
provided interface contains the operations supported by
the component, a required interface contains the
operations required by the component.

An aspect-oriented component architecture model
produced by AOM consists of a base component
architecture model called the primary view which
reflects the design decisions that determine the core
component structure; and a set of aspect views. Each
aspect view describes a feature that crosscuts the
primary view. An integrated view of the component
architecture is obtained by composing the primary and
aspect views.
In this paper we show how the AOM approach can be
used to model and integrate crosscutting features at
component architecture level. To illustrate the
approach we model and integrate a fault tolerant
feature. A recovery block fault tolerance feature is
modeled as an aspect and integrated with a primary
view describing the component structure of a health
monitoring system. The remainder of this paper is
organized as follows. Section 2 presents an overview of
the AOM approach as applied to component
architectures. Section 3 describes the component-based
recovery block feature and presents the aspect
describing the feature. In Section 4, we describe how

the models are composed. Section 5 discusses related
work, and Section 6 concludes with our plans to extend
the approach.

2. Background

Aspect Oriented Modeling (AOM) [1] is an
approach to separating crosscutting features from other
features in order to ease understanding, analysis and
evolution of the features. In this paper a feature
addresses a single concern. A feature whose description
is tangled with the description of other features and is
distributed across a model is said to crosscut the model.
An aspect-oriented model in the AOM approach
consists of [1]:

1. A primary view: The primary view describes the

features that determine the dominant design structure.

2. A set of patterns called aspect models: The

crosscutting features that can be isolated in aspect
models are those with distributed elements that have
common characteristics. This allows one to describe a
crosscutting feature as a pattern.

3. A set of bindings: A binding associates an

application-specific element to a pattern element.
Applying the bindings to an aspect model produces an
aspect view that describes how the feature is to be
realized in the primary view. To incorporate the
features described by aspect models into a primary
view, the aspect views produced from the aspect
models are composed with the primary view.

4. A set of composition directives: Composition

directives are used to tailor the composition of aspect
and primary views [6].

In this paper primary and aspect views are UML

descriptions of component architectures. Here, a
component describes a deployable unit of
implementation [16].

Figure 1 gives an overview of model composition in
the AOM approach. Before an aspect model can be
composed with a primary design model, the pattern
described by an aspect model must be instantiated in
the context of the application domain. An aspect view
is obtained by binding elements in the aspect model to
elements in the application domain. Application
specific element names are drawn from an application

domain namespace. Aspect and primary views are
composed to obtain an integrated design view.
The AOM approach in this paper uses a signature
based approach applied to component architecture. A
signature is a set of syntactic properties of a model
element. Model elements with the same signature are
merged to form a single model element. The following
rules are used to compose component model elements:

1. For components the signatures consist only of

their names and thus components with the
same name are merged to form a single
component in the composed model.

2. Provided interfaces on matching components

must have the same name to match. The
merged interface contains the union of the
operations in the source interfaces and
syntactically equivalent operations are
included only once in the merged interface.

3. Required interface must have the same name,

and the same operations to match.

4. If matching operations (opi) and (opj) are
associated with specifications (S1) and (S2),
then the result of composing the operations is
an operation associated with a specification
that is the conjunction of (S1) and (S2). A
composition directive can be used to vary how
the specifications are logically connected.

5. Unmatched components or operations i.e.,

components or operations that only occur in
either the aspect model or the primary view
are included in the composed component
diagram.

Composition directives override a subset of the

composition rules used by the composition mechanism.

 The directives are needed when use of the rules

implemented by the composition mechanism is not
enough to produce well formed models that have
desired properties.

In general, a composition directive can:

1. Determine the order in which multiple aspect
models are composed with a primary view.

2. Define precedence or override relationships
between matching aspect and primary view
components with conflicting properties or
definitions.

3. Determine the elements that are renamed (e.g.,

to resolve conflicts), added, replace or deleted
during composition, these directives are called
refactoring directives. Adding new
components or interfaces or deleting existing
components or interfaces may be necessary to
correctly compose aspect and primary views.

Figure 1 : An AOM overview of Composition in the
AOM Approach [1]

3. A fault tolerance architectural aspect

In this section a component-based aspect model for a
recovery block fault tolerance feature is presented.

3.1. Modeling recovery block architectural
aspect

At the code level, a recovery block [8] consists of:

1. A block of application code or program called
the primary block that contains the program
primary version.

2. Several alternate blocks that contain program
alternate versions executing the same
functionality as the primary version.

3. An acceptance test that is the same for the

primary and alternate versions.

If the primary block fails, as detected by the acceptance
test, the alternates are tried sequentially. This technique
uses backward error recovery to return to the state at
the start of the execution before executing the next
alternate.

We call this state the current component state. In this
paper the recovery block technique is adapted to
components. Recovery blocks are associated with
operations which developers deem as susceptible to
failures called the critical operations. Operations and
corresponding components to be recovered are
structured in a recovery block.

The recovery block aspect consists of five component
templates described below and interface templates (see
Figure 2):

1. A recovery block manager component
template which provides several services:
execution of the component primary version,
saving of the current component state,
execution of acceptance tests, performing roll
back and alerts on system total failures.

2. A client component template that calls for

execution of the critical operation via the
recovery block manager.

3. A Service provider manager template that

provides the component primary version and
alternate versions.

4. An acceptance test manager template which

evaluates the critical operation execution
results for the primary and alternate
component versions.

5. The Component_i template used to instantiate

the structure of components to which the
component primary service provider and its
alternates are connected to in the component
architecture.

The client component via its (ClientInt) interface calls
the recovery block manager to execute a critical
operation (opi). The recovery block manager then
saves the current component state which consists of the
operation (opi) arguments values, and executes via the
(ServiceInt) interface, the operation (opi). At the end of
(opi) execution, the operation result is recorded by the
recovery block manager which then executes the
acceptance test on that result via its (AcceptanceInt)
interface.
If the acceptance test result is acceptable then the
operation ends successfully and the recovery block
sends the operation result to the client component. If
the acceptance test result is not acceptable, the first
service alternate version provided is executed and
operation (opiAlt) is executed with the recorded current
component state.
If all service alternate versions failed when executed
then the system fails and the recovery block manager
sends an alert of system failure.

Figure 2 shows the component diagram template of the
recovery block aspect.

Recovery

Block

Manager

Acceptance

Test Manager

Client

Service

Provider

Manager

AcceptanceInt

ConstraintA

Component_i

*

*

*

ServiceInt

1..*

StructureInt_i

ClientInt

ConstraintA: #opi= #testopiopiAlt

Figure 2: Recovery Block Aspect Model

The services provided at the interfaces of the recovery
block aspect components are described below, (see
Figure 3):

1. The ServiceInt interface template contains
operation (opi) that invokes the service
primary version. This interface template can
be instantiated one to (n) times to invoke the
service alternate versions with the operation
opialtj. The operations (opialtj) and (opi) can
have respectively one to (n) arguments.

2. The clientInt interface template contains

operation (opi) that is called through the
recovery block manager. This interface
template can be instantiated one to (n) times
and the operation (opi) can have one to (n)
arguments.

3. The AcceptanceInt interface contains an

operation (testopiopialt) that executes the
acceptance test the result of operation (opi) or
operation (opialtj).

4. The StructureInt_i interface contains the

operation (opstructi) that is invoked between
the component_i of the components structure
and the component primary service version
and its alternates. This interface template can
be instantiated one to (n) times and the
operation (opstructi) can have one to (n)
arguments.

Each operation has a corresponding acceptance
test operation. This is expressed in the aspect
model as a constraint (ConstraintA in Figure 2).

Figure 3 : Recovery Block Aspect Interfaces Class
Diagram

The recovery block aspect is applied to a component
called the recovery target component and to operations
called target or critical operations. The recovery block
aspect can be used in a centralized way or a distributed

way. In the centralized way, the different recovery
target components share the same recovery block
manager. In the distributed way, each recovery target
component has its own recovery block manager. The
use of one of these variations (centralized, distributed)
is a design decision. In section 4 we give an example of
how the aspect model can be instantiated.

3.2. The recovery block aspect sequence
diagram

The recovery block execution sequence is shown
Figure 4:

PBB

Res:=opi(input)

Resac:=testopiopiAlt(Res)

Alt

Alt

Acceptance test not in failure() ==true

Resac==true

SendMessage(« Operation result is good »)

Else

Rollback(input)

Else

: Recovery

Block Manager

Interface

:PrimaryService

Int

:Acceptance

Int

:AlternateService

Int

SendMessage(« Operation result is wrong »)

SendMessage(« System fails »)

ResAlt:=opiAlt(input)

Save(input)

ResacAlt:=testopiopiAlt(ResAlt)

Alt

ResacAlt==true

SendMessage(« Operation result is good »)

: ClientInt

Res:=opi(input)

Return(Res)

Return(ResAlt)

SendMessage(« System fails »)

Else

Figure 4: Recovery Block Aspect Sequence Diagram
Using One Alternate

The client component via its interface (clientInt)
calls the recovery block manager for the execution of a
critical operation (opi).

Then the recovery block manager executes the
operation via its interface (PrimaryServiceInt) for the
target recovery component primary version saving first
the current component state which are here the
operation set of argument values called here (input).

At the end of (opi) execution, the operation result is
recorded by the recovery block manager which
executes the acceptance test operation (testopiopiAlt)
on that result.

Two cases are possible:

1. If the result is acceptable then it is returned to the
client.

2. If the result is not acceptable then an error has

occurred.

2.1. The system rolls back to the initial state of
the current executing component using the
saved data called (input).

2.2. An alternate component version is executed.

If all Alternate versions fail, the acceptance test may be
in failure or all the system fails.

4. Composition with fault tolerance
architectural aspect views and primary
view

In this section we describe a health watcher component
architecture that is a primary view (see Figure 5) and
with the recovery block pattern or aspect model
component template (see Figure 2) we instantiate
aspect views (see Figure 7 and Figure 8) defining
bindings and generating corresponding composed
model (see Figure 9 and Figure 10).

The AOM composition is very flexible we can use the
same pattern or aspect model and the same primary
view for different recovery block mechanisms
(distributed, centralized or mixed) by applying
different merging rules, what is detailed below.

4.1. The health watcher system primary view

The health watcher system is a web based system for
collecting and managing public health related
complaints and notifications. The system also notifies
people by mail and news on web pages about important
information regarding the health system. The system
users are citizens or health department employees. The
system must be highly available for users 24 hours a
day and 7 days a week.

The primary component architecture (the AOM
primary view) is shown in Figure 5 consists of six
components that interact via interfaces, (see Figure 6).
The components are: the user citizen manager, the user
employee manager, the complaint manager, the request
manager, the login manager, the notification manager.

The user citizen manager component interacts with the
login manager to be authenticated, with the complaint
manager component in order to enter new complaints
also it interacts with the citizen request manager to
send queries to the system and receives notifications
from the notification manager component about
requests and complaints or general health information.

The user employee manager component interacts

with the complaint manager component to handle the
complaint, with the request manager component to
handle requests, with the login manager component to
authenticate employees and to change login.

User Citizen

Manager

 Complaint

Manager

Notification

Manager

Request

Manager

Login

Manager

User Employee

Manager

LogEmployeeInt

HandleComplaintInt

NotifyComplaintInt

NotifyRequestInt

HandleRequestInt

ComplaintInt

NotifyInt

RequestInt

LogCitizenInt

Figure 5 : The Health Watcher System Primary
View Component Diagram

The interfaces of the health watcher primary view are
detailed Figure 6:

« interface »

LogEmployeeInt

« interface »« interface »

ComplainInt

« interface »

HandleComplaintInt

« interface »

RequestInt

« interface »

NotifyInt

« interface »

HandleRequestInt

« interface »

NotifyComplaintInt

HandleComplaint(ComplaintID:Integer)

CreateEmployee()
UpdateEmployee(EmployeeID:Integer)
ChangeLogin(EmployeeID: Integer, password:String):Boolean
AuthenticateEmployee(EmployeeID: Integer, password:String):Boolean

SendNotification(CitizenID:Integer,NotificationID:Integer):Boolean

EnterRequest()

HandleRequest(RequestID: Integer)

« interface »

LogCitizenInt

RegisterCitizen()
UpdateCitizen(CitizenID: Integer)
AuthenticateCitizen(CitizenID: Integer, password:String):Boolean

EnterComplaint()

SendNotification(CitizenID:Integer,ComplaintID:Integer):Boolean

« interface »

NotifyRequestInt

SendNotification(CitizenID:Integer,RequestID:Integer):Boolean

Figure 6: Health Watcher Primary View Interfaces
Class diagram

4.2. The Recovery Block Aspect Views

The recovery block context specific aspect model or
aspect view is an instantiation of the recovery block
aspect model used in the centralized and/or distributed
way in the context of the health watcher application.

In the health watcher primary view we have decided to
apply the recovery block aspect model to the
notification manager component, the complaint
manager component and the request manager
component which becomes the target recovery
components. A given target recovery component has
only one alternate component version in a recovery
block. The target operations are the ones that send
complaint and request notification to citizens:

1. op1= SendNotification(CitizenID: Integer,
NotificationID: Integer) : Boolean.

2. op2= SendNotification(CitizenID: Integer,

ComplaintID: Integer) : Boolean.

3. op3= SendNotification(CitizenID: Integer,

RequestID: Integer) : Boolean.

Aspect views describing distributed and centralized
recovery block features are described below.

4.2.1. The distributed recovery blocks aspect
view

In the distributed recovery block aspect view each
target recovery component has its own instantiation of
the aspect model in the context of the health watcher
primary view as shown in
Figure 7.

« Service Provider

Manager »

Notification

Alternate Manager

« Recovery Block

Manager »

Complaint

Recovery Block

Manager

« Service

Provider

Manager »

Notification

Manager

« Recovery

Block Manager »

Request

Recovery Block

Manager

« Service Provider

Manager »

Complaint Alternate

Manager

« Service

Provider

Manager »

Complaint

Manager

PrimaryServiceInt1

AlternateServiceInt2

AlternateServiceInt1

AcceptanceServiceInt1

NotifyRequestInt

PrimaryServiceInt2

AcceptanceServiceInt2

« Acceptance

Test Manager »

Notification

Acceptance Test

Manager

« Acceptance

Test Manager »

Complaint

Acceptance Test

Manager

« Acceptance

Test Manager »

Request

Acceptance Test

Manager

« Service

Provider

Manager »

Request

Alternate

Manager

« Service

Provider

Manager »

Request

Manager

AcceptanceServiceInt3

PrimaryServiceInt3

AlternateServiceInt3

« Recovery

Block Manager »

Notification

Recovery Block

Manager

NotifyComplaintInt

« Client »

User Citizen

Manager

« component_i »

User Employee

Manager

NotifyInt

HandleComplaintInt

ComplaintInt

RequestInt

HandleRequestInt

RequestAltInt

HandleRequestAltInt

HandleComplaintAltInt

ComplaintAltInt

Figure 7: Aspect View for Distributed Recovery
Blocks

4.2.1.1. Notification aspect view

The notification aspect view is the instantiation of
the notification manager component recovery block
aspect model in the context of the health watcher
primary view.

For the notification manager component:

 1. The target operation is op1= SendNotification(
CitizenID: Integer, NotificationID: Integer) : Boolean.

 2. The alternate operation is op1Alt=
SendNotificationAlt(CitizenID: Integer,
NotificationID: Integer) : Boolean.

 3. The acceptance test operation is testop1op1Alt.

4.2.1.2 Complaint Aspect View

The complaint aspect view is the instantiation of the
complaint manager component recovery block aspect
model in the context of the health watcher primary
view.

For the complaint manager component:

1. The target operation is op2= SendNotification(
CitizenID: Integer, ComplaintID: Integer) : Boolean.

2. The alternate operation is op2Alt=

SendNotificationAlt(CitizenID: Integer, ComplaintID:
Integer) : Boolean.

3. The acceptance test operation is testop2op2Alt.

4.2.1.3. Request aspect view

The request aspect view is an instantiation of the
request manager component recovery block aspect
model in the context of the health watcher primary
view.

For the request manager component:

1. The target operation is op3= SendNotification(
CitizenID: Integer, RequestID: Integer) : Boolean.

2. The alternate operation is op3Alt=

SendNotificationAlt(CitizenID: Integer, RequestID:
Integer) : Boolean.

3. The acceptance test operation is testop3op3Alt.

4.2.2. Centralized Complaint_Request,
Distributed Notification Recovery Blocks
Aspect View

In this scenario, the target complaint and request
recovery components share the same recovery block
manager instantiation with the name
Complaint_Request Recovery Block Manager (see
Figure 8).

« Service Provider

Manager »

Complaint alternate

Manager

« Recovery Block Manager »

Complaint_Request Recovery Block Manager

« Service Provider

Manager »

Request Alternate

Manager

« Recovery Block

Manager »

Notification

Recovery Block

Manager

« Service

Provider

Manager »

Request

Manager
« Service

Provider

Manager »

Complaint

Manager PrimaryServiceInt3

AlternateServiceInt3

AlternateServiceInt2

AcceptanceServiceInt3

NotifyRequestInt

PrimaryServiceInt2

AcceptanceServiceInt2

« Acceptance Test

Manager »

Request

Acceptance Test

Manager

« Acceptance

Test Manager »

Complaint

Acceptance Test

Manager

« Acceptance

Test Manager »

Notification

Acceptance Test

Manager

« Service Provider

Manager »

Notification

Alternate Manager

« Service Provider

Manager »

Notification

Manager

PrimaryServiceInt1

AlternateServiceInt1

NotifyComplaintInt

« Client »

User Citizen

Manager

« Component_i »

User Employee

Manager

HandleComplaintAltInt

HandleRequestInt

NotifyInt

RequestInt

ComplaintInt

HandleComplaintInt

RequestAltInt

ComplaintAltInt

HandleRequestAltInt

AcceptanceServiceInt1

Figure 8: Aspect View for Centralized

Complaint_Request, Distributed Notification
Recovery Blocks

4.3. The Recovery Block Composed Model

The composed model is the composition of the
recovery block aspect view and the health watcher
primary view.

The set of rules and directives used to compose the
views are given below:

1. Components match if they have the same name.

2. Required interfaces match if they have the same
name and the same operations.

3. Provided interfaces match if they have the same
name.

4. If the matching components have operations with
operation specifications, the operation specification
in the composed model is the conjunction of the
operation specifications associated with the
matching operations. A composition directive can be
used to vary how the specifications are logically
connected.

5. Unmatched components i.e., component that only
occur in either the aspect model or the primary view
are included in the composed component diagram.

6. Composition directives can be used to add, delete,
replace and rename components and interfaces.

Two composed model have been generated: The
distributed recovery block composed model and the
centralized Complaint_Request distributed notification
recovery block composed model. In our models the
required and provided interfaces have the same name
and same operations.

4.3.1. The Distributed Recovery Blocks
Composed Model

In the distributed recovery block composed model
shown in Figure 9:

The unmatched components added are: “Login
Manager”, “Notification Recovery Block Manager”,
“Complaint Recovery Block Manager”, “Request
Recovery Block Manager”, “Notification Acceptance
Test Manager” “Complaint Acceptance Test Manager”
“Request Acceptance Test Manager”, “Notification
Alternate Manager”, “Complaint Alternate Manager”
and “Request Alternate Manager” components.

The interfaces are the same as described in the aspect
view and in the primary view but composition
directives are used to delete interfaces:

1. Interface NotifyInt between Notification Manager
Component and User Citizen Manager Component.

2. Interface NotifyComplaintInt between Complaint

Manager Component and Notification Manager
Component.

3. Interface NotifyRequestInt between Request
Manager Component and Notification Manager
Component.

« Service Provider

Manager »

Notification

Alternate Manager

« Recovery Block

Manager »

Complaint

Recovery Block

Manager

« Service

Provider

Manager »

Notification

Manager

« Recovery

Block Manager »

Request

Recovery Block

Manager

« Service Provider

Manager »

Complaint Alternate

Manager

« Service

Provider

Manager »

Complaint

Manager

PrimaryServiceInt1

AlternateServiceInt2

AlternateServiceInt1

AcceptanceServiceInt1

NotifyRequestInt

PrimaryServiceInt2

AcceptanceServiceInt2

« Acceptance

Test Manager »

Notification

Acceptance Test

Manager

« Acceptance

Test Manager »

Complaint

Acceptance Test

Manager

« Acceptance

Test Manager »

Request

Acceptance Test

Manager

« Service

Provider

Manager »

Request

Alternate

Manager

« Service

Provider

Manager »

Request

Manager

AcceptanceServiceInt3

PrimaryServiceInt3

AlternateServiceInt3

« Recovery

Block Manager »

Notification

Recovery Block

Manager

NotifyComplaintInt

« Client »

User Citizen

Manager

« component_i »

User Employee

Manager

NotifyInt

HandleComplaintInt

ComplaintInt

RequestInt

HandleRequestInt

RequestAltInt

HandleRequestAltInt

HandleComplaintAltInt

ComplaintAltInt

Login

Manager

LogEmployeeInt

LogCitizenInt

Figure 9: Composed Model for Distributed
Recovery Blocks

4.3.2. The Centralized Complaint_Request,
Distributed Notification Recovery blocks Composed
Model

In the Centralized Complaint_Request, Distributed
Notification Recovery blocks Composed Model shown
in Figure 10:

The unmatched components added are: “Login
Manager”, “Notification Recovery Block Manager”,
“Complaint_Request Recovery Block Manager”, and
“Notification Acceptance Test Manager” “Complaint
Acceptance Test Manager” Request Acceptance Test
Manager, “Notification Alternate Manager”,
“Complaint Alternate Manager” and “Request
Alternate Manager” components.

The interfaces are the same as described in the aspect
view and in the primary view but composition
directives are used to delete interfaces:

1. Interface NotifyInt between Notification Manager
Component and User Citizen Manager Component.

2. Interface NotifyComplaintInt between Complaint

Manager component and Notification Manager
Component.

3. Interface NotifyRequestInt between Request

Manager component and Notification Manager
component.

« Service Provider

Manager »

Complaint alternate

Manager

« Recovery Block Manager »

Complaint_Request Recovery Block Manager

« Service Provider

Manager »

Request Alternate

Manager

« Recovery Block

Manager »

Notification

Recovery Block

Manager

« Service

Provider

Manager »

Request

Manager « Service

Provider

Manager »

Complaint

Manager

PrimaryServiceInt3

AlternateServiceInt3

AlternateServiceInt2

AcceptanceServiceInt3

NotifyRequestInt

PrimaryServiceInt2

AcceptanceServiceInt2

« Acceptance Test

Manager »

Request

Acceptance Test

Manager

« Acceptance

Test Manager »

Complaint

Acceptance Test

Manager

« Acceptance

Test Manager »

Notification

Acceptance Test

Manager

« Service Provider

Manager »

Notification

Alternate Manager

« Service Provider

Manager »

Notification

Manager

PrimaryServiceInt1

AlternateServiceInt1

NotifyComplaintInt

« Client »

User

Citizen

Manager

« Component_i »

User Employee

Manager

HandleComplaintAltInt

HandleRequestInt

NotifyInt

RequestInt

ComplaintInt

HandleComplaintInt

RequestAltInt

ComplaintAltInt

HandleRequestAltInt

AcceptanceServiceInt1

Login

Manager

LogCitizenInt LogEmployeeInt

Figure 10: Composed Model for Centralized
Complaint_Request, Distributed Notification
Recovery Blocks

5. Related work

We are not aware of any other work that specifically
addresses the component oriented modeling of
recovery block fault tolerant feature and its integration
with a given application using the AOM approach.

However there is considerable research on recovery

block modeling [7][8][9][13][14] and AOM
application to features like security [10], performance
[12][10], access control [11].

The recovery block modeling basic approach is
procedure oriented [8][7][9] but some object oriented
solutions [14] also exist. None of the work we
encountered deal with use of recovery blocks at the
component level design. A description of an “idealized
component” is given in [13] [15]but it is not detailed in
term of operations.

6. Conclusion

Current AOM research addresses the problem of
crosscutting concerns by providing support for
separating the concerns, composing aspect and primary
views, analyzing composed models to identify and
resolve conflicts that may arise as result of
composition.

In this paper our major contribution is to extend the
AOM approach to component architectures.
To illustrate the approach we use aspects to describe a
fault tolerance recovery block feature at the
architectural level, we developed a component based
recovery block aspect model and we have showed how
it can be integrated with component architecture and
we apply our approach to a health monitoring system.

 Composing models by hand can be tedious and thus
we plan to build a tool to automate the process. There
is a tool for class diagram composition [18] that can be
extended to take into account component diagram. This
work may be extended also to support composition of
behavioral models.

7. References

[1] R.B. France, I. Ray, G. Georg, S. Ghosh , “ An

Aspect-Based Approach to Early Design
Modeling”. IEEE Proceedings - Software, Special
Issue on Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture
Design, 151(4), pp 173-185, August 2004.

[2] Garlan, D., Perry, D., Introduction to the Special
Issue on Software Architecture. IEEE Transactions
on Software Engineering, 21(4), April 1995.

[3] Garlan, D., Shaw, M., An Introduction To
Software Architecture. In V. Ambriola and G.
Tortora, editors, Advances in Software
Engineering, Vol 1, pages 1-40. World Scientific
Publishing Company, 1993.

[4] Garlan, D., Software Architecture: a Roadmap. In
A. Finkelstein, editor, The Future of Software
Engineering, International Conference on Software
Engineering (ICSE’2000), pp 93-101, Limerick,
Ireland, June 2000. IEEE Computer Society Press /
ACM Press.

[5] http://www.omg.org/uml.
[6] Straw, G., Georg, G., Ghosh, S., France, R., Model

composition Directives. In Proceedings of the
International Conference on the UML, October
2004, pp 84-97. Springer, 2004.

[7] Randell, B., System Structure for Software Fault
Tolerance, IEEE Transactions on Software
Engineering, vol SE-1, no.2, pp 220-232, June
1975.

[8] Randell, B, Xu, J., The Evolution of the Recovery
Block Concept, In Sofware Fault Tolerance book
edited by Lyu, M.R.,, Wiley, 1995.

[9] Randell, B., Horning, J.J., Lauer, H.C., Melliar-
Smith, P.M., A Program Structure for Error
Detection and Recovery. In Proceedings
Conference Operating Systems: Theoretical and
Practical Aspects, pp 23-25, IRIA, April 1974.

[10] Petriu, D.C., Woodside, C.M., Petriu, D.B., Xu, J.,
Geri, G., France, R., Bieman, J.M., Houmb, S.H.,
Performance Analysis of Security Aspects in UML
Models.

[11] Ray, I., France, R., Li, N., Geri, G., An Aspect-
Based Approach to Modeling Access Control
Concerns, Information and Software Technology,
40(9), pp 557-633, 2004.

[12] Shen, H., Petriu, D.C., Performance Analysis of
UML Models Using Aspect-Oriented Modeling
Techniques

[13] Xu,J., Randell, B., Rubira-Calsavara, C.M.F.,
Stroud, R.J., Towards an Object-Oriented
Approach to Software Fault Tolerance

[14] Miller, J., Wood, M., Brooks, A., Roper, M.,
Applying Objet Oriented Construction to Fault
Tolerant Systems, In IEEE, 1994.

[15] Anderson,T., Lee, P.A., Fault Tolerance Principles
and Practice. Prentice Hall International, 1981.

[16] Daniels, J., Cheesman, J., UML Components, A
simple Process for Specifying Component-Based
Software. Addison Wesley, 2001.

[17] Clarke,S., Baniassad, E., Aspect-Oriented Analysis
and Design: The Theme Approach, Addison
Wesley April 2005.

[18] Aspect Composition tool,
http://www.cs.colostate.edu/puml/kompose2.html.

