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Abstract. 

While important efforts are dedicated to system 
functional testing, very few works study how to test 
specifically security mechanisms, implementing a 
security policy. This paper introduces security policy 
testing as a specific target for testing. We propose two 
strategies for producing security policy test cases, 
depending if they are built in complement of existing 
functional test cases or independently from them. 
Indeed, any security policy is strongly connected to 
system functionality: testing functions includes 
exercising many security mechanisms. However, 
testing functionality does not intend at putting to the 
test security aspects. We thus propose test selection 
criteria to produce tests from a security policy. To 
quantify the effectiveness of a set of test cases to detect 
security policy flaws, we adapt mutation analysis and 
define security policy mutation operators. A library 
case study, a 3-tiers architecture, is used to obtain 
experimental trends. Results confirm that security must 
become a specific target of testing to reach a satisfying 
level of confidence in security mechanisms.  

 
 

1. Introduction 

For an organization, the security policy (SP) 
addresses constraints on access to data or functions by 
external users (or programs) and by people belonging 
to the organization. Such constraints are expressed 
using one of several access control models (RBAC[1-
3], OrBAC [4, 5]) For a system to be developed, all 
these models describe the permissions or prohibitions 
for people to any of the resources of the system (it may 
apply to configure a firewall as well as to define who 
can access a given service or data in a database). The 
most advanced models ([4, 8, 9]) express rules that 

specify permissions or prohibitions that apply only to 
specific circumstances, called contexts. For instance, in 
the health care domain, physicians have special 
permissions in specific contexts, such as the context of 
urgency. Also, some models provide means to specify 
the different security policies applicable to the various 
parts of an organization (sub-organizations). At the end 
of this specification process, the SP specifies what the 
permissions and prohibitions should be in the system, 
in function of contexts, roles and views. 

The software development process then consists in 
building a system according both to the functional 
requirements and the SP. In most cases, the 
deployment of a SP is not automated and the 
correctness of its implementation has to be verified or 
tested. In that context, testing can be applied as a 
technique to get some evidence that the SP 
implementation is correct with respect to the 
requirements.   

In this paper, we introduce SP testing as a 
necessary step that takes place at the end of the 
development process. We build test cases from the SP 
specification and run those tests on the system to reveal 
security flaws or inconsistencies between the policy 
and the implementation. In practice, the difficulty is 
that any SP is strongly connected to system 
functionality: testing functions includes exercising 
many security mechanisms. The issue is to determine: 

- whether testing functions provide enough 
confidence in the security mechanisms,  

- how to improve this confidence by selecting test 
cases specific to security. 

We study how to select SP test cases to reveal 
security flaws. We propose two strategies for 
producing SP test cases: in addition to existing 
functional test cases or independently from them. 

The first step when applying testing to a specific 
context, such as security testing, is to analyze which 
security flaws can occur in this specific context, and to 
define test criteria, to qualify a set of test cases.  



We propose and discuss what SP testing is and 
propose test criteria to generate test cases from an 
access control model. To obtain an experimental basis 
and compare the criteria and the strategies, a fault/flaw 
model for security policies is defined. It leads to an 
adaptation of mutation analysis [6] and thus provides a 
security testing qualification method. This flaw model 
is expressed in the form of mutation operators to be 
applied on the SP mechanisms. Using mutation 
analysis on a case study (a library system implemented 
with a 3-tiers architecture), we compare and discuss the 
criteria and strategies and highlight the specific issues 
related to SP testing,  The most important contribution 
of the paper consists of demonstrating that testing a SP 
is a task distinct (but tightly related) from functional 
testing.  The corollary contributions are a first 
definition of this testing task, the security flaws model, 
and first SP test criteria and strategies that still need to 
be improved, as shown by the case study results. 

Section 2 introduces the context of the paper and 
defines important notions for security testing. Section 3 
presents an example and the chosen SP model called 
OrBac. Section 4 proposes a method to qualify SP test 
cases. In section 5, an empirical study reveals the first 
results on the proposed criteria and strategies, and 
shows various issues which arise when testing security. 

2. Process and definitions 

In this section we present the overall process to 
derive test cases from requirements and propose 
precise definitions for the notions used in this paper. 

Requirements for a software system include the 
functional description of the system as well as many 
extra-functional concerns (performances, real-time, 
availability,…). Among these concerns, the security 
aspects are often mixed with the functional ones. The 
requirement analysts have to extract these aspects and 
express, on one hand the use cases and the business 
model and on the other hand explicit the security 
policy (SP) in the form of an access control model. A 
policy defines a set of security rules that specify rights 
and restrictions of actors on parts and resources of the 
system. The SP may introduce specific concepts, and 
reuse most of the concepts and functions identified in 
the business model. The new concepts introduced for 
security implementation are taken into account in the 
refinement process, either during design (SecureUML 
[7]) or at deployment/coding steps.   

The Figure 1 highlights the fact that both the code 
and the test cases are produced from the requirements 
by independent ways. The important point is that the 
SP test cases are obtained using the access control 
model, while the functional test cases are derived only 
from the use cases and business model. SP test cases 

are not only dependent on the SP but also refer to the 
use cases and the business model. In this paper, the 
functional test cases (or system tests in the sense of 
Briand’s work [8]) are generated using the approach 
presented in [9], based on the use cases improved with 
pre- and post-conditions, called contracts. The 
functional test cases cover all the code implementing 
the functions of the system. We will study how 
functional test cases can be reused for testing security 
mechanisms.  
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Figure 1. Security policy tests generation  

2.1. Definitions 
The following definitions help clarifying the 

differences between functional and SP testing. 
System/functional testing: the activity which consists 

of generating and executing test cases which are 
produced based on the uses cases and the business 
models (e.g. analysis class diagram and dynamic 
views) of the system [8, 9]. By opposition with 
security tests, we call these tests functional.  

Security policy testing (SP testing): it denotes the 
activity of generating and executing test cases 
which are derived specifically from a SP. The 
objective of SP testing is to reveal as many security 
flaws as possible. 

Security flaw: A security flaw is the equivalent of a 
fault for functional testing. It corresponds to an 
inconsistency between the SP (the specification) 
and a security mechanism (the implementation) 
which is revealed at runtime.  

Test case: In the paper, we define a test case as a 
triplet: intent, input test sequence, oracle function.  

Intent of a test case: The intent of a test case is the 
reason why an input test sequence and an oracle 
function are associated to test a specific aspect of a 
system. It includes at least the following 
information:  (functional, names of the tested 



functions) for functional test cases or (SP, names of 
the tested security rules) for SP ones. 

SP oracle function: The oracle function for a SP test 
case is a specific assertion which interrogates the 
security mechanism. There are two different oracle 
functions: 

- For permission, the oracle function checks 
that the service is activated.  

- For a prohibition, the oracle checks that the 
service is not activated.  

 
The intent of the functional tests is not to observe 

that a security mechanism is executed correctly. For 
instance, for an actor of the system who is allowed to 
access a given service, the functional test intent 
consists of making this actor execute this service. 
Indirectly, the permission check mechanism has been 
executed, but a specific oracle function must be added 
to transform this functional test into a SP test.  

3. Running the process on an example  

This section introduces an example based on a 
library management system. In this work we use 
OrBAC [4, 5] as a specification language to define the 
access control rules (a set of rules specifies a SP). 
Based on the simplified requirements of this system, it 
is possible to derive a set of access control rules using 
the OrBAC model. We use these rules to illustrate the 
main features of the OrBAC language. 

3.1. Library management system 
The purpose of the library management system 

(LMS) is to offer services to manage books in a public 
library. The books can be borrowed and returned by 
the users of the library on working days. When the 
library is closed, users can not borrow books. When a 
book is already borrowed, a user can make a 
reservation for this book. When the book is available, 
the user can borrow it. The LMS distinguishes three 
types of users: public users who can borrow 5 books 
for 3 weeks, students who can borrow 10 books for 3 
weeks and teachers who can borrow 10 books for 2 
months. 

The library management system is managed by an 
administrator who can create, modify and remove 
accounts for new users. Books in the library are 
managed by a secretary who can order books, add them 
in the LMS when they are delivered. The secretary can 
also fix the damaged books n certain days dedicated to 
maintenance. When a book is damaged, it must be 
fixed. While it is not fixed, this book can not be 
borrowed but it can be reserved by a user. The director 
of the library has the same accesses than the secretary 
and he can also consult the accounts of the employees. 

The administrator and the secretary can consult all 
accounts of users.  All users can consult the list of 
books in the library. 

3.2. Modeling a security policy with OrBAC 
In parallel of the design model, it is possible to 

model the SP from the requirements. We distinguish 5 
different roles: public users, students, teachers, 
administrator and secretary. It is also possible to 
identify several rules that authorize or forbid access to 
data or services of the LMS.  

OrBAC allows defining a set of security rules. A 
rule can be a permission, prohibition or obligation. 
Each rule has 5 parameters (called entities):  an 
organization, a role, an activity, a view and a context.  
To increase modularity for the definition of security 
rules, OrBAC enables the definition of hierarchies of 
entities. In that case, rules defined on high level entities 
are inherited by the sub-entities. From the primary 
rules, secondary rules are derived, as illustrated in the 
following. 

From the LMS requirements, we identify the 
entities displayed in Figure 2. The graphical 
representation is the one from MotOrBAC, the tool 
implementing the OrBAC model. First, we identify the 
services which are constrained by security rules. They 
are called activities in OrBAC. All users can perform 
three activities: borrow, reserve, return a book. Since 
all these activities are associated to the same rules, we 
define a high-level activity called BorrowerActivity. 
This means that all rules defined on the super activity 
will apply on sub activities. There are also a number of 
administrative tasks that can be executed. Since the 
administrator is allowed to execute all these tasks we 
define a super activity AdminActivity. The activities 
that inherit from PersonnelActivity are the activities 
that are permitted for the director and the secretary.  

It is interesting to notice that the service for 
consulting the list of books is not modeled as an 
activity in the access control model. Since everyone 
can access this service, there is no restriction for this 
access, thus there is no rule related to this service.  

Concerning the data (called views in OrBAC) that 
are restricted with access control, we identify the 
notion of book and of account. There are two types of 
accounts: borrower and personnel accounts. 

The notion of context corresponds to a temporal (or 
spatial) dimension that appears in access control rules. 
In the requirements, we clearly identify Holidays, 
WorkingDays, MaintenanceDay and a default context 
which is used to define rules that are related to no 
specific time.  

The last type of entities that needs to be defined 
concerns the roles. In the requirements we distinguish 
two main categories of roles: the users and the 



administrative personnel. We define the Borrower role 
which captures the role of user. Since Teacher and 
Student are two specific types of users, we model 
them as two sub-roles for Borrower. Concerning the 
personnel, we distinguish three categories: 
Administrator, Secretary, and Director.  

Roles

ActivitiesViews

Contexts

 
Figure 2. OrBAC entities for the LMS 

Once all the entities are defined, they can be used 
to specify access control rules. Again, these rules are 
derived from the requirements. For example, 
requirements specify that users are allowed to borrow 
books only when the library is opened. This rule is 
defined as follows: 
Permission(Library, Borrower, 
BorrowerActivity, Book, WorkingDays) 

The first parameter for this permission rule is the 
organization. Since there is only one organization in 
our example we give a very generic name Library.  

Other example of rules include the prohibition to 
borrow a book during holidays, the permission for an 
administrator to manage the accounts for the personnel 
and the borrowers or the permission for the secretary to 
consult borrower accounts. These examples can be 
expressed as follows: 
Prohibition (Library, Borrower, 
BorrowerActivity, Book, Holidays) 

Permission(Library, Administrator, 
ManageAccess, PersonnelAccount, default) 

Permission(Library, Administrator, 
CreateAccount, BorrowerAccount, default) 

Permission(Library, Secretary, 
ConsultBorrowerAccount, BorrowerAccount, 
default) 

From the explicit (or primary rules), secondary 
rules are derived based on the parameters hierarchy. 
For example the rule: 
Permission(rennesLibraries,Borrower,BorrowerAc
tivity,Book,WorkingDays) 

Based on hierarchies shown in Figure 2, 6 
additional rules are automatically derived. The 
BorrowerActivity is replaced by each possible sub-

activity (borrow, rower is replaced by Student or 
Teacher. 

The primary rule which is derived into these six 
secondary rules becomes useless from a testing point 
of view, if all the secondary rules are tested. We call 
such rules generic rules since they have no related 
security mechanism in the system under test. 

One issue when specifying control access rules is 
that conflicting rules may appear. These conflicts can 
occur when 2 opposite rules have exactly the same 
parameters.  

For example the following two rules are 
conflicting: 
Permission(Library, Borrower, 
BorrowerActivity, Book, WorkingDays) 

Prohibition(Library, Borrower, 
BorrowerActivity, Book, WorkingDays) 

It is important to point out that conflicts may also 
occur when the parameters of the rule are not exactly 
the same. In the case a parameter in one rule inherits 
from a parameter in an opposite rule, the two rules are 
conflicting.  

For example, in the following two rules, Teacher 
inherits from Borrower, thus the rules are conflicting: 
Permission(Library, Borrower, 
BorrowerActivity, Book, WorkingDays) 

Prohibition(Library, Teacher, 
BorrowerActivity, Book, WorkingDays) 

An important benefit of using OrBAC is that the 
rules can be processed by a tool called MotOrBAC that 
automatically detects the conflicting rules in the 
definition of a SP, using an underlying Prolog motor. 
One way to solve the conflicts consists in assigning 
priorities to rules. The rule with the highest priority is 
executed.  

For the LMS, 20 access control primary rules have 
been expressed. The total number of secondary rules is 
22 and 7 rules are generic. So, the total number of rules 
is 42, 35 corresponding to a security mechanism. 

4. SP test cases selection 

For SP testing, the question is to ensure that 
security mechanisms are covered not only by input test 
sequences but are also exercised in every way that may 
lead to a failure of the policy. 

In this section, we propose several test criteria to 
select test cases from an OrBaC specification. We also 
consider two strategies to produce efficient SP test 
cases w.r.t. the criteria.  

4.1. Test criteria  
Two test criteria are studied in this paper to select 

SP test cases from an OrBAC SP model.  



CR1 - The criterion 1 (CR1) is satisfied iff a test case is 
generated for each primary access control rule of 
the security model. 
In the case of the LMS, we have 20 such primary 

rules. In the case of a generic rule, a test case testing 
one instance of this rule is considered as sufficient.  
CR2 - The criterion 2 (CR2) is satisfied iff a test case is 

generated for each primary and secondary rule of 
the security model, except the generic rules. 
In that case, 35 test cases are generated 

corresponding to the 42 total access control rules 
minus the 7 generic ones. The CR2 criterion is stronger 
than CR1, since it forces the coverage of all secondary 
rules. 
Advanced SP test cases - Advanced SP test cases that 

exercise the default/non specified aspects of the 
SP.  
These test cases are selected to kill mutants 

generated with a specific mutation operator (ANR) that 
will be presented in the next section.  
Functional test cases: It corresponds to system tests, in 

the sense they are generated based on the use cases 
of the system under test. 
In the case study, we used the approach based on 

use cases + contracts (pre- and post-conditions) to 
generate the functional test cases. The automated 
generation is obtained using the UCTS (Use Case 
Transition System) presented in [9]. The generated test 
cases cover the nominal code (code implementing the 
specified use of use cases) and a part of the robustness 
code of the system under test (unexpected use of a use 
case and specified situations when the use case 
execution fails).  

Security test cases obtained with CR1 or CR2 
should test aspects which are not the explicit objective 
of functional tests, e.g. that all prohibition rules that are 
not tested by functional tests. 

4.2. Test strategies  
In this paper, we study whether the functional test 

cases can be used for SP testing. Reusing functional 
test cases implies adapting them for explicitly testing 
the SP. The intent of the functional test becomes 
security and details the SP rules which are tested by the 
input test sequence. The test oracle does not check the 
correctness of the service results, but interrogates the 
security mechanism and checks if the expected 
permission/prohibition is executed. 

So, we consider two types of strategies depending 
whether we reuse the existing test cases or not.  

Incremental strategy: It denotes the strategy for 
producing security test cases which reuse existing 
test cases. 
An example of incremental test strategy consists of 

reusing functional test cases, then completing them 

with one of the CR1 or CR2 criteria, and finally 
completing the resulting test suite with advanced test 
cases.  

Independent strategy: This strategy consists of 
selecting functional, SP test cases and Advanced SP 
test cases independently. 
We will compare and discuss in the case study 

several incremental strategies and the independent one. 
The goal is to highlight the many issues that arise when 
selecting test cases for the SP aspect. 

4.3. Test Qualification  
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Figure 3. Qualifying security tests 

Figure 3 presents the process for improving a SP 
test cases suite so that it reaches a satisfying level, in 
terms of capacity in detecting security flaws. When 
flaws have been corrected by initial test cases, the test 
qualification loop consists of improving the test cases 
until all security flaws are detected. A security mutant 
differs from the initial code by the introduction of a 
single flaw in the SP implementation. The mutation 
score corresponds to the proportion of faulty versions 
of the system which are detected (or “killed”) by the 
test cases.  A set of test cases is satisfying to test a SP 
if it kills all the security mutants. The improvement 
process ends when the 100% mutation score is reached. 
The improved SP test cases can then be reapplied on 
the non-mutated code to check whether actual flaws 
are detected.  

In [10], we have defined mutation operators for 
security tests qualification. For the analysis presented 
in this paper, we reuse those operators. 

4.4. Mutation operators  
Mutation analysis is a technique for evaluating the 

quality of test cases. We propose to apply it in the 
context of security test cases generation. In order to 
apply mutation analysis to security tests we need to 
find suitable mutation operators. We express high level 
operators that will be applied to security policies and 
generate faulty versions of a SP using OrBAC. A 



mutant is a copy of the original policy that contains 
one simple flaw. 

a Security mutant operators 
We identified 8 mutant operators classified in 4 

categories. 
Rule type changing operators 

The following operators can be used in order to 
create mutants for security policies by changing 
predicate type: 
PRP : Prohibition rule replaced with a permission one. 
PPR :  Permission rule replaced with a prohibition one. 

To illustrate rule type changing operators, we present 2 
examples to show how they modify the SP: 

PPR:  
Rule used: Permission (rennesLibraries, 

Administrator, ModifyAccount, BorrowerAccount, 
default).  

Rule to use instead: Prohibition 
(rennesLibraries, Administrator, 
ModifyAccount, BorrowerAccount, default). 

PRP: 
Rule used: Prohibition (rennesLibraries, 

Secretary, ModifyAccount, BorrowerAccount, 
default).  

Rule to use instead: Permission 
(rennesLibraries, Secretary, ModifyAccount, 
BorrowerAccount, default). 
Rule parameter changing operators 

The following operators replace parameters of 
predicates: 

CRD: Rule context is replaced with another 
context. 

RRD: Rule role is replaced with another role 
Some examples: 
CRD: Rule to use: Permission(rennesLibraries, 

Secretary, FixBook, Book, MaintenanceDay). 

Rule to use instead: Permission 
(rennesLibraries, Secretary, FixBook, Book, 
HoldaysDays). 

RRD: Rule to use: Permission 
(rennesLibraries, Administrator, ManageAccess, 
PersonnelAccount, default). 

Rule to use instead: Permission 
(rennesLibraries, Teacher, ManageAccess, 
PersonnelAccount, default) 
Rule adding or removing mutation operators 

A mutant with an additional security rule can 
simulate a security hole. In fact, the SP will be more 
permissive or more repudiating. The mutation operator 
introduced: 

ANR : New rule added. 
Some examples of ANR: 
Rule added: Permission (rennesLibraries, 

secretary, BorrowBook, Book, WorkingDay). 

Rule added: Permission (rennesLibraries, 
Secretary, DeliverBook, Book, Holidays). 
Hierarchy mutant operators 

OrBAC implements abstract entities inheritance. 
This means that we can specify an entity, e.g., 
“borrower” (here as a role) then its sub-entities, e.g., 
“student”. Rules defined for the “borrower” will be 
automatically applied to “student”. If we have this 
predicate: 

permission(Library,Borrower,borrow, book, 
WorkingDays) 

Then we have: 
permission(Library,Student,borrow, book, 

WorkingDays) 
We can create mutants by replacing a parent entity 

by one of its descendants or by replacing a child by one 
its ancestor. 
RPD: Rule role replaced with sub-role. 
APD: Rule activity replaced with sub-activity. 

Some examples: 
RPD : Rule used: Permission (rennesLibraries, 

Borrower, ReserveBook, Book, WorkingDays). 
Rule to use instead: 

Permission(rennesLibraries, Student, 
ReserveBook, Book, WorkingDays). 

APD: Rule used: Permission (rennesLibraries, 
Student, BorrowerActivity, Book, WorkingDays). 

Rule to use instead: Permission 
(rennesLibraries, Student, ReserveBook, Book, 
WorkingDays). 

5. Case study and results 

The case study application has a typical 3-tiers 
architecture widely used for web applications. It is 
representative of the web applications. Figure 4 
presents the main characteristics of this architecture. 
The application contains 3204 lines of code, 62 classes 
and 335 methods.  

The security mechanisms implementing the OrBAC 
based SP are located in the business layer, in the 
service methods. Before performing the requested 
action, the method calls the security mechanism that 
checks if the SP allows of forbids that action.  When 
the action is prohibited a SP violation exception is 
raised and thrown to the caller, otherwise (when the 
action is allowed) nothing is done and the execution of 
the action is pursued by the service method. There are 
two possible behaviours: 
• The requested action is allowed: The security 

mechanism let the application continue normally. 
• The requested action is prohibited: The security 

mechanism raises a security exception that 
interrupts the execution of the method. This 
exception is then handled by the caller. 
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Figure 4. A 3-tiers architecture for the LMS 

When we implemented the SP, we maintained 
traceability links between the OrBAC rules and the 
corresponding blocks of code. This means that we are 
able to modify the security rules used by the 
application and introduce a mutant rule. The system’s 
implementation defines a data structure that contains 
all the permissions and prohibitions defined in the 
OrBAC policy. The creation of mutants can be 
automated because the rules are stored in a unique 
variable. Thus the introduction of flaws consists in 
modifying this variable.  

We generated 42 functional tests and 189 security 
tests. To illustrate the difference between functional 
and security tests, the following example shows two 
different test cases for borrowing a book: 

Functional – a functional test case will make a 
borrower borrow and return a book. Intent: functional, 
test borrow and return for a unique borrower. Oracle: 
check that the book is available after it has been 
returned 

Security Policy – a SP test case will check that a 
borrower can borrow a book to the library during the 
working days. Intent: security, permission for a 
borrower to borrow a book the working days. Test 
sequence: create the context of a working day, make a 
borrower borrow a book. Oracle: interrogate the 
security mechanism and check that the permission has 
been computed and given to the borrower.  

The mutation analysis runs as follows: 
• Tests are executed against the implementation 

of the initial SP. 
• The oracle function associated to the test case 

checks that the service is activated 
(permission) or not (prohibition). 

5.1. Generated mutants 
Table 1 gives the number of generated mutants per 

operator. The ANR operator generates much more 
mutants since it adds a non specified security rule. This 
number may vary, depending on the completeness of 
access control rules. The fewer rules are specified, the 
more mutants this operator generates. The number of 
ANR mutants thus reflects the fact that all the possible 
cases have not been specified in the SP. To our own 
experience, this is quite usual: the specification focuses 
on the most critical and important cases, and often 
considers that default behaviour is acceptable. Testing 
these cases allow the default policy to be exercised and 
allow highlighting lack in the specification. On the 
other hand, there are few mutants generated from 
hierarchy changing operators because the specification 
does not introduce many hierarchical entities. The 
basic mutation operators (i.e. all operators except 
ANR) will generate more mutants when more rules are 
added. In a general case, there is thus a balance in the 
number of generated mutants between basic operators 
and ANR.  

Table 1. # mutants per mutation type and 
operator 

 

Operator category Operator 
name 

Number of 
mutants 

PPR 22 Rule type 
changing  PRP 19 

 RRD 60 Rule 
parameter 
changing  

 CRD 60 

 RPD 5 

 
 
 
 

Basic 
Mutation 
operators 

Hierarchy 
changing  APD 5 

Rule adding operator ANR 200 
Total 371 

5.2. Issue 1: Relationships/differences 
between functional and security tests 

The first experiments we performed aim at studying 
whether the faults detected by functional test cases 
differ from (are included in or intersect with) the ones 
detected by test cases dedicated to the SP. While the 
functional tests, which cover 100% of the code, 
necessarily execute security mechanisms, they should 
only focus on the success/failure of method/service 
sequence executions.  

 



Table 2. Mutation analysis results by test cases category 

 functional CR1 CR2 
#Test Cases 42 20 35 
Rule type changing operator 35/41 85% 38/41 92% 41/41 100% 
Rule parameter changing 
operator 

90/120 75% 101/120 84% 120/120 100% 

Hierarchy changing operators 10/10 100% 10/10 100% 10/10 100% 
Overall score with basic 
security operators 135/171 78% 149/171 87% 171/171 100% 

Rule adding operator (ANR) 22/200 11% 28/200 14% 33/200 17% 
Overall score with all operators 157/371 42% 177/371 47% 204/371 55% 

When reusing functional test cases with the 
objective of testing security, the intent changes and 
thus it is necessary to modify the associated test oracle. 
This task may be costly in the general case, depending 
on the difficulty to relate the functional test sequence 
to the security mechanisms it should exercise. 

There are 42 test cases. Some test cases (7 test 
cases) do not trigger the security mechanisms. It 
corresponds to a code that is not related to the SP. This 
confirms the intuition that functional test objectives 
differ from the objective of explicitly testing security 
mechanisms. 

Table 2 second column shows that the functional 
test cases, adapted to security, can kill most (78%), but 
not all, basic operators’ mutants. Concerning, the ANR 
operator, the functional test cases are not efficient 
(11%): it is due to the fact that the ANR operator 
generates security flaws which are outside the scope of 
the specification. In conclusion, the overlap of 
functional aspect and SP is high, but the functional test 
cases do not kill all security mutants. It appears as a 
meaningful task to generate test cases with the explicit 
objective of testing the SP. 

5.3. Issue 2: Comparing test criteria 
Table 2 third and fourth columns present the 

mutation results for CR1 and CR2 test criteria. The 20 
test cases selected with CR1 are more efficient than the 
functional test cases, since with fewer test cases the 
final mutation score is higher. However, this criterion 
is not efficient to reach a 100% mutation score on basic 
mutants (generated with all operators except ANR).  

In conclusion, the CR2 criterion is necessary to 
provide a full coverage of basic mutants, and appears 
as good trade-off between functional and CR1, in terms 
of efficiency (mutation score) and cost (#test cases) for 
detecting security flaws. A corollary conclusion is that 
a large number of basic mutants are quite easy to kill. 
Since the hard-to-kill mutants are the most interesting 
ones (because they require the most efficient test 
cases), another study would consist of ranking the 
mutation operators so that only hard-to-kill mutants are 
generated. This study is beyond the objective of this 

paper but is necessary to offer a realistic mutation-
based approach to test security policies. This paper 
focuses on the test selection problem for SP and the 
question of sufficient mutant operator does not impact 
the conclusions we draw (in the worse case, we 
consider more mutants than necessary since some 
mutants are coupled). 

We remark that the CR2 criterion allows covering 
up to 17% of the ANR mutants. While basic security 
mutants force the tests to cover the specified security 
rules, the ANR ones force to check the robustness of 
the system in case of default or underspecified policies. 
Combining both operators provides a good criterion to 
guide the tester when generating the test cases. 

The advanced security test cases are test cases 
which are explicitly generated in order to kill all the 
ANR mutants. In fact, the advanced test cases are 
generated by calling each activity with all possible 
roles and contexts. This generation process leads to test 
cases that detect a rule that is added in an ANR mutant 
and that is not present in the original OrBAC policy. 

For example, if the following rule is not defined: 
permission(borrower,update,personnelAccount,wo
rkingDay)) 

The advanced security test cases will try to activate 
the method updatePersonnelAccount with a borrower 
role. If the method is executed normally then an ANR 
mutant is detected.  

In this approach, we are using mutant score as the 
test criterion. We do not use mutation for analysis 
purpose (to compare test criteria or testing technique) 
but as a test selection technique. When the generation 
of mutants cannot be fully automated, this test 
selection technique is not applicable. Still, this study 
provides interesting results for test selection effort and 
test quality. 

5.4. Issue 3: Advanced vs. basic security 
tests  

The issue here is to compare the test cases selected 
to cover the security rules with CR2 (and which kill all 
mutants except ANR) and the advanced security tests 
which are generated in order to kill all the ANR 



mutants. Table 3 presents the overlap between these 
two approaches. It is interesting to note that the 
advanced security test cases kill up to 60% of the basic 
security mutants. On the other hand, the test cases 
selected with CR2 only kill 17%. The effort to kill the 
ANR mutants is much more important (154) than for 
killing the basic security mutants (35). 

In conclusion, the test selection based on the ANR 
mutants cannot replace the CR2 criterion. CR2 and 
advanced security test cases are not comparable, and 
are both recommended, the first to efficiently test the 
specification, the second to cover non-specified cases 
(robustness).  

Table 3. Overlap of CR2 and adv. test cases 

 #test cases Basic 
security 
mutants 

ANR 

CR2 35 100% 17% 
Adv. sec. tests 154 59.3% 100% 

5.5. Issue 4: Incremental vs. independent 
test strategies 

The issue now is to study whether we can leverage 
an incremental approach to save test generation effort.  
Table 4 recalls the number of test cases generated with 
the following strategies: 
- the independent approach (we do not reuse 

functional test cases)  
- reusing the functional test cases, completing them 

to reach the CR2 criterion and to kill all ANR 
mutants (Incremental from functional strategy). 

- generating test cases to reach the CR2 criterion, 
completing them to kill all ANR mutants  (Incr. 
from CR2 strategy). 

The first incremental strategy seeks to take benefit 
from the existing functional test cases (which have to 
be adapted for security), the second one starts from the 
CR2 test criterion. 

Even if quantitative results are displayed, the 
comparison is difficult because the effort to adapt 
functional test cases to security cannot be easily 
estimated in a general case. It depends on the system to 
be tested. It may be neglected: that’s the case for our 
study since the security mechanisms are centralized 
and can be quite easily observed. In a general case, 
adapting these test cases may be as costly as generating 
security test cases. In Table 4, we put two values that 
correspond to the case when the cost of adaptation can 
be neglected in parenthesis. This issue is related to the 
problem of security mechanisms testability 
(controllability and observability). 

It appears that the independent generation of basic 
security and advanced test cases is the most costly. 
With any incremental strategy, we need to generate 

133 test cases to kill all advanced security mutants 
(saving 21 test cases generation). The final ranking 
between the two incremental strategies depends on the 
adaptation cost of functional test cases and may vary 
from a system under test to another. Only the test 
experts may estimate this adaptation cost. If it can be 
neglected, reusing functional test cases and completing 
them is the most interesting strategy. Another decision 
has to be taken which is to put an important effort for 
testing the SP robustness (killing ANR mutants).  

Table 4. Independent vs. Incremental 
strategies 

#Test cases 
Strategy 

Funct
. 

Basic 
Secur. 
CR2 

Adv. 
Secur. 

Total 

Independent - 35 154 189 
Incremental 
from 
functional 

(42) 21 133 154 
(196) 

Incr. from 
CR2 

- 35 133 168 

6. Related works 

As it has been already mentioned, the most used 
models to express security at high level help to specify 
the application access rules and then implement them 
into the code. Other models exist, which are not 
dedicated to access control, such as [11] which help 
expressing security requirements and model the 
potential attacks to be prevented in the design stage. In 
this paper, we only consider the access control models, 
but the security aspects to be tested are not restricted to 
them and many other security aspects need to be 
covered by systematic testing. 

In our approach we use mutation analysis in order 
to improve the security tests. Security tests become 
stronger because they are capable of detecting security 
faults. Recently mutation was applied to XACML 
based access control policies testing. Xie et al. [12] 
proposed a fault model for XACML policies. The 
mutation operators they use are different from those we 
propose because they are adapted to XACML style. 
Xie et al encountered the problem of detecting 
equivalent mutant due to the complexity XACML 
policies. We did not have this problem because, by 
construction, our operators do not produce equivalent 
mutants. In addition, Mathur et al. [13] applied 
mutation to RBAC models. They used formal 
techniques to conceive a fault model and adapt 
mutation to RBAC models.    

In [14], Mathur et al. applied fault injection to the 
application environment. The application environment 



is perturbed by modifying environment variables, files 
or process used by the application under test. Then the 
application has to resist to this perturbation and must 
not have an insecure behaviour that may lead to 
security flaw. In addition, fault injection was applied in 
another way. Adaptative vulnerability analysis [15] 
injects faults to the application data flow and internal 
variables. The objective is to identify parts of 
application’s code that have insecure behaviours when 
the state of the application is perturbed.   

7. Conclusion 

This paper identifies a number of issues related to 
security and illustrates through several experiments 
what are the specificities of this testing that testing. In 
particular we illustrate how functional and security 
testing can be tackled as complementary activities. The 
paper proposes a methodology for test cases selection, 
with various test adequacy criteria based on the 
security policy (SP) or on mutation. It also 
distinguishes test selection for testing the “nominal” SP 
rules from the advanced test selection that aims at 
testing the robustness of the SP. The first test cases can 
be derived from CR2 test criterion. In this paper, we 
use ANR mutants as the target and criterion for testing 
SP robustness. The case study highlights the issues a 
test expert has to deal with when facing the objective 
of testing a SP for a real system. In particular, two 
qualitative aspects arise: the possibility, or not, to adapt 
functional test cases to test a SP, and the interest of 
advanced security tests, regarding the important 
additional effort it may require. More fundamentally, 
the aspect of security mechanism testability in relation 
to system architecture is critical. The way security 
mechanisms are spread over the system or centralized, 
the easiness or difficulty to relate a security rule to a 
piece of code are major issues to run the testing task.  
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