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Chapitre 1

Background and Motivation

Model-Driven Engineering (MDE) is an approach to the speci�cation,
construction, validation, and maintenance of software systems in which the
central concept is that of models. MDE has grown from a number of ori-
gins, most notably the object-oriented analysis and design languages and me-
thodologies [Boo94, RBP+91, Jac91] and Computer-Aided Software Enginee-
ring (CASE) endeavours in the 80s and 90s to automate software engineering
[OFMP+95, BGMT88].

The models which are at the core of MDE are each built with respect to
a metamodel, which de�nes the structure of a language as the concepts and
associations which it o�ers the modeller. Model-driven systems are then assembled
from components that store, transform, manipulate and otherwise treat models
according to certain metamodels. These components can be built using either
generative or generic techniques, or built speci�cally for a given metamodel.

The integration of two or more of these components therefore depends on a
shared understanding of the metamodels being used. Equally, the ability of a given
component to function correctly with models whose metamodels are variations on
that against which the component was written, depends on having some technique
for determining whether the variant metamodel is in some way compatible with
the originally speci�ed metamodel. These problems, of ensuring the safe reuse of
model-driven components in light of metamodel evolution, and of allowing the
safe composition of these elements into systems, must be addressed if MDE is to
be a sustainable approach to system development and maintenance.

This general problem space, of ensuring the safe functioning of programs in
light of structural variation, has been the subject of considerable study in the
�eld of type systems. Object-oriented systems, in particular, have extensive foun-
dations in formalisms that specify, for example, under what conditions objects
of a certain type may be used in a situation where objects of another type are
anticipated.

5
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In addition to statically ensuring the absence of certain errors in programs or
assembly of systems, types and type systems also provide formal abstractions for
structuring systems that are useful throughout the software engineering process.
For example, Fleurey, Steel and Baudry show in [FSB04] that a clear and accurate
expression of the type of models used by a transformation is useful for guiding
the automated generation of test cases when testing it.

In this thesis I show how ideas from type systems may be applied to the
problem of model-driven engineering to de�ne a more formal notion of models,
model types, and model substitutability. Combined, these elements may be used
to provide a sound basis for reuse and integration in model-driven systems.

In this chapter, I give a survey of model-driven engineering, of existing ap-
proaches to supporting reuse and integration in model-driven systems, and of
work in type systems that addresses related issues. Chapter 2 then shows how
ideas from type systems may be adapted and extended to provide a basis for ty-
ping models in order to allow the de�nition of reusable model-driven components.
This is illustrated in Chapter 3, which describes the application of these model
typing principles to support their use in the Kermeta model-driven engineering
language. Chapter 4 then discusses the application of model typing, and its im-
plementation in Kermeta, to the expression problem. Finally, Chapter 5 o�ers
conclusions and perspectives.

1.1 Model-Driven Engineering
The de�ning characteristic of MDE [BFJ+03] is the use of models for repre-

senting the important artefacts in a system, be they requirements, high-level
designs, user data structures, views, interoperability interfaces, test cases, or
implementation-level artefacts such as pieces of source code. Each of the models
in an MDE system is constructed from a language speci�ed using a metamodel,
which captures the concepts and relationships of the language in a structured
and regular form. Relative to these metamodels, the models can then be stored,
manipulated, and transformed to other models, and to implementation artefacts,
in order to form coherent systems to solve software problems.

The bene�ts of building systems in this way stem from two qualities ; the
diversity of languages used for modelling pieces of the system, and the uniformity
of the meta-language used for the speci�cation of these diverse languages.

The use of metamodels permits each element of the system to be described
using a language tailored to the domain concepts of the aspect it describes. This
allows for a separation of concerns in which domain experts may express them-
selves using the terminology that is familiar and appropriate to their expertise.
In this way, domain experts may be more directly involved with the speci�cation,
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construction and maintenance of systems, rather than having to have their know-
ledge �ltered through engineers. In addition, describing the system using more
natural concepts leads to more intuitive and understandable system designs.

On the other hand, each of the languages used to build models for the elements
of the system is described using a uniform formalism for metamodels. This unifor-
mity permits the extensive use of both generic and generative engineering [CE00]
techniques, which obviates the need to reimplement language features that are
common across languages, such as serialization, versioning, transformation and,
to a certain extent, editing. Instead, these can be implemented once for all mo-
dels (generic), or their generation can be either partially or entirely automated
(generative).

The Model-Driven Architecture (MDA) trademark [Obj03] as marketed by the
Object Management Group (OMG), presents a model-driven approach to system
development beginning using high-level, platform-independent models (PIMs),
which are incrementally transformed or re�ned into lower-level, platform-speci�c
models (PSMs), which are in turn rei�ed into implementation artefacts such as
program code. This automation of the construction of systems from high-level mo-
dels allows the relevant software engineering expertise to be captured as reusable
model transformations, and applied more reliably and e�ciently.

However, in addition to the re�nement patterns associated with MDA, MDE
systems may work in the other direction, building or recovering high-level mo-
dels from existing implementation artefacts, as is common in reverse engineering
[RD99]. Equally, systems may make use of models at run-time [BBF06], where
external interactions are related back to changes in models within the system.

Much of the work done in relation to model-driven engineering has focused on
the development phase of the software lifecycle. However, there have also been
a number of works on other phases, such as requirements gathering and speci-
�cation of systems using models [NBKS06, Kle06], and model-based approaches
to testing [Rum03, Fle06, SL04]. Model-driven engineering is largely orthogonal
to the choice of software process, supporting agile techniques [Rum06] as well as
more traditional processes [Kru03].

1.1.1 Modelling Architecture
The most important concepts in MDE are those of models and of metamodels.

These terms may be understood with reference to a layered architecture, as shown
in Figure 1.1.

The top layer of this architecture is the meta-language. In the context of the
OMG's MDA, and in most approaches to MDE, the meta-language is de�ned
by the Meta-Object Facility, or MOF, which was �rst published by Crawley et
al in [CDI+97] and by Baker and Le Go� in [BG97]. The meta-language is the
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Fig. 1.1 � Layered Architecture : MOF, Metamodels, and Models

language in which the structures of subsequent modelling languages may be de-
�ned as metamodels. The meta-language is de�ned by the meta-metamodel, a
canonical set of classes and associations between them, and is the �xed point of
the modelling hierarchy, in that it is de�ned in terms of itself (known as meta-
circularity). In addition to de�ning the way in which metamodels are built, the
meta-language details the basic relationship between model-level objects and the
metamodel-level concepts that classify them.

Modelling languages, which appear in the M2 level of Figure 1.1, may be
speci�ed by instantiating the classes and associations of the meta-language to
give a metamodel which de�nes the concepts and associations of the language.
A language for designing state machines, for example, will de�ne concepts such
as named states and transitions, which are linked together by relationships ; a
transition might have relationships to its source and target states. Of course, this
language will add constraints that are speci�c to its semantics. For example, the
state machine language might specify that states have unique names.

Models then reside at the M1 level. For example, in the case of the state
machine language, a model will be the de�nition of a given state machine, for
example a machine describing the behaviour of some electronic device. The basic
nature of these models as instances of the metamodel that de�nes them is given
by the meta-language, which also provides them with basic facilities such as
introspection.

There are a number or relationships that hold between these layers. The view
used as the basis for the separation into layers is that of instantiation or classi�-
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cation, in that a metamodel is conceptually an instance of the meta-metamodel,
and a model an instance of a metamodel. Alternatively, there is a subtyping view,
which works in the other direction. The meta-metamodel is a metamodel, albeit
one that has been made canonical. All metamodels are also models. One impor-
tant relationship not shown in the �gure is that of representation. A model is
generally a representation of some system or concept, and the metamodel is a
representation of the modelling language, speci�cally of its structure. Represen-
tation currently plays little or no formal role in the construction of model-driven
systems.

One of the popular starting points for explaining MDE, and particular MDA,
is the so-called four-layer architecture, which was initially introduced to explain
the relationship of a number of OMG modelling speci�cations, including MOF
and the Uni�ed Modelling Language (UML). This architecture incorporates an
additional layer below M11 which represents program data. In fact, this extra layer
is really a consequence of the fact that the language given at M2 was typically
UML. UML is part of a class of languages, other examples being object-oriented
programming languages, which themselves include a notion of instantiation, im-
plying the existence of a level below M1. For example, the language for designing
UML class diagrams resides at M2. These may be used to construct a class dia-
gram for a work�ow language, and this work�ow language may be used to build a
work�ow, the model of which would reside at an M0 level. However, the semantic
of being able to instantiate M1 models is not common to all modelling languages,
and thus such an M0 level is not implied by model-driven engineering in general.
In fact, the mechanisms of the MOF mean it is possible to construct hierarchies
of 2, 3, 4 or more layers ; we use three here to illustrate the most common usage.

An important overall consideration of this hierarchy is that it is an aid to
understanding, and serves little formal or tangible role in the development of
model-driven systems. Model-driven tools typically do not include the notion of
meta-levels, although there are exceptions, such as the MetaCASE toolset[TR03].
There are a number of works, such as [FEBF06], [AK03] and [Küh06] which
discuss the more philosophical and didactic aspects of modelling and model-driven
engineering, including representation relationships, and the nature and number
of meta-levels.

1.1.2 The Meta-Object Facility
Since the concepts of model and metamodel are de�ned relative to the meta-

language, the meta-language of a modelling hierarchy is its most important part.
1This four-layer architecture is the historic basis for the numbering of the meta-levels. A

more conceptually coherent approach would be to consider the meta-language as M0, since this
is the �xed point.
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By far the most common meta-language used is the Meta-Object Facility, as
standardised by the Object Management Group (OMG).

The early MOF speci�cations, including the ISO-standardised version [Int05],
were expressed with a mapping from the concepts and associations used to de�ne
metamodels to CORBA interfaces which permitted their use as constructors and
classi�ers for object representations of models. As a result, the original MOF me-
tamodels made use of CORBA data types for building metamodels. In subsequent
revisions, however, the dependence of MOF upon CORBA has been removed.

The basic concepts provided by the MOF for the de�nition of metamodels are
classes and associations. Classes are used to de�ne the concepts of the metamo-
del, and may include both operations and typed attributes. Classes may also be
de�ned as inheriting from one or more other classes, in which case they inherit
the operations and attributes of the superclasses, as in classical object-oriented
inheritance.

Associations provide a link between two classes, allowing instances of their
objects to be related by links. This is similar to de�ning attributes on each of the
classes and ensuring that they are synchronised. Associations and classes may be
organised into packages. Associations may also express composition semantics,
whereby objects at a one end of an association are composed by an object at the
other end, with the implication of coincident object lifecycle.

Operations, attributes, parameters on operations, and the ends of associa-
tions, may be restricted in how objects may participate in the respective role, by
using multiplicity constraints. These include upper and lower cardinality bounds,
and �ags for indicating whether objects participating in the role are unique, or
ordered. So, for example, an attribute which has a cardinality range 0..7 and is
speci�ed as not unique but ordered, would mean that an object would store a
sequence holding between 0 and 7 elements.

As a result of the original link to CORBA, the original MOF speci�cations re-
lied on CORBA for the data types available as the building blocks for metamodels.
Since then, the list of data types has been reduced, and now only String, Boolean,
Integer and UnlimitedNatural remain. It is also possible to de�ne enumeration
types, as collections of named literals. For example, a Colour enumeration might
consist of the literals Red, Green and Blue.

In addition to providing constructs such as classes and associations for the
de�nition of metamodels, MOF also describes the relationship between the classes
of a metamodel (M2 in the Figure 1.1) and the interconnected objects in a model
constructed from that metamodel (layer M1). For the most part, this is simply
the de�nition of Object, and its re�ection interfaces for accessing its metaclass,
and the corresponding ability of a type to verify that an Object is one of its
instances.
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1.1.3 Essential MOF (EMOF)
The most recent MOF speci�cation [Obj06a], version 2.0, de�nes two variants

of the MOF metamodel. The Essential MOF (EMOF) presents a relatively small
number of concepts corresponding roughly to those found in object-oriented pro-
gramming languages, in order to support simple mapping to programming lan-
guage APIs and XML formats. Complete MOF (CMOF) is roughly a superset
of EMOF that includes a number of more sophisticated constructions, such as
�rst-class associations with subset rede�nition, richer object re�ection, and rela-
tionships for the rede�nition of packages. In this thesis, we will deal with EMOF,
in the hope that techniques for managing reuse which work with EMOF may be
extended to work with CMOF.

The metamodel of EMOF is shown in Figure 1.2. The most signi�cant simpli-
�cation with respect to other versions of MOF is that there is no class for de�ning
associations. Instead, the Property class has been generalised to encompass both
attributes and participation by a class in an association. An association is de�-
ned as a pair of properties which reference one another using the opposite meta-
property. This has the meaning that the insertion of an object o1 into a property
on another object o2 (in an imperative programming language, for example, this
might be o2.p := o1) will imply the simultaneous insertion of o2 into the opposing
property on o1 (o1.q := o2).

We may instantiate the classes of the EMOF metamodel to create a metamo-
del for describing a modelling language. Figure 1.3 shows a very simple EMOF
metamodel in the form of a class diagram, where each class is an instance of
EMOF :: Class, each attribute or reference to another class is an instance of
EMOF :: Property, etc. Since each element of the diagram is an instance of
an EMOF class, one can imagine an equivalent representation of the metamodel
using an instance-diagram notation.

In the same way that the EMOF metamodel classes may be instantiated to
produce the state machine metamodel, the state machine metamodel classes may
then be instantiated to produce a speci�c state machine model. Figure 1.4 shows
such a model for a state machine with three states, one of which is an initial state,
and three transitions between them.

This state machine may alternatively be shown using the speci�c syntax of
state machines. This diagram, shown in Figure 1.5, presents the same model as
Figure 1.4, but using a di�erent concrete syntax.

1.1.4 Models and Metamodels
The EMOF metamodel includes most concepts necessary for de�ning models

and metamodels. However, two elements that are conspicuously lacking are those
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Fig. 1.2 � The Essential MOF metamodel
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Fig. 1.3 � A State Machine Metamodel

Fig. 1.4 � A State Machine Model

Fig. 1.5 � A State Machine Diagram
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of "model" and "metamodel" !
The MOF speci�cations, unlike those of UML, have never included a formal

de�nition of either a model or a metamodel. By convention, and intuitively, the
latter has usually been used as a synonym for a MOF package. In many MOF
1.x implementations, a model was de�ned as a �package instance�, a term not
de�ned in the speci�cations, but an intuitive concept that could contain objects
instantiated from any class within a given MOF package. While intuitive, these
de�nitions were somewhat limiting for situations where cross-�model� references
were common.

MOF 2.0 introduces the notion of an extent, and makes explicit the fact that
extents may contain objects instantiated from classes from di�erent packages.
This recognises the increasing abundance of models which reference other models ;
these are intuitively, and may now be considered as, single models. However, this
leaves us without a �rm idea of a metamodel as a type, since we can no longer
be guaranteed that all objects within an extent will possess a type contained by
a single package.

From the point of view of the structure of a model, rather than the type of
its objects, there are two general approaches to de�ning a concept of a model.

The �rst approach, that taken by UML, is to designate some class as being
a root node for the model, meaning that the model then consists of an instance
of that class and all objects contained by (or perhaps reachable from) this root
instance. However, this does not work in the case of models which lack a single
root element, as is common in cases such as models containing tags or models of,
for example, collaborative processes [Obj04a].

The alternative and more general approach, and the one evident as Extent
in MOF 2.0, is to de�ne a model as just a set of objects. In some ways, this is
a similar approach to that of graph transformation systems (see Section 1.2.2.3
for a summary of graph transformations), in that a model is simply a graph of
objects, without regard for the types of the objects and links that are contained.

Having chosen one of these approaches, we may use the description given in
Section 1.1.1 to derive a meaning for models. A metamodel is simply a model
whose elements are all instances of MOF classes.

So, for a tree- or containment-based approach to de�ning models, we may take
a MOF Class high up in the containment hierarchy, typically Package, and allow
instances of that class to be de�nable as metamodels.

Alternatively, in the second, graph-based approach, we may simply say that
any model, i.e. set of objects, whose members are all instances of MOF classes,
is a metamodel.
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1.2 Elements of Model-Driven Engineering

There are three signi�cant classes of elements from which model-driven sys-
tems are composed ; those that store or mediate access to models, those that
transform or manipulate models, and those that convert models into another
form.

In this section we will describe a number of signi�cant languages or technolo-
gies that are used for the de�nition and/or implementation of each of these classes
of elements. We are particularly interested in generic or generative techniques
[CE00], that provide a language designer with the ability to build components
either automatically or based on a declarative or high-level description of the
necessary function.

This preference is one reason that we do not discuss the construction of model
editors, since these are frequently not built from declarative descriptions, but
implemented for each metamodel using general-purpose programming languages
that manipulate models through programmatic APIs, or through the import or
export of serialised forms.

Speci�c components like this, that are developed for use with a particular
metamodel, are no less important to the construction of MDE systems. During
the typical lifetime of a language speci�ed using a metamodel, it is quite common
to begin with an entirely generic toolset, and to gradually add speci�c components
as the metamodel stabilises. However, they are di�cult to enumerate in a general
discussion about model-driven system development.

1.2.1 Model stores

As explained in Section 1.1.2, early versions of the MOF speci�cations were
written as mappings to programmatic interfaces. Because of this, the form of
models and the manner in which they are stored were often con�ated. This has
been largely resolved in the MOF 2.0 speci�cations, which deal separately with
concepts being modelled and their concrete representation forms as technology
mappings.

There are two main ways in which models are stored and subsequently acces-
sed. The �rst is through a mapping of metamodels and models to a programmatic
interface, such that each may be accessed using existing general-purpose program-
ming language interfaces. The second is through mapping metamodel and models
to XML technologies, so that they may be accessed or exchanged as XML docu-
ments.
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1.2.1.1 Object stores
The MOF 1.x suite of speci�cations, including the ISO standard [Int05], was

de�ned in terms of a mapping from MOF metamodels to CORBA IDL [Int99]
interfaces. Models were then accessed according to the CORBA language map-
ping preferred by the programmer. Since Java was, at the time, the most popular
programming language amongst MDE developers, Java/CORBA was the predo-
minant form for accessing models. Because of this predominance, a more speci�c
mapping was created, called the Java Metadata Interface, or JMI, as a Java Com-
munity Process speci�cation [Sun02]. The most signi�cant implementation of JMI
is the open-source Metadata Repository (MDR) project2.

With the advent of MOF 2.0, the form of models has been separated from
their mapping to programmatic interfaces. For the time being, the most signi-
�cant implementation of MOF 2.0 is the Eclipse Modeling Framework (EMF),
developed as part of the Eclipse project supported by IBM [BSM+03]3. Although
EMF is built upon a variant of EMOF called ECore, there is a simple mapping
between the two, and import and export of EMOF metamodels is supported.
EMF provides a mapping from metamodels to Java interfaces, as well as default
implementations of these interfaces using an XMI backend.

A number of dynamic object-oriented languages are also the targets for tools
providing object-based APIs for accessing models. In [DG06], the authors des-
cribe using Smalltalk for model-driven engineering tasks using a formalism that
resembles a slimmed-down version of MOF. Similarly, the Coral repository, as
described in [AP04], provides a Python API for accessing, modifying and storing
models de�ned using their SMD metamodelling language. RubyMOF4 is a Ruby
tool for loading, storing and manipulating EMOFmodels, inspired by EMF, which
has been used as a testbed for model transformation languages in [CMT06]. In
fact, the use of dynamic languages often o�ers advantages for the implementation
of model repositories, particularly for addressing implementation problems such
as those related to metacircularity.

1.2.1.2 XML-Based Model Interchange (XMI)
An alternative to storing and accessing models via programmatic interfaces is

to use an XML-based format.
The XML-Based Model Interchange (XMI) [Obj05a] speci�cation presents a

mapping for models and metamodels to XML documents and schemata/DTDs.
Speci�cally, each metamodel may be mapped to an XML schema (or DTD), and
models constructed from the metamodel will be mapped to XML documents that

2Metadata Repository Project Home Page : http ://mdr.netbeans.org
3Eclipse Modeling Framework : http ://www.eclipse.org/emf
4RubyMOF, http ://rmof.rubyforge.net
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conform to that schema. Since metamodels are themselves constructed from the
MOF metamodel, they may be represented either as a schema, or as an XML
document corresponding to the schema generated from the MOF metamodel.

Of course, in the same way that a mapping to a programmatic API permits
the use of general-purpose programming languages, the XMI mapping to XML
documents permits the use of XML-enabled tools. For example, the EMF tool
uses XMI documents as the default persistence mechanism underlying its pro-
grammatic API.

1.2.2 Model Transformation and Manipulation Languages
By exposing models and metamodel using mappings to programmatic APIs as

described in Section 1.2.1.1, it obvious becomes possible to develop model-driven
tools such as model transformers, editors or analysers using general-purpose pro-
gramming languages.

However, another approach is to build speci�c languages for the construction
of these tools. This second approach has a number of advantages. By using a
model-driven approach to these problems, i.e. using a language formalised using
a metamodel, an element such as a model transformation becomes itself accessible
by the full range of model-driven tools. Also, by narrowing the problem space, it
becomes possible to provide languages that are more speci�c and better adapted
to solving the problem.

The most signi�cant example of this has been the de�nition of model trans-
formations, for which there have been a large number of languages proposed in
recent years. In [CH06], Czarnecki and Helsen provide a survey of more than
twenty transformation languages, based on a detailed survey of their characte-
ristics and features. This survey shows a remarkably broad range of approaches,
varying from relational and logic-based rule languages, to imperative languages
resembling programming languages, to template languages and more.

As Tratt highlights in [Tra05], model transformation poses speci�c problems
that warrant speci�c solutions, in particular for their reuse and integration within
and between di�erent tool environments.

In this section, we present a description of just a few model transformation
languages5, as an indication of the role of such languages in model-driven engi-
neering. This is clearly not meant as a canonical list, nor should the selection be
interpreted as meaningful in terms of the importance of the languages in current
MDE research.

5As opposed to general transformation languages ; a discussion of model-to-text transforma-
tion languages is given in Section 1.2.3.2.
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1.2.2.1 MOF 2.0 Query/Views/Transformations (QVT)

In 2002, the OMG issued a request for proposals for a language for the de�ni-
tion of queries, views, and transformations of MOF 2.0 models [Obj02]. A number
of languages were proposed in response to this, focusing on transformations, and
encompassing much of the range of approaches to model transformation.

The resultant speci�cation [Obj05b], recommended for adoption in late 2005
and undergoing �nalisation at the time of this thesis' writing, essentially presents
three languages for the transformation of models. The �rst is a declarative rela-
tional language bearing strong resemblance to Tefkat [LS05] and to a lesser extent
graph transformations [K�05] and ATL [BBDV03]. The second is an operational
mappings language, which provides essentially an imperative manipulation lan-
guage, as well as a good deal of syntactic convenience for the transformation of
models. The third is a small declarative core language, which serves the additional
role of providing the de�nitional basis for the relational language.

The notions of both model and model type, which are key to the contributions
presented in this thesis, have in a recent revision been included in the QVT
document, and resemble the ideas presented here. However, no basis is given for
the substitutability of model types in any of the three QVT languages. From
this point of view, the ideas in this thesis may be seen as providing a basis for,
amongst other things, the reusability of model transformations as speci�ed by
QVT.

At the time of writing of this thesis, there are very few publicly available
direct implementations of the QVT speci�cation/s, although a number of imple-
mentations have been available for languages which have served as input to the
speci�cation process. It remains to be seen to what extent the speci�cation pro-
cess will serve as an aid to tool interoperability, and to what extent as a forum
for the development of model transformation ideas and technology.

1.2.2.2 Tefkat

Tefkat [DGL+03] is a declarative language and engine for model transforma-
tions originally developed by the Pegamento team at the Distributed Systems
Technology Centre (DSTC), and now maintained as an open-source project6.
The language, described under the name XMorph by Duddy, Gerber, Lawley,
Raymond and Steel in [DGL+03] (and in greater length in [DGL+04]) emerged
as the result of a series of experiences, described in [GLR+02], with model trans-
formation approaches based on XSLT, structured code, Prolog rules, and F-Logic
rules. As shown by Lawley and Steel in [LS05], Tefkat presents a practical solution
to model transformation problems using a rule- and pattern-based approach.

6Tefkat : The EMF Transformation Engine. http ://tefkat.sourceforge.net
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Tefkat transformations are de�ned as sets of rules, each of which consist of
source model constraints which must be satis�ed in order for the rule to be ap-
plied, and target model constraints which must be satis�ed during the trans-
formation process. These constraints include checking the type of an object, the
value/s given by a named property on an object, or the presence of a link between
two objects.

Tefkat also makes extensive use of traceability models and/or relationships in
order to control the construction and/or modi�cation of target model elements as
a function of the source model elements which cause the action. These traceability
relationships may be used as a way to imply dependencies between transformation
rules, and may also serve as a persistent record of a transformation execution.

Tefkat transformations are de�ned as working against a number of disjoint
input and output extents. These serve only as extents for the matching (source
extents) and creation/update (target extents) of model elements. They are not
typed in terms of the types of objects which they may contain. Tefkat's con�-
guration model, which provides for the modelling of transformation tasks, i.e.
invocations of transformations against speci�c models which may be executed in
series, also uses an untyped notion of models.

In [HLR06], the authors present an approach for live transformations in Tefkat,
in which changes to source models and transformation de�nitions are automati-
cally and incrementally propagated through transformations to changes in target
models. This is based on persisting the internal state of the transformation exe-
cution and using this state to isolate changes based on metamodel elements. The
approach is speci�c to logic-based transformation engines, as it is based on the
modi�cation of SLD trees, the internal representation of logic-based transforma-
tion executions.

1.2.2.3 Graph Transformation Languages

Graph transformation [BH02] is a �eld of study that incorporates a range of
transformation languages and tools. The graphs in graph transformations vary,
but are generally based on the simple mathematical representation of graphs as
sets of nodes and edges. One relatively recent but important approach is the use
of typed graphs, in which the structure of a graph may be governed or classi�ed
by a homomorphism to a type graph. Type graphs [CMR96] �ll a similar role to
metamodels in model-driven engineering, and in recent works have come more
and more to resemble metamodels structurally.

Although there is variation between the di�erent �avours, graph transforma-
tions consist of sets of rules for the transformation of a graph, and often (though
not always) directives for the order of application of these rules.

Unlike other declarative model transformation languages such as Tefkat, graph
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transformation languages permit in-place modi�cation of graphs. This represents
a signi�cant increase in expressive power, but requires a syntactic overhead in
specifying transformations, such as, in the case of triple-graph grammars, a third
graph to distinguish elements that may be deleted from those that may not.

Since source graphs may change during transformation, there are also signi-
�cant implications for termination of graph transformations. This problem is
typically resolved by providing control �ow directives for ordering the application
of rules within a graph transformation, such as constraints, automata, explicit
rule strati�cation, or simple imperative control constructs.

With the rise of model-driven engineering and its emphasis on model transfor-
mation, the structural similarities with graph transformation has lead to extensive
cross-pollination of ideas between the two �elds. Languages such as Tefkat and
Relational QVT bear a strong resemblance to graph transformations, and graph
transformation languages have evolved to use structures more closely resembling
models, in particular in the structures they use as types for graphs.

Taentzer et al [TEG+05] show the application of four di�erent graph transfor-
mation tools - AGG, AToM3, VIATRA2 and VMTS - to a �xed model transfor-
mation problem, and shows that their solutions resemble a hypothetical solution
using relational QVT. Although the speci�c technologies for encoding metamo-
dels (type graphs) and models (graphs) are di�erent, the concepts are similar.
This is even more evident in [K�05], in which the same problem is tackled using a
triple graph grammar approach which uses MOF metamodels directly.

1.2.2.4 Kermeta

Kermeta [MFJ05, Fle06] is an executable metamodelling language and tool
suite developed by the Triskell Team at the IRISA laboratory. Although there is
little continuity of implementation between the two, Kermeta is the ideological
successor of MTL [Pol05], as imperative model transformation languages where `
` transformation' ' is interpreted as including any programmatic manipulation of
models.

The language is structured as an extension of EMOF with the added capability
of supporting the de�nition of the semantics of a metamodel. Most signi�cantly,
this means the ability to express the behaviour of the operations de�ned in meta-
models, through the use of an action language based on common object-oriented
programming principles.

The action language includes late-binding, familiar object-oriented control-
�ow constructs such as loop and conditional operators, as well as assignment into
local variables and properties (both local and non-local). Property assignment
also takes into consideration associations, modelled (as in EMF) using opposing
properties, in that both ends of the association are a�ected by a single assign-
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ment. Property assignment also considers metamodel constraints such as unique
containment and multiplicities.

Kermeta includes one major structural modi�cation to EMOF ; the ability to
de�ne classes and operations with type parameters. This is done in such a way
as to maintain compatibility with EMOF as much as possible. One motivation
for this is for the provision of syntactic closures. Although each is useful in its
turn, the combination of type parameters and syntactic closures allows for the
de�nition of collection operators such as OCL's collect, select, and reject, which
are particularly useful for meta-programming.

Since it provides su�cient expressive for arbitrary access and manipulation
of models, Kermeta may also be used to express model transformations. This is
shown in [MFV+05], in which the authors attack set transformation problems
using imperative object-oriented languages, including Kermeta. They show that
in using these languages, a transformation author may apply many of the soft-
ware engineering practices that have been proven to work in object-oriented de-
velopment. In cases of model transformation involving reasonably clear mappings
between concepts, this may involve a development overhead compared to de-
clarative approaches, as the programmer must provide techniques for detecting
patterns in source models and invoking rules manually. However, in more natu-
rally algorithmic transformations, the imperative paradigm may be more familiar
to programmers and less cumbersome than declarative approaches.

1.2.3 Printing and parsing
The third major class of components in model-driven systems includes those

that manage the transition between models and other formalisms. For the most
part, this means the transition from models to text or vice versa, since even dia-
grammatic, tabular or other non-textual representations are typically accessible
through textual representation. For example, images may be represented using
the XML-based format of scalable vector graphics, or graph diagramming tools
such as GraphViz7.

In this section we describe two techniques for managing this model-text tran-
sition.

1.2.3.1 Human-Usable Textual Notation
The Human-Usable Textual Notation (HUTN) as presented by Steel and Ray-

mond in [SR01] provides a mapping from metamodels to concrete syntaxes that
grew out of a desire for an alternative notation to XMI for representing mo-
dels, that would be usable for reading and editing by humans. HUTN provides

7GraphViz : http ://www.graphviz.org/
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a mapping from metamodels to concrete syntaxes that roughly resemble block-
structured programming languages. For the most part, the mapping makes no
allowances for speci�c metamodels, producing instead a generic form for any mo-
del, although it does provide for small customizations such as the denomination
of identifying attributes and default values. The textual language resulting from
the HUTN mapping may be implemented for both consumption, e.g. in the form
of a parser, or for production, as a pretty-printer.

HUTN was adopted as an OMG speci�cation [Obj04b] in 2004, but to some
extent has been deprecated in that it was de�ned against MOF 1.4, and has not
been modi�ed to accommodate MOF 2.0, although the changes simplify, rather
than complicate, the mapping. Furthermore, TokTok, the only open implemen-
tation of HUTN, has not been updated, and is no longer publicly available.

1.2.3.2 Tools for speci�c textual syntaxes

There are also a number of works that deal with generic techniques for the
generation and loading of text from/to models in a manner speci�c to a given
metamodel. This is clearly useful for languages with a prede�ned concrete syn-
tax. Also, although it is considered by some to be bad practice, this helps for
generating code directly from models without passing via model transformations.
The majority of these model-text techniques are designed speci�cally for the pro-
duction of text, although a few are designed for both production and parsing.
This distinction is aligned to a certain extent to that between approaches ba-
sed on templates, which are the preferred user paradigm for production of text,
and approaches based on grammars, which o�er surety that a document may be
decidably parsed.

The OMG's Models-to-Text Transformation Language [Obj06b] presents a
template-based language for the production of text from models, where elements
from the model are shown as holes in the model to be �lled by either queries
(from QVT) or expressions navigating into the model.

A signi�cant limitation of template-based approaches to text generation is that
the models used to drive them may not be used for going in the other direction,
i.e. parsing text �les to create models. In Sintaks [MFF+06], the authors restrict
the operators available in their template language such that each construct has
a speci�c semantic in the context of both textual synthesis and textual analysis.
They also suggest a mapping of their syntax speci�cation language to BNF gram-
mars. Anti-Yacc [HRS02], proposed by Hearnden, Raymond and Steel, works in
the other direction, by starting with a grammar-based approach and associating
synthesis semantics to each element.



Existing approaches to reuse in MDE 23

1.3 Existing approaches to reuse in MDE
The reusability of MDE components for the purposes of safely supporting evo-

lution, composition, or integration of model-driven engineering components, has
been the subject of considerably less study than the languages used for building
them. There, are, however, a number of e�orts in this area.

1.3.1 Composing Elements of Model-Driven Engineering
Two notable e�orts in modelling the ways that models, transformations and

other components may be represented within architectures of model-driven sys-
tems are Model-Bus and Megamodels.

Model-Bus [BGS04] takes a service bus approach to the integration of model-
driven components. Components register services in terms of the models they
accept as inputs and produce as outputs. These models may be typed by their
physical encoding (such as those shown in Section 1.2.1), as well as a simple
notion of model types as sets of metaclasses, but without any notion of model
type substitutability or conformance8.

In [BJV04], Bézivin et al present the notion of megamodels for representing
MDE tools and components and the relationships between them. This includes
the service-type aspects of model-aware tools, but also incorporates the rela-
tionships between models, metamodels, and even meta-metamodels, in order to
support interaction with other technical spaces. However, for the most part this
is done at a high-level, and without any notions of model types and model type
substitutability or conformance.

The ideas in this thesis, of model types and model type matching, can be
seen as very much complementary to both of these works, in providing a basis
for allowing the connection of components with di�ering but conformant model
types.

1.3.2 Modularization and Reuse in Graph Transformation
There are a number of approaches to modularization in graph transformation

systems, many of which are summarised by Heckel, Engels, Ehrig and Taentzer
in [HEET99]. These are typically based on the types of graphs as type graphs or
schemata used by the transformations, and some among them support ideas of
graph type substitutability. At the time, most approaches to modules in graph
transformations were concerned more with inheritance-related aspects than sub-
stitutability relationships. In [EHC05], Engels, Heckel and Cherchago present a

8This notion represents a very early version of the work presented in this thesis, developed
during the author's visit to the LIP6 Laboratory in July, 2004.
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formalism for graph transformation module interconnection supporting substitu-
tability based on type graph morphisms. Their approach goes further than the
comparison of the type graphs of transformations, in that it also compares their
transformation rules, suggesting a semantic, as well as syntactic, substitutability.

1.3.3 Alloy
The Alloy modelling system is a constraint-based modelling language that uses

similar high-level constructs to the combination of UML class diagrams and OCL
constraints. The signi�cant di�erence, however, is that the structural modelling
concepts are mapped to a constraint language, which makes for a smoother inte-
gration between the structural and constraint aspects of speci�cation. In [EJT04],
the authors present a type system for checking both the safety and relevance of
constraints with respect to a structural de�nition. However, the type system they
present does not provide any encapsulated notion of model or of model type.

1.3.4 Constructive type theory and MOF
In [Poe04] and [Poe06], Poernomo presents a mapping from the Meta-Object

Facility to the constructs of constructive type theory, using Martin-Löf's predi-
cative type theory. The principle motivation for this is to provide a formal basis
for the construction of metamodels and models. However, the use of predicative
types also o�ers the possibility of using this formalism to check the applicabi-
lity and even correctness of transformations against certain metamodels, where
transformations may be analogized as functions in the constructive type theory.

Constructive type theory is more expressive than that used as the basis for
object-oriented type systems, and this extra expressive power can pose problems
for the decidability of type checking. The few (functional) programming languages
[Xi98, Aug99, MM04] that support the dependent types of constructive type
theory are experimental and neither intended nor ready for wider consumption.

Although constructive type theory is intuitively an appealing avenue of re-
search for providing a sound basis for model-driven engineering, it remains to be
seen if it can be made practical enough for use in tools.

1.4 Type Systems
Type systems are amongst the most popular and successful lightweight formal

methods used for veri�cation in software engineering. In [Pie02], Pierce o�ers the
following de�nition for type systems :
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A type system is a tractable syntactic method for proving the absence
of certain program behaviors by classifying phrases according to the
kinds of values they compute.

Clearly, this de�nition is broad, and includes �elds of study, such as the use
of types for session [VVR03] or security [BdGdLJ02] concerns , which are of
less interest in attempting to apply type systems ideas to general model-driven
engineering. In the last twenty years, one of the most successful branches of
type systems study, in terms of transition into industrial software-engineering
practice, has been that of object-oriented type systems. Popular object-oriented
programming platforms such as Java and .NET now include powerful static type
systems supported by object calculi with formal de�nitions and proofs [IPW01,
KP07].

Type systems are most commonly encoded as sets of logical deduction rules
over the syntactic elements of the language to be checked. In a static type system,
the type-checking process then veri�es that a program is consistent according to
these rules, using the redundancy included by the programmer in the form of
syntactic elements such as type annotations.

As can be seen from their use in industrial programming languages, the foun-
dations of object-oriented type systems are increasingly well understood. None-
theless, there are a number of areas in which work continues to be done in order
to support more expressive type systems capable of detecting errors in more com-
plex systems. Mutually-recursive types represent one such area. Type systems
supporting mutually recursive types allow object types to be de�ned and consi-
dered relative to one another, rather than in isolation, as is typically the case in
simple object-oriented type systems.

In addition to providing assurance of the absence of type errors, an important
characteristic of type systems is that they provide the programmer with me-
chanisms for abstraction, and secure these abstractions against operations that
violate their integrity. In the case of functional programming languages, this is
in the form of functions, while in object-oriented languages this is in the form of
objects and object types. In applying type systems techniques to model-driven
engineering, we wish to support models and model types as abstraction mecha-
nisms.

Since models in model-driven engineering resemble and are indeed based on
the objects used in object-oriented systems, it is logical to look to object-oriented
type systems when seeking techniques for the elimination of errors within and
between model-driven components. In this section we present a very brief review
of object-oriented type systems, as well as a survey of approaches to mutually
recursive types.
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1.4.1 Object-Oriented Type Systems
This section presents a brief summary of object-orientation and object-

oriented type systems, covering concepts such as objects, classes and object types,
structural and nominal types, subtyping, and generic types. For more on the
theory of object-orientation and its application to programming languages, there
are a number of excellent books [AC96, Pie02, Bru02, Cas97] which cover this
material in much greater detail.

The fundamental concept of object-oriented systems is the object. An object
is generally an encapsulation of data, in the form of instance variables, and of
behaviour, in the form of methods. The instance variables and methods of an
object are characterised by types, which specify what values are acceptable for
instance variables or method parameters, and what values might be expected in
return from a method invocation.

Objects are often created, or instantiated, using classes. Classes de�ne the
form, i.e. the instance variables and method, of the objects they instantiate, and
often provide the de�nition of the methods of the objects they instantiate. In this
way, behaviour is shared between di�erent objects instantiated from the same
class. Classes may also be de�ned in terms of other classes, as subclasses, in
which case their instantiated objects provide methods not only from the instan-
tiating class, but also from those of which it is a subclass. This is also known as
inheritance. The exact method which is executed when invoking a method on a
class is determined using dynamic dispatch.

Objects may be classi�ed, for example when constraining what values are
acceptable in an instance variable of an object, using object types. Object types
resemble classes, in that they specify what instance variables and methods must
be present on an object. Indeed, in some languages, such as Java, classes often
serve as object types. In di�erent systems, object types may be structural, de�ned
as the set of instance variables and methods they provide, or nominal, based on
their name or identity. For example, Java uses nominal types, but the object
calculi of Abadi and Cardelli [AC96] use structural types.

One of the more appealing features of object-oriented languages is their sup-
port for subtyping. One object-type may be considered to be a subtype of another,
meaning that an object belonging to the subtype may be freely used in the place
of an object of the supertype. From a set-theoretic viewpoint, the set of ob-
jects representing the subtype is a subset of the set of objects representing the
supertype. There are many approaches to subtyping. One important distinction
between approaches is between subtyping based on comparison of structural types
and subtyping based on subclasses, such as in Java. The relationship between in-
heritance and subtyping varies between languages ; in Java, inheritance implies,
or induces, subtyping, whereas this is not necessarily the case for other languages
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[CHC90, LP91].
When formalising object-oriented languages using type systems, objects and

object types are often encoded using record types9.
Subtyping is typically based on the notions of covariance and contravariance.

Speci�cally, in order for a type A to be considered a subtype of another type B,
the return types of the corresponding methods must vary covariantly. That is,
the return type of a method A.f must be a subtype of the return type of B.f .
By contrast, the types of method parameters must vary contravariantly, i.e. the
type of a parameter p in a method A.f(p) must be a supertype of the type of the
parameter q in the corresponding method B.f(q). In languages where instance
variables are accessible, their types must be invariant, i.e. the types must not
change in a subtype.

However, there are a number of cases where subtyping alone does not provide
su�cient expressive power. For example, consider the simple case of a Stack type
supporting two operations, push(X) and pop() : X. In order to support stacks of
di�erent types - for example, stacks of integers or stacks of strings - subtyping
would allow us to make the X type a supertype of both, e.g. Object.

class Stack {
void push(X x) { ... }
X pop() { ... }

}

However, this would allow a Stack to push Strings and then pop Integers,
which is not what we need.

The solution to this, and an approach which is seeing increasing uptake in
popular object-oriented programming languages, is to use parameterized types.
A parameterized type is de�ned relative to a second type provided as a type
parameter, which may be used in the place of object types within the de�nition
of the type.

So in the case of our Stack type, we may parameterize it with a type parameter
T , and use T instead of Object as the parameter type of push() and the return
type of pop(). This allows us to express that, although any type T is acceptable,
the type must be the same between di�erent occurrences.

class Stack<T> {
void push(T x) { ... }
T pop() { ... }

}
9As shown by Castagna in [Cas97], object types may equally be encoded using overloading.
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The type provided as the parameter of a parameterized type may also be
constrained to be somehow conformant to a bounds type. This conformance may
be based on subtyping, or more complex rules such as F-bounded or match-
bounded polymorphism.

1.4.2 From Objects to Models
The structures used in model-driven engineering, as de�ned by the MOF and

described in Section 1.1.2, are very close to those used in object-oriented program-
ming languages. For this reason, it is reasonable to expect that theories developed
for type systems of object-oriented languages will apply or adapt well for models.
The elements of MOF models which are less common in object-oriented systems
are associations as �rst-class modelling elements, and the meta-level hierarchy,
i.e. the use of metaclasses.

In [BW05], Bierman and Wren present a type system incorporating relation-
ships as �rst-class concepts in an object-oriented language. The relationships they
consider include many of the features used by MOF and UML, including the new
(in the version 2.0 speci�cations) notions of association rede�nition by subsetting,
and multiplicities. Although they do not consider bidirectional relationships, these
may be reasonably supported by dynamic checks.

In [THA05], Tobin-Hochstadt and Allen present a calculus for a language
including metaclasses, based on the Featherweight GJ calculus [IPW01]. Their
calculus is ostensibly inspired by the metaclass hierarchies of ObjVLisp, [Coi87],
Smalltalk [GR83], and CLOS [KRB91], but is reasonably generic, and could
conceivably be adapted for an MDE-like hierarchy like that presented in Sec-
tion 1.1.1.

1.4.3 Virtual Types in Beta
An alternative to the use of type parameters for replacing the types used by

a program is the use of virtual types [MMP89]. Virtual types were �rst proposed
in the Beta language [KMMPN87].

Virtual types are named variables in a class which, unlike normal variables,
are �lled by a type. Like type parameters, they may be constrained by a type
bounds, and used throughout the class in the place of object types. Unlike type
parameters, virtual types are assigned from within a class, not by code that makes
use of the class.

One important implication of including virtual types is that it breaks the
idea that inheritance implies subtyping, since virtual types may be rede�ned in
subclasses. In Beta, subclasses were assumed to generate subtypes, and thus type
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safety had to be ensured using dynamic checks ; Beta's virtual types were not
statically type-safe.

Since their introduction in Beta, virtual types have been formalised [IP02,
EOC06], and have recently been incorporated into a number of programming
languages, in particular as a basis for the parallel extension of mutually recursive
types. We introduce three of these, gbeta's family polymorphism, LOOM's type
groups, and Scala with its abstract type members, in Sections 1.4.4, 1.4.5, and
1.4.6. Other languages including virtual types or virtual classes include Tribe
[CDNW07] and Concord [JDAO04].

1.4.4 gbeta and Family Polymorphism
gbeta [Ern99] is a generalisation of Beta proposed by Erik Ernst, and includes

the notion of family polymorphism [Ern01], based on the virtual types found in
Beta.

Family polymorphism is based on the idea that types are often not de�ned as
standalone structures, but within the framework of a set of types that each refer to
one another. These systems, or families, of types, may then be replaced, evolved,
or re�ned as a group, permitting more sophisticated notions of rede�nition and
reuse.

This view, of mutually referential types that may be treated as groups, �ts
very neatly with the MDE concept of a metamodel as a set of concepts and the
relationships between them. The notion that these might then be interchanged
as groups o�ers promise for being able to reuse MDE components with models
de�ned using a metamodel other than that for which the components were writ-
ten.

Although gbeta's type system has not been proven to be sound, Igarashi
presents a lightweight version of family polymorphism in [ISV05], including a
sound type system.

1.4.5 Type Groups
An alternative approach to the de�nition of mutually referential types is that

taken by Bruce and Vanderwaart in [BV99]. Their LOOM language proposes the
concept of type groups, with similar aims to the family polymorphism of Ernst.
In [BV99], the virtual types that are used in order to permit type groups are
formalised using a form of type recursion.

Recursive types are those that are de�ned with reference to other types. The
classic motivating problem for recursive types is that of binary methods. A binary
method is a method de�ned on an object type for which the parameter is the
object type itself. The classic case is an equality method. Suppose we have a class
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X which de�nes a binary equals method. A class Y , which inherits from X, may
wish to re�ne the equals method to accept only Y objects as arguments.

public class X {
public Boolean equals (X other) { ... }

}

public class Y extends X {
public Boolean equals (Y other) { ... }

}

However, parameter types of methods must be contravariant with the type
which de�nes the method in order to support subtyping. So, in this example, Y
is not a valid subtype of X.

One solution to this problem is to introduce the notion of a self-type, as suppor-
ted by Ei�el [Mey92] as the like Current construct, or by LOOM as ThisType.
Rather than using X as the type for the other parameter, we can use ThisType.
By doing this, the signature of equals() need not be rede�ned in order that the
parameter type be changed to Y ; this is automatically the case when ThisType
is reevaluated in the context of Y .

public class X {
public Boolean equals (ThisType other) { ... }

}

public class Y extends X { }

This recursion (called simple recursion) can be seen as having an implicit
variable that is resolved in the context of a given type. Like virtual types, the
addition of recursive types break the implication of subtyping by inheritance, as
described in [CHC90].

Type groups in LOOM are formalised by generalising simple recursion to
include references to other types, based on their names. A reference to a type T
may be interpreted, not as a direct reference to a type, but as a variable or role
name, to be �lled by a speci�c type within the context of the given class.

The rede�nition of type groups, and most importantly the rebinding of the
virtual types within the type groups, is done using the matching relation, <# .
This relation is more permissive than subtyping, in particular in that it does not
enjoy subsumption. For example, the rede�nition of the return type of a method
between subtypes must be covariant with respect to subtyping, i.e. the rede�ned
returned type must be a subtype of the original return type. In matching, however,
the return type is required only to be a matching type.
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Although LOOM uses type groups for the de�nition of mutually recursive
types, type groups are not themselves types. That is, there are no terms in LOOM
whose type is a type group.

Type groups from [BV99] are also the basis for the dependent types in
Concord, which is presented in [JDAO04] along with a decidable type system
including a sketched proof of soundness.

1.4.6 Scala
Scala [OZ05] is a modern object-oriented programming language that incorpo-

rates many elements from functional programming, and can be considered func-
tional, inasmuch as all functions are �rst-class objects in the language. Scala o�ers
an expressive type system, including advanced features such as explicit self-type
references, parameterized types with variance annotations and both upper and
lower bounds, modular mixin composition, and abstract type members.

Scala is based on the νObj calculus proposed by Odersky in [OCRZ03]. νObj
is a nominal calculus that uses a limited form of dependent types which allows
for the de�nition of virtual types as type-valued members of classes. As a partial
implementation of νObj, Scala supports the use of what it calls abstract type
members, which resemble and perform the role of virtual types, but with a sounder
formal basis.

[OCRZ03] shows the νObj type system as undecidable. However, [CGLO06],
presents a type system FSalg representing the subset of νObj corresponding to
the key type system features, including abstract type members, o�ered by Scala,
and o�er proofs for the decidability of subtyping and type assignment.

1.5 Summary and Motivation
Model-Driven Engineering is about systems that store, manipulate, and other-

wise use models. The mechanisms with which these models are de�ned, transfor-
med, and used for generating tools or performing actions, range widely from
programming languages, to declarative rule languages, to template languages, to
control-agnostic object or XML stores. What these model-driven pieces have in
common is that the models they manipulate, although de�ned using di�erent
languages, share a common structure de�ned by the modelling meta-language,
i.e. MOF.

Because of this, when seeking a way to reason about the ways in which these
components may be safely reused and integrated, the logical place to look is at
the types of the models that they use. However, although MOF provides adequate
concepts for the objects and object types that are used to make up models, it
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says little about what models are, nor how we may reason about the types of
models.

There are presently few works related to MDE-speci�c approaches to inte-
gration and reuse, and fewer stiller that attempt it on a tool-neutral basis. The
approaches there are typically based either on the typing only of the objects wi-
thin models, or on the use of metamodels without consideration for the conditions
under which they may be substitutable.

To address this, we consider approaches to reuse and integration from the
domain of object-oriented type systems. There is an increasing interest in the
typing of systems involving mutually referential types, in particular through the
formalization and use of virtual types. LOOM's type groups, and the family poly-
morphism of gbeta, take this further by reasoning about collections of interrelated
types as groups or families, and address the conditions under which one group
may be replaced by another.



Chapitre 2

The Principles of Model Typing

2.1 Introduction
From the perspective of the data structures involved, model-driven compu-

ting can be seen as a progression from object-oriented computing. Models are, in
essence, composed of objects linked together using �rst-class bidirectional rela-
tionships, where the structure of the objects and the relationships between them
are typically de�ned by a MOF, or MOF-like, metamodel. The presence of these
relationships has the e�ect that model structures are much more tightly coupled
than object structures.

Given this heritage, it is hardly surprising that the majority of approaches to
developing languages for manipulating models have adopted formalisms based on
those found in object-oriented programming languages.

The study of languages for manipulating these model structures is active. In
2001, the OMG issued an RFP soliciting languages for de�ning model transfor-
mations, as mappings between models. In response, many languages have been
developed, using variously logic-based [GLR+02], pattern-based [QVT05], and
graph-transformation [Sen03] approaches. Concurrently, a number of e�orts are
being undertaken to develop or extend programming languages to better deal
with models as data structures [MFJ05].

The vast majority of these e�orts have chosen to use type systems developed
for use within object-oriented development. However, as discussed in [EJT04] and
mentioned in [SL04], the use of such type systems in a model-oriented context
renders programs somewhat brittle with respect to changes in the metamodel,
often failing in response to changes that ought not to a�ect their operation.

Most important, however, is that these systems do not truly allow the user to
specify their transformations or programs in terms of models and types of models,
but rather in terms of objects within models. This is counter-intuitive to the user.

To resolve this, we discuss necessary extensions to object-oriented typing to

33
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deal with the relationships de�ned in MOF metamodels. Using this extended
notion of object typing, we propose a de�nition of a model type, including a
de�nition of substitutability of model types and a discussion of re�ection and
inference of model types.

In Section 2.2, we provide a background on typing and models and the role
of typing in model-driven engineering, including a motivating example. Following
this, in Section 2.3 we present a de�nition of model types with a rule for model
type substitutability, based on intuitive concepts from model-driven engineering
and building upon research from object-oriented type systems. In Section 2.4 we
show how a language and type system supporting these concepts might be built
as an extension of existing formalisms.

2.2 Background
Generally speaking, a type can be understood as a set of values on which a

related set of operations can be performed successfully. Once types have been
de�ned, it is possible to use them in operation speci�cations of the form : if some
input of type X is given, then the output will have type Y. Type safety is the
guarantee that certain behaviours are not possible for programs that are veri�ed
according to a set of rules called a type system.

The process of verifying these rules for a given program is called type checking.
Type checking is said to be static when it is performed without program execution
(typically at compile-time or bind-time). It aims at ensuring once and for all that
there is no possibility of interaction errors (of the kind addressed by the type
system).

Type systems allow checking substitutability when services are combined : by
comparing the data types in a service interface, and the data types desired by its
caller, one can predict whether an interaction error is possible (e.g., producing
a run-time error such as "Method not understood"). Conformance is generally
de�ned as the weakest (i.e., least restrictive) substitutability relation that gua-
rantees type safety. Necessary conditions (applied recursively) are that a caller
must not invoke any operation not supported by the service, and the service must
not return any exception not handled by the caller.

2.2.1 Example
We consider as a motivating example a simple model transformation that

takes as input a state machine and produces a lookup table showing the corres-
pondence between the current state, an arriving event, and the resultant state.
The input metamodel for this transformation is presented in Figure 2.1. The out-
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Fig. 2.1 � Simple State Machine Metamodel

put metamodel, not shown, can be assumed to be a simple database language,
but in any case we will focus on the conformance of the input type.

The choice of which language is used to implement the transformation, and
even of which paradigm of language to use, is immaterial. Also immaterial is the
choice as to whether the input and output types of the transformation are derived
(inferred) or explicitly declared. All that is important is knowing what models
may arrive as a parameter, and particular what operations may be made on them.
These may be assumed to be some variation of the CRUD (Create, Read, Update,
Destroy) operators.

Having given this metamodel as the nominal input for the transformation, we
consider that there are a number of variants of state machines whose instances
might also be interesting as potential inputs to the transformation.

Initially, we might consider changing the multiplicity of the �initial� reference
from 0..1 to 0..*, for state machines with multiple start states (Figure 2.2), or
from 0..1 to 1..1, mandating that each state machine have exactly one start state
(Figure 2.3). Alternatively, we might apply the composite pattern by adding an
inheritance of State by StateMachine, for composite state machines (Figure 2.4).
Finally, we might consider the addition of a FinalState class as a new subclass of
State (Figure 2.5).

The question is, then, does the initial transformation written for models
conforming to Figure 2.1 still work with models conforming to these variant me-
tamodels ?
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Fig. 2.2 � State Machine Metamodel with multiple start states

Fig. 2.3 � State Machine Metamodel with mandatory start states
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Fig. 2.4 � Composite State Machine Metamodel

Fig. 2.5 � With Final States
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2.2.2 Objects, And Their Types
As described in Section 1.4.1, the basic notions of objects and the type sys-

tems that describe them are by now reasonably well understood [AC96]. Also, as
mentioned in Section 1.4.2, the main di�erence between the objects seen in clas-
sical object-oriented systems and the objects used within models is the presence
of (potentially) bidirectional relationships.

In MOF 1.x, these relationships were de�ned as binary associations, which
in turn contained association ends, which speci�ed characteristics such as the
upper and lower bounds, uniqueness and orderedness of the association in a given
direction. Navigability was speci�ed by the addition of references.

In MOF 2.0, relationships are de�ned as a pair of references, each of which
de�nes the details formerly kept by association ends. These references may link to
another reference, thus forming a bidirectional relationship. This change entails a
subtle change of expressivity but, in e�ect, yields the same type of relationships.

2.2.3 Models And Model Types
As discussed in Section 1.1.4, there are two approaches for delimiting what

represents a model ; the container approach, where one element represents the
"root" of the model and the elements it contains or references are included as
contents, and the graph approach, where the model is a collection of elements
and the links between them, without a root.

This second approach is the one we will take, since it is more general, and
does not su�er in the case of languages that do not have a natural root element.

Taking this second de�nition, one intuitive choice for the type of a model is
the set of the object types of all the contained objects. The details of such a
de�nition are given in the next section.

2.2.4 Typing in Model-Driven Engineering
The application of typing in model-driven engineering is seen at a number of

levels.
At a �ne-grained level, languages that manipulate and explore models need

to be able to reason about the types of the objects and properties that they
are regarding within the models. For this level of granularity, an object-based
approach to typing is probably more natural and appropriate.

From an architectural perspective, there is also a need to reason about the
types of artefacts handled by the transformations, programs, repositories and
other model-related services. It is at this level that an appropriate type system
should allow us to reason about the construction of coherent systems from the
services available to us. While it is possible to de�ne the models handled by these
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services in terms of the types of the objects that they accept, we argue that this
is not a natural approach, since these services intuitively accept models as input,
and not objects.

Having established that services might accept and produce models, it follows
that they should specify a type for these models. Furthermore, having established
these type declarations, it is also useful to �nd a semantic for substitutability that
allows the maximum possible �exibility and reuse, while still assuring that the
services do not receive models whose elements they do not understand.

For example, the sample transformation described in Section 2.2.1 can be
said to accept state machines as input, and should accept as many of the noted
variants as possible, provided that at no point the transformation attempts an
action on the model that is not possible.

2.3 Model Types and Model Type Substitutabi-
lity

In this section we provide a simple structure for the type of a model and
discuss the conditions under which one model type may be substituted for ano-
ther. This includes an analysis of the dependence of model typing upon object
typing, and the extensions necessary for object typing to function correctly in this
new context. We demonstrate the application of model types using the example
presented earlier.

2.3.1 Model Types and Type Checking
The previous section loosely describes a model type as the set of object types

for all the objects contained in a model. However, this is a de�nition based on
re�ection, and the aim of model types is rather targeted at transformation or
model-based programming languages, where re�ection will not be the dominant
manner of determining types. Therefore, we need to rede�ne our model type more
basically.

So what structures do we have ? Normal MOF re�ection upon an object yields
a MOF class. While literature on type systems, such as [LP91], suggests that a
type is not the same thing as a class, the terminology used by MOF is somewhat
misleading. Since MOF is a signature language, i.e., unable to specify behaviour,
a MOF class is in fact more analogous to an object type than to a class in type
system terminology. We therefore content ourselves to de�ne a model type as a
set of MOF classes (and, of course, the references that they contain).

In the example presented in Section 2.2.1, the model type required for our
transformation is in essence the metamodel shown in Figure 2.1. In fact, the only
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signi�cant di�erence between model types and metamodels is the structuring
provided by packages and relationships between packages.

Having established the structures with which we will type models, the question
remains : under what conditions may one model type, i.e., set of object types, be
considered conformant, or substitutable, for another ? Quite simply, each object
type in the required set must be �understood� by the candidate set. Clearly, this
returns to a situation of object type conformance.

2.3.2 Object-Type Conformance
As mentioned earlier, type systems for object-based languages are reasonably

well understood, and are increasingly being implemented in the most popular
object-oriented programming languages. Typically, the relation used for confor-
mance of one object type to another is subtyping.

Subtyping, as described earlier requires that the operations de�ned on two
object types show covariance of their return types and contravariance of their
parameter types. If we consider each MOF property to be a pair of accessor/mu-
tator methods this means that subtyping for MOF classes requires invariance of
property types.

Unfortunately, one of the strong motivating cases for a polymorphic notion of
model types is to allow transformations to keep working as metamodels evolve
over time. One of the most common evolutions seen in metamodels is the addition
of a property to a class. In this case, any reference to such a class will vary its
type. More formally, the addition of the attribute will likely cause a covariant
property type rede�nition somewhere in the metamodel.

For example, consider a comparison of the basic statechart metamodel in Fi-
gure 2.1 with the composite statechart metamodel in Figure 2.4. As a result
of adding the inheritance link, the StateMachine class in the Composite me-
tamodel has evolved to have two more properties : name of type String, and
stateMachine, pointing towards a possible containing StateMachine.

In isolation, the addition of these attributes might seem to preserve a subtype
relationship between the two StateMachine classes. However, this would mean
that the property Composite :: State.stateMachine represents a covariant rede-
�nition of Basic :: State.stateMachine. This is a problem, since property types
must be invariant in order to preserve subtyping.

The need for property type invariance is simply demonstrated. Subtyping
requires that any code which is safe on a given type must be safe on its subtype.
So a program written for a Basic State : Exp must work for a subtype. Even a
single line written for Basic :: State such as

s.stateMachine := Basic::StateMachine.new
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is not acceptable for Composite :: State. The type of Composite ::
State.stateMachine is Composite :: StateMachine, and a parameter of type
Basic :: StateMachine is not acceptable.

Furthermore, the interdependence between the three classes in the meta-
models that results from having bidirectional references means that any ad-
dition of an attribute would break subtyping for every class in the metamo-
del. Composite :: State is not a subtype of Basic :: State, as we have seen.
StateMachine has a property containedState of type State : Exp, which may not
vary, so Composite :: StateMachine is not a subtype of Basic :: StateMachine.
Similarly for Transition.

Nonetheless, from the point of view of a program written to manipulate a
Basic state machine, the addition of attributes should make no di�erence. The
lack of a subtyping (or subsumption) relationship between the classes only poses
a problem from the point of view of an individual class. For instance, a composite
State : Exp cannot be added to a Basic state machine, since an operation on the
composite State may attempt to access the name or containingState property
of the Basic state machine, resulting in a type error.

However, we are interested not in replacing one type, but in replacing a set
of types. Provided that we specialise the classes in parallel, and ensure that ins-
tances of Basic classes and Composite classes do not mix, then there should be
no problem.

As it turns out, there is another relationship discussed in type systems for
comparison of object types : matching [BSvGF03]. An object type T ′ matches
another T (denoted T ′ <# T ), i� every method in T also occurs in T ′ with the
same signature. The matching relation is weaker than subtyping ; in particular it
does not enjoy subsumption, i.e., objects of a matching type are not guaranteed to
conform to the matched type. However, as Bruce shows in [BV99, BSvGF03] and
through the PolyTOIL and LOOM/LOOJ languages, using this relation between
groups of types allows for a more �exible, but still statically type-safe, notion of
re-use when dealing with the parallel specialization of inter-related object types.
This comes with the caveat that matching classes are never used in the context of
heterogeneous collections. Notably, in the context of models, type-safety depends
on models remaining homogenous with respect to a set of object types.

2.3.3 Changes for MOF object structures
The presence of relationships, in whichever form, de�ned between classes has

little e�ect on the overall approach on the typing of objects. The structure of an
object type remains the same. Indeed, if one considers a relationship as a mutually
dependent pair of references, they do not di�er fundamentally from the properties
seen commonly in object-oriented systems, other than the runtime constraint for
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synchronisation.
There is, of course, a stronger prevalence of cyclic dependencies between the

conformance of classes. For example, consider a class C1 in a relationship A1,
consisting of two references R1 and R2, with another class C2. For a class C1'
to be considered a match of C1, it must participate in a relationship A1' with a
class C2' that is a match of C2, which fact depends on the original comparison
of C1' and C1.

One of the more signi�cant di�erences with the object structure of MOF is the
presence of multiplicities : upper and lower bounds, uniqueness and orderedness.
In order for a MOF property to be considered conformant, not only must its type
be a match, but also its multiplicity. For example :

� does a multi-valued property conform to a single-valued property ?
� does an optional property conform to a mandatory property ?
� does a set-valued property conform to a bag- or sequence-valued property ?
In Section 2.4, we present a simpli�ed language which does not consider orde-

redness or uniqueness, which issues we leave for later resolution, but does provide
matching rules based on whether elements are optional or mandatory, and single-
or multi-valued. An approach for matching multiplicities in their entirety may be
found in Section 3.2.4.1.

2.3.4 Model-Type Conformance
Bruce further de�nes in [BV99] the <# relation between two type groups as

a function of the object types which they contain. This is precisely what we need
for determining whether a required model type may be satis�ed by a provided
model type. Speci�cally, Bruce states that :

Type group TG′ <# TG i� for each type MT in TG there is
a corresponding type with the same name in TG′ such that every
method in TG.MT also occurs in TG′.MT with exactly the same
signature as in TG.MT .

We may generalise this to model types by saying that :
Model Type M ′ <# M i� for each object type C in M there is a

corresponding object type with the same name in M ′ such that every
property and operation in M.C also occurs in M ′.C with exactly the
same signature as in M.C.

2.4 Towards A Type System For Models
In this section we describe a formalism for reasoning about models and model

types. To do this we propose a basic language for de�ning transformations as
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ClassDecl ::= class c extends c′
{ PropDecl∗ OpDecl∗ }

PropDecl ::= ts p (# p′)?
OpDecl ::= ts o( tsi xi)
t ∈ Type ::= boolean | c | set〈c〉

ts ∈ TypeSpec ::= (optional)? t

Fig. 2.6 � Language Grammar : MOF structural concepts

series of simple CRUD (Create, Read, Update, and Delete) operations on objects
and models. The �rst section presents a grammar for this language, including
a simpli�ed version of the MOF structural concepts and a number of simpli�ed
operators for manipulating them. Following that, we describe a number of rules
for type-checking a program written using the language. These rules and their
explanation rely heavily on the work presented by Bruce and Vanderwaart in
[BV99].

2.4.1 Grammar of types and terms
Figure 2.6 shows the major structural concepts as de�ned by MOF. A class is

de�ned with a name, a set of superclasses, and sets of property and operation de�-
nitions. Properties have names and types, and may be linked as opposites in order
to approximate associations. Operations are named and have typed parameters
and a return type. Multiplicities are not present in their full detail, but to capture
the important distinctions, we allow properties, parameters and operations to be
typed as sets, and to be speci�ed as optional or not

Transformations in this language take a single model as a parameter and ma-
nipulate it in-place. This represents a signi�cant simpli�cation of the approach
taken by most transformation languages, notably in that there is no output mo-
del, and only one input model. This is done to avoid complications which come
about from having multiple model types interacting within a single transforma-
tion which, while possible, is less easily understood.

The parameter type of a transformation is a model type, which is a collection
of object types. Model types might also be considered as valid types elsewhere in
the language (variables, expressions, etc.), but in the interests of explanation we
will limit their use to transformation parameter types.

The grammar elements for declaring model types and transformations are
shown in Figure 2.7.

For the body of transformation, we provide a basic set of types and terms
corresponding to a simple expression language (Figure 2.8). There are variables,
assignments, invocations of operations and transformations, and conditional/ite-
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Trans ::= trans ψ ( m x ) tb
ModelTypeDecl ::= modeltype m { c }
m ∈ ModelType ::= m
tb ∈ TransBody ::= { s return e; }

Fig. 2.7 � Language Grammar : Model Types and Transformations

v ∈ Value ::= true | false | null | empty
l ∈ LValue ::= x | variable

e.p property access
e ∈ Expression ::= v | value

l | l-value
e1 == e2 | equality test
e >< c | model �lter
se

se ∈ StatementExp ::= new c() | instantiation
e.o(e′) | operation call
l += e | set addition/association
l −= e set removal/dissociation

s ∈ Statement ::= ; | skip
se; | statement expression
l = e; | assignment
ψ(e); | transformation invocation
if (e) { s1 } else { s1 }; | conditional
for (c x : e) {s}; set iteration

Fig. 2.8 � Language Grammar : Expressions and Statements

ration statements, etc. The only operator that might be considered unusual is the
>< operator, which �lters a model by a given class to return a list of all objects
of that type found within the model.

The �ltering of a model to retrieve all instances of a type is an operation that
is used frequently in model transformations1. However, few imperative languages
propose it as an operator, instead proposing the functionality through a library
function (e.g., allInstances() or all_of_kind()). Having a clear concept of a
model type allows the de�nition of the operator with a much more accurate type
signature.

1Indeed, many rule-based languages, such as Tefkat [DGL+03], are built around some sort
of �lter functionality.



Towards A Type System For Models 45

C ∈ ClassTable : ClassName→ ClassName× PropMap× OpMap
P ∈ PropMap : PropName→ boolean× boolean× Type× PropName
O ∈ OpMap : OpName→ boolean× boolean× Type× ParamMap

R ∈ ParamMap : ParamName→ boolean× boolean× Type
T ∈ TransMap : TransName→ VarName× LocalMap×ModelType×

TransBody
L ∈ LocalMap : VarName→ Type

Fig. 2.9 � Signatures of class and transformation tables

We do not provide an expression language here for the bodies of operations,
but it might be assumed to be the same as that of transformations. We keep them
separate only for reasons of explanation.

The signatures that result from a program in this language are shown in
Figure 2.9. A class de�nition is a tuple ({c1, . . . , ck},P ,O), where {c1, . . . , ck} is
a sequence of superclasses, P is a map of property names to types (with Booleans
for optionality and multi-valuedness) and opposite properties (in order to form
associations), and O is a map of operation names to de�nitions. An operation
de�nition is a tuple of the return type and a map of parameter names to types.

A transformation is a tuple (x,L,m, tb), where x is the parameter, L is a map
from local variable names to their types, m is the parameter's model type, and
tb is the transformation body.

2.4.2 Language semantics
The semantics of the language is largely the same as that presented in [BV99].

The notable exception is that, in that work, the authors present the semantics of
their virtual types as a generalisation of the semantics of their MyType operator
(i.e., the recursive type), which is absent from the language presented here. While
this may seem a gross di�erence, the semantics and proof of virtual types pre-
sented rely upon MyType only as an explanatory aid, and its absence does not
fundamentally a�ect the workings of virtual types. As a result, our language here
might be seen as supporting mutually recursive types, but not singly recursive
types.

Also absent in the language presented here is any discussion of the inter-
nal state of objects, i.e., of instance variables. (Instance variables are not to be
confused with our properties, which are instead considered to function as pairs of
accessor/mutator methods). Once again, for the purposes of de�ning the seman-
tics, the matter of internal state may be considered as being treated in a similar
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manner to [BV99].
Thus, following the semantics of virtual types from LOOM, it can be conside-

red that each of the types used within the body of a transformation in association
with the model type is virtual. Thus, the transformation is e�ectively paramete-
rized by the set of types used within its body in association with its model-typed
parameter, i.e., by the set of types listed in the model type.

As in LOOM, the semantics of a transformation body at runtime involve an
e�ective substitution of the model types with the matched types. That is, types
within a transformation function as virtual types. For example, the invocation of
an operation resolves not to the declared type, but to the actual class provided
as a match to the declared type. Similarly for references to properties, and for
the creation of new instances from classes.

The major structural addition in the language shown here is the ability to
type terms, speci�cally transformation parameters, using a model type, thus per-
mitting them to function as models (as described in Section 1.1.1). Semantically,
these terms then function much as collections, whose elements may be thought
of as being typed as the union of the types declared in the model type.

2.4.3 Selected type-checking rules
In this section we present a number of interesting type checking rules that

derive from the grammar and semantics of the language. These do not comprise
a full type system ; they are rather provided to illustrate the extensions that are
implied for the extension of an existing type system in order to treat models and
model types.

The object type matching rule, and in turn the matching rules for proper-
ties, operations and parameters, modi�ed to account for multiplicities, are shown
in Figure 2.10. There are two considerations here. First, collections are treated
di�erently in the language than singletons, since they are subject to set addi-
tion and removal operators. As a result, multi-valued properties (or operations,
or parameters) cannot conform to single-valued, nor vice-versa. The mandatory
property, somewhat similar to MOF's lower bounds, obeys subsumption, which
in this simpli�ed case is reduced to a nor operator.

These rules represent only a small change from those commonly seen in type
system de�nitions in order to support polymorphism (more speci�cally, match-
bounded polymorphism). The notable change is the treatment of multiplicities.

Figure 2.11 shows a number of rules that have been added in order to treat
models and their types.

Matching between two model types is determined by ModelTypeMatch,
provided that both are valid model types, and that there exists a pairwise mat-
ching of the object types (following the description given in Section 2.3.4.
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P(p) = (nmand, nmult, t,_)
P(p′) = (n′mand, n

′
mult, t

′,_)
C,E ` t′ <# t

n′mand or ¬ nmand

n′mult = nmult

C,E ` p′ <# p
(PropMatch)

R(r) = (nmand, nmult, t)
R(r′) = (n′mand, n

′
mult, t

′)
C,E ` t′ <# t

n′mand or ¬ nmand

n′mult = nmult

C,E ` r′ <# r
(ParamMatch)

O(o) = (nmand, nmult, t, {ri}i≤m)
O(o′) = (n′mand, n

′
mult, t

′, {r′i}i≤m)
C,E ` t′ <# t

n′mand or ¬ nmand

n′mult = nmult

C,E ` ri <# r′i for1 ≤ i ≤ m

C,E ` o′ <# o
(OpMatch)

C(c) = (_, {pi}i≤m, {oi}i≤x)
C(c′) = (_, {p′i}i≤m+n, {o′i}i≤x+y)
C,E ` p′i <# pi for1 ≤ i ≤ m
C,E ` o′i <# oi for1 ≤ i ≤ m

C,E ` c′ <# c
(ObjTypeMatch)

Fig. 2.10 � Selected type-checking rules for model types : Object-type matching
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C,E ` {ci} for 1 ≤ i ≤ m
C,E ` {c′j} for 1 ≤ j ≤ m+ n
C,E ` c′i <# ci for 1 ≤ i ≤ m

C,E ` {ci}i≤m <# {c′j}j≤m+n

(ModelTypeMatch)

T (ψ) = (x,_,m1,_)
C,E ` e : m2

C ` m2 <# m1

C,E ` ψ(e)
(TSTransInv)

C,E ` x : m
C,E ` e : c
C,E ` c ∈ m
C,E ` x += e

(TSModelAdd)

C,E ` x : m
C,E ` c ∈ m

C,E ` x >< c : set < c >
(TSModelFilter)

Fig. 2.11 � Selected type-checking rules for model types : model types

There are three rules shown for operators dealing with model-typed variables,
i.e., models.

TSTransInv checks that the expression used as a parameter to a transfor-
mation invocation is model-typed, and that this model type is a match to the
declared parameter type.

TSModelAdd permits an element to be added to a model using the +=
operator, provided that the model's type is a valid extant model type containing
the object type of the element to be added.

TSModelFilter ensures that an object type c used as a �lter on a model x
is indeed present in the model type m of the variable, and that the return type
of such an operation is a collection of the �ltering object type, i.e., set < c >.

There are a number of other rules implied by the presence of model types
and model-typed expressions in the language, which are not presented here in the
interests of brevity. These include basic rules for model type matching, including
re�exivity and transitivity, and conformance of all model types to the Top model
type, {Object}. There are also a number of well-formedness rules, for example to
ensure that a model type includes the transitive closure of object types referred
to as types of properties, operations or parameters.
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Simple (Figure 2.1) X NO NO NO NO
Multiple-Start (Figure 2.2) NO X NO NO NO

Mandatory-Start (Figure 2.3) X NO X NO NO
Composite (Figure 2.4) X NO NO X NO

With-Final-States (Figure 2.5) X NO NO NO X

Tab. 2.1 � Model Type Conformance Relation for State Machine Variants

2.4.4 Application to the examples

If we apply the ModelTypeMatch rule to the example metamodels provi-
ded in Section 2.2.1, we are able obtain the model type matching relation shown
in Table 2.1.

The relation shows clearly that all of the variants barring those with multiple
start states are acceptable for transformations written against a Basic state ma-
chine metamodel. We can see that the addition of new classes (FinalState), the
tightening of multiplicity constraints (Mandatory), and the addition of new attri-
butes (indirectly with Composite State Charts, via the added inheritance relation-
ship) have not broken model-type matching. However, multiple start states clearly
pose a problem should a transformation attempt to navigate the initialState pro-
perty to obtain a single State object.

It is notable also that Composite state charts are found to be subtypes of
simple state charts, although the reverse might have been more intuitive. (A
simple state chart might be mistaken for a composite state chart that does not
use composition.)

In the other sense, basic state charts do not match any of the variants, nor
do any of the variants match each other. The e�ect of insisting on name equiva-
lence when matching object types may be seen in the non-conformance of basic
state charts to those with �nal states ; applying a name-independent structural
conformance, these model types would be equivalent, and thus would match.
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2.5 Conclusion
This chapter has presented a basic approach to formalising models and their

types, and to providing a mechanism by which models of one type may be used
where models of another type were expected.

Models have formalised simply as graphs of objects. These are then typed by
sets of object types, including the types of the links between the objects, in the
form of MOF Classes. A notion of model type substitutability has been obtained
based on Bruce's notion of Type Groups and type group matching, which has
then been simply adapted and extended to model types.

This has been demonstrated as a simple language to demonstrate the ideas of
model typing, including a number of type rules which may be added to a simple
object-oriented language to support polymorphic model transformations.

The principles that have been presented here are applied to a real-scale model
transformation and manipulation language, Kermeta, in the next chapter.



Chapitre 3

Implementing Model Types in
Kermeta

The language we present in Chapter 2 is a simple language with the sole pur-
pose of demonstrating the idea of model types and its potential advantages in
Model-Driven Engineering. However, it is insu�cient for real use in the develop-
ment of model-driven systems. To this end, model types have been implemented
in the model-driven programming language, Kermeta.

This chapter describes the implementation of model types in Kermeta. In sec-
tion 3.1, Kermeta is presented in detail, including its type system. Section 3.2
lists and discusses in detail a number of requirements that result from the appli-
cation of the principles from Chapter 2 to a larger-scale model-driven engineering
platform. Section 3.3 then describes concretely the changes made to Kermeta
to instrument it for models and model types. Finally, Section 3.4 illustrates the
use of model types by applying it to a workbench for the manipulation of state
machines.

3.1 The Kermeta Language and Environment
As introduced in Section 1.2.2.4, Kermeta [MFJ05, Fle06] is an open-source

metamodelling language developed by the Triskell team at IRISA. It has been
designed as an extension to EMOF 2.0, a recent version of the MOF speci�cation
(as introduced in Section 1.1.3), to be the core of a meta-modelling platform.
Kermeta extends EMOF with an action language that allows the speci�cation
of semantics and behaviour of metamodels, using an imperative, object-oriented
action language which is used to provide an implementation of operations de�ned
in metamodels.

The Kermeta action language has been speci�cally designed to manipulate
models. It includes both object-oriented features and model-speci�c features. Ker-

51
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meta includes familiar object-oriented static typing, with multiple inheritance and
behaviour rede�nition/selection with a late-binding semantics, as well as type pa-
rameters, and syntactic closures à la Smalltalk or Ei�el. To make Kermeta suitable
for model processing, more speci�c concepts such as opposite properties (i.e. as-
sociations) and handling of object containment have been included. This o�ers a
syntactic advantage over using an existing language such as Java in combination
with libraries such as EMF[BSM+03] or JMI[Sun02].

3.1.1 Kermeta Language Features
The Kermeta type system is heavily in�uenced by that of Ei�el, and to a lesser

extent that of Java. Also, conformance with the EMOF metamodel is considered
very important, and this consideration in�uences the structure of the type system.

The most signi�cant structural change with respect to EMOF is the addition
of type parameters for classes and operations. For classes, this is modelled by
introducing a separation between the de�nition of a class and its use as a classi�er.
For example, the de�nition of Collection < X > is no longer a Class, but instead
a ClassDefinition, whereas Collection < String > is a Class. In this way, a
class consists of a reference to a class de�nition, and a set of bindings of the class
de�nition's type parameters to the types that �ll them. In order to maintain
consistency with the EMOF metamodel, the attributes previously available on
Class, which now reside primarily on ClassDefinition, such as inheritance and
ownership of properties and operations, are made available on Class as derived
attributes.

In addition to being de�ned using the action language, operations may be
declared as abstract. This makes them similar in functionality to the signature
de�nitions of methods on interfaces in Java. Additionally, Kermeta introduces the
concept of semantically abstract classes. This means that a class may be declared
as not abstract and yet de�ne or inherit one or more abstract operations, yet still
type-check. In this case, the class is declared semantically abstract, and may not
be instantiated.

The action language of Kermeta is not signi�cantly di�erent from what one
expects in a modern object-oriented programming language. Unlike Java, there
is no return statement - the programmer must assign into an implicitly declared
result variable. This, as well as the absence of continue and break statements in
loops, helps to regularize control �ow.

Assignments are modi�ed such that assigning to a reference which participates
in an association will also a�ect the other end, i.e. it is the association as a
whole which is updated. This also takes composition into account. For example,
assigning an object into a contained role will automatically remove it from any
other contained roles in which it is participating.
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A big part of metaprogramming is the treatment of collections. To assist with
this, Kermeta supports syntactic closures. This allows for the de�nition of func-
tions such as select(), collect() and reject() on collections, where the parameter
is a function. For example, the select() operation is parameterized by a function
which is used as a �lter on the collection's elements. The combination of syntactic
closures and type parameters allows for the de�nition of a method like collect(),
in which the return type for the method is de�ned as the return type of the
function passed as a parameter.

Clearly, there are number of di�erent kinds of type in Kermeta. From EMOF,
there are Classes (modi�ed as above), Enumerations, and Datatypes (which are
treated in Kermeta as type aliases, much like in EMF). Additionally, there are
type parameters, since these may be used to type properties, operations, parame-
ters, etc. Function types are also present, in order to support syntactic closures,
as seen in the function-typed operations available on collections.

3.2 Requirements for model types in Kermeta
This section presents a number of high-level considerations that emerge when

implementing model types into a more realistically scaled model-driven develop-
ment platform, such as Kermeta. This includes concerns such as the way in which
model types are de�ned, ensuring homogeneity of models, providing a su�ciently
permissive relation for model type matching, and providing an operator for crea-
ting a model type as an extension of another.

3.2.1 Basic Requirements
To recapitulate from Chapter 2, there are two basic motivations, and thus

requirements, for building model typing into a language, in this case Kermeta.
Firstly, the programmer should be able to manipulate models as �rst-class

terms in the language. This includes the creation of new models from model types,
the safe addition and removal of objects to/from models, and the inspection of
the objects contained by the model.

Secondly, the programmer should be able to write programs that work against
a family of di�erent model types. That is, it should be possible to write a program
against a given model type and have it work correctly upon models of a type that
matches the initial type.

3.2.2 De�ning Model Types
One of the most signi�cant di�erences between model types in Kermeta and

the features o�ered by programming language techniques like type groups and fa-
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mily polymorphism (as described in Section 1.4) is that model types are construc-
ted by reference to object types, not as containers of object types. There are three
main reasons for this choice.

Firstly, building model types by reference allows the construction of model
types from classes de�ned elsewhere. This means that model types may be de�-
ned without having to reorganize existing metamodels into model types, which
is particularly important since many metamodels are de�ned as standards, wi-
thin organisations such as the OMG. Building model types by reference is also
important for building models, since by implication it allows the construction of
models from objects whose types are de�ned elsewhere.

Along similar lines, building model types by reference to classes also allows
a single class to be used in several di�erent model types. Again, by implication,
this allows a single object to be used in models of di�erent types. If model types
were de�ned as containers of object types, then each object would be usable only
in the model type within which its class had been de�ned. In this way, including
classes by reference allows for overlapping model types, which is useful for the
construction of, for example, annotation models or traceability models.

Thirdly, separating the de�nition of model types from the de�nition of classes
allows for a clearer separation of the roles of packages and model types. In particu-
lar, it allows for the de�nition of a merge operator only for packages, rather than
for both packages and model types. This operator is discussed in Section 3.2.5.

As described in Section 3.1.1, Kermeta adds to EMOF a distinction between
concrete types, and type de�nitions, which may include unbound type parame-
ters. Therefore, another consideration for model types is whether they reference
type de�nitions or types. This is essentially a question of whether or not to in-
clude generic classes with unbound type parameters. Since this decision is heavily
dependent on the matching relation being used, we will address it after detailing
the matching relation used in Kermeta, in Section 3.2.4.2.

3.2.3 Homogeneity of Models
One of the primary concerns when building model types into a programming

language is of ensuring homogeneity of models. That is, ensuring that the types
of all objects in a model are present in the model's model type.

Since we are using pointwise object-type matching instead of subtyping, a
type A′ within a model type MT ′ is not a subtype of the corresponding type A
in MT , even if MT ′ <# MT . As such, it is very important to ensure that at no
time does a program attempt to add an object of type MT ′ :: A′ into a model of
type MT .

The implication of this is that model types are not polymorphic. For example,
an attempt to add an object of typeMT :: A to a variable of typeMT is validated
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by the type-checker, but attempting this when the runtime model is of type MT ′

would result in a non-homogeneous model.
Because of this, reuse is achieved instead through the use of type parameters.

Just as a class may declare type parameters to be satis�ed by object types, we
add the ability to declare model type parameters, to be satis�ed by model types.
The distinction between the two is made on the basis of the bounds constraint of
the type parameter.

A model type parameter MTP bounded by model type MT , once declared,
also implicitly introduces a set of virtual type parameters MTP :: A, MTP :: B,
corresponding to the object types contained by MT . This model type parameter
may be �lled by any model type MT ′ such that MT ′ <# MT , in which case each
virtual type parameter MTP :: A will be �lled by whichever object type in MT ′

matches MT :: A in the pointwise object-type match relation.
Once these virtual type parameters have been implicitly bound, they may not

be re-bound. This, and the fact that the binding is done in response to a unique
pointwise matching of model types, ensures that the virtual type parameters
will be both consistent amongst themselves, and stable for the duration of the
parameterized class. Both of these conditions help ensure that the models being
treated remain homogeneous.

3.2.4 Model Type Matching in Kermeta
Model-type matching in Kermeta has been adapted slightly from the de�-

nition in Chapter 2 (which is in turn based on the matching in [BV99]). Most
signi�cantly, the requirement that matching classes have the same name has been
removed. This has a number of important implications :

� It becomes possible for a model type to match another in a number of
di�erent �ways� since, without the uniqueness constraint of names to rely
upon, the pointwise matching relation between object types is no longer
sure to be 1-to-1. A non-ambiguous object type match is required for any
operation upon a virtual type parameter (for example, instantiation), so
these ambiguous model type matches must be detected and rejected by the
type checker.1

� Matching is therefore no longer re�exive, since a model type may match
itself ambiguously.

� The algorithm for establishing matching is much more costly, since it be-
comes a constraint satisfaction problem rather than a simple evaluation
of 1-to-1 conformance or non-conformance. When checking if a model type
consisting of m types matches another consisting of n types, there are m×n

1A future extension will be to permit the programmer to disambiguate a model-type match
by providing a number of object-type matches explicitly.
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3.2.4.1 Matching Multiplicities

One of the signi�cant simpli�cations in the language presented in Section 2.4.1
was to represent multiplicities as simply multi-valued or not, and optional or not.
Since multiplicities in MOF are somewhat more sophisticated, the di�erences
must be considered in order to match properties, operations and parameters in
Kermeta.

Multiplicities in MOF consist of four elements ; upper and lower bounds ex-
pressed as naturals, and Boolean �ags for orderedness and uniqueness. Unbounded
collections may be expressed using an in�nite upper bound (often represented by
-1), while optionality is represented using a lower bounds of zero. Orderedness
and uniqueness have meaning only on multiplicities whose upper bound is greater
than one, and combining them allows for the speci�cation of sets, bags, ordered
sets and sequences.

The goal of multiplicity matching is that any operation written against an
element having multiplicity M may be safely performed on an element of mul-
tiplicity M ′. The relation is therefore highly dependent on the language being
considered. For example, in declarative languages such as Tefkat [LS05], there is
little di�erence between the operations available on single-valued elements and
those available on multi-valued elements, since both return a single element. In
Kermeta or EMF, by contrast, accessing single-valued elements will return single
elements while accessing multi-valued elements will return collections.

In Kermeta, therefore, the �rst consideration we make when comparing mul-
tiplicities is to ensure that the distinction between single-valued and multi-valued
elements is respected. Thus, an upper bound of 1 is a privileged value when we
are considering matching.

In an environment such as Java/EMF, accessing a multi-valued collection will
return the same type (EList) regardless of the orderedness or uniqueness of the
collection. This is not true in Kermeta, which has a di�erent type for each of the
four possible collections. The subtype hierarchy of these collection types is shown
in Figure 3.1.

This diagram shows that ordered collections are compatible with (and even
de�ned as subclasses of) unordered collections, and thus orderedness may be ad-
ded to (but not removed from) a multiplicity and preserve matching. By contrast,
varying the uniqueness constraint, either by addition or removal, of a multiplicity
does not preserve matching2.

Varying the upper and lower bounds of a collection in ways other than bet-
ween single- and multi-valued, is a more complicated consideration. Taking a

2Interestingly, the reason for this, that a given element may or may not be safely added
multiple times to a collection, is not statically detectable, so for the purposes of a static type
system, there is little advantage to enforcing it.
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Fig. 3.1 � Subtyping hierarchy of collection types in Kermeta

set-theoretic view of types, it is tempting to say that any contraction of a multi-
plicity range, i.e. raising of the lower bound and/or lowering of the upper bound,
preserves a subsumption relationship between the sets of models permissible in
a model type, and thus should preserve matching. However, in the event that
the programmer adds n elements into a property of multiplicity range 0..n, such
a contraction would result in a runtime over�ow error on the property. Indeed,
this would suggest that broadening the multiplicity range would be acceptable.
However, attempting to copy the property's contents into a collection of size n
might fail if its upper bound was raised. What one �nds is that the only way of
ensuring that no errors are introduced by varying a multiplicity is to make the
bounds invariant. This, however, is inconvenient for the programmer.

The truth is that, even disregarding the variation of multiplicity ranges, errors
related to under�ow (not enough elements) or over�ow (too many elements) are
impossible to detect statically in an imperative language such as Kermeta. Control
�ow constructs such as loops and conditionals, for example, make it impossible
to count additions into, or extractions from, a collection. Therefore, varying the
multiplicity range makes no di�erence to our ability to statically detect errors.

However, it is not intuitive to allow the programmer to vary the ranges ar-
bitrarily, since it would allow even non-overlapping ranges, such 0..2 and 50..100
to be compatible with one another. To this end, we have taken the decision in
Kermeta to allow contraction of multiplicity ranges but not broadening, since it
preserves the set-theoretic viewpoint for the user.

3.2.4.2 Model Types and Generic Classes
As mentioned in Section 3.2.2, there is a question of whether to reference type

de�nitions, including generic classes with unbound type parameters, or concrete



58 Implementing Model Types in Kermeta

types only.
When a program/transformation is written, it works with a set of types. These

types might be primitive types, enumerations, parameter-less classes (as opposed
to unparameterized generic classes), or parameterized classes (i.e. generic classes
with bound type parameters). To be thorough, the model type required by this
program or transformation should provide a type for each of these types.

However, the presence of parameterized types has the potential to make au-
tomated matching more complicated. Notably, it becomes possible for a generic
class to satisfy a given required type if only it can be parameterized by the right
type. However, iterating over the set of possible type parameters that might make
the generic into a matching type would be extremely ine�cient and probably in-
�nite.

One simpli�cation of this problem is to match type de�nitions rather than
types. That is, a generic required type may be satis�ed by a provided type with
the same number of type parameters having compatible bounds constraints. A
non-generic required type may not be satis�ed by a generic type, regardless of how
it might be parameterized. This rules out a number of potentially valid matches,
but greatly simpli�es the matching algorithm.

At this point, Kermeta model types may not include classes with type pa-
rameters. However, in order that this simpli�ed approach to matching generic
classes might be supported at some point in the future, model types are de�ned
using type de�nitions, and not types.

3.2.5 Merging
Through model-type parameters that may be substituted using matching, it is

possible to write code that is reusable for multiple model types. However, another
important aspect of reuse is for the de�nition of model types themselves.

To support this, rather than de�ning an extension mechanism for model types,
a merge operator is provided for packages. This merge mechanism is based on
the package merge provided in UML2, which is also present in CMOF, and is also
conceptually similar to the modular mixins used in Scala [OZ05]. This mechanism,
although conceptually similar, is distinct from class inheritance, and allows a
package to be de�ned in terms of the elements that it adds to another, instead of
having to rede�ne the shared features explicitly.

An example of merge may be seen in Figure 3.2. So when package P2 merges
another, P1, for each class de�nition (P1 :: A and P1 :: B present in the extended
package, a class de�nition (P2 :: A and P2 :: B) will be available in the extending
package. Where the extending package contains an explicit de�nition for a class,
such as in the case of B, the resulting class de�nition P2 :: B will o�er features
(properties and operations) as if it had inherited from the corresponding class
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Fig. 3.2 � A simple example of package merging

de�nition P1 :: B. The types that are accessible on P2 are the same as those
shown in the P3 package show in Figure 3.3.

Obviously, this inheritance of features depends upon the static detection of
any con�icts between the merged features and those explicitly de�ned on the
extending class de�nition, which is done using the same logic as for normal class
inheritance. This acquisition of features, as well as the detection of con�icts, also
extends to the merging of multiple model types, using the rules for con�ict de-
tection and resolution that are used elsewhere in Kermeta [Fle06]. The exception
to this is for references to other types.

As a general rule, references to types are treated as virtual in all cases where
the referred type is present in the package. This includes types of properties,
inherited types, return and parameter types for operations, and also occurrences
in expressions, such as types of variables and actual type parameters. In the case
where a package is de�ned as an extension of another, these virtual types are
automatically rebound to the appropriate types in the extending package. So, in
the case of P2 :: A, the type of the property P2 :: A.my_b will be P2 :: B, and
not P1 :: B.

This type rebinding requires a modi�cation of the runtime treatment of type
literals ; for example, the instantiation of an object type in the model type must
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Fig. 3.3 � The e�ective result of package merging

be treated as an instantiation of the class to which the virtual type resolves.
Once it is possible to extend a set of classes using a merge of the package in

which they are de�ned, the respective model types may be constructed simply by
reference to the two sets. That is, in the case of package P2 which merges P1,
two model types MT2 and MT1 may be de�ned as the sets of classes in each of
P2 and P1.

An object type P2 :: A that results from the merging of package P1 by
another, P2, is not a subtype of the corresponding �merged� object type P1 :: A.
For example, P2 :: A cannot be a subtype of P1 :: A, since the type of the my_b
property has changed, and subtyping requires property types to be invariant.
However, class that are merged in this way do preserve a matching relationship
<# . This lack of subtyping is one of the key di�erences between merging and
object type inheritance, which does guarantee subtyping.

However, although merging of object types results in matching, the same
cannot be said for the model types corresponding to two merged packages. As
mentioned earlier, a model type MT ′ matches another MT i� for each included
object type in MT , there exists a unique matching object type in MT ′. While
merging does ensure that there will be a match for each object type, it can make
no guarantees that there will be only one. That is, a �merged� model type could
introduce ambiguous object-type matches.

3.3 Building Model Types into Kermeta
The addition of model types to the Kermeta platform is very much a cross-

cutting concern. The process requires changes to almost every aspect of the plat-
form, from the metamodel, type checker, standard library and runtime to user
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components such as integrated editors and import/export tools.
This section describes the approach by which support for model types and

models have been implemented into Kermeta. There is no attempt to describe
the entire development process. The focus is rather on the mechanisms by which
the requirements outlined in Section 3.2 are handled.

Section 3.3.1 describes the construction of the Kermeta metamodel and the
changes that were made to it to support model typing. The changes made to the
Kermeta concrete syntax are described in Section 3.3.2. Section 3.3.4 describes the
algorithm used for determining whether model types match one another, which
is key for supporting reuse. Sections 3.3.5 and 3.3.6 present the changes to the
Kermeta framework and interpreter, respectively. Finally, Section 3.3.7 discusses
the provision for runtime access to type parameters, a consequent change made
while adding support for models and model types.

3.3.1 Changes to the Kermeta Metamodel
In keeping with the paradigm of model-driven development, the Kermeta lan-

guage is, of course, speci�ed using a metamodel. To provide an improved separa-
tion of concerns for the language designers, this metamodel is built up by merging
a number of �aspects�, each representing a structural or behavioural considera-
tion of the language. In this section we present a number of these aspects and
show how these are refactored, built upon and added to by an aspect supporting
model typing. A more complete description of Kermeta and its construction may
be found in [Fle06].

Since Kermeta is designed from the ground up as an extension of EMOF, the
�rst aspect is just that ; the part of the Kermeta language representing those
elements taken from EMOF. However, this aspect, shown in Figure 3.4, is not
exactly EMOF. In order to add support the de�nition of parametric classes, there
is a separation between class de�nitions and types. Generic classes are de�ned as
ClassDefinitions and realized into concrete types as Classes with the necessary
TypeV ariableBindings. Compatibility with the EMOF metamodel is maintained
using derived properties on Class, which substitute for type parameters and
provided the properties and operations from ClassDefinition.

In order to support the language features presented in Section 3.1.1, the Ker-
meta metamodel also includes an aspect representing the extensions made for its
type system. These are shown in Figure 3.5. This includes support for function
types, product types, the void type, as well as type parameters (TypeV ariable),
and a mechanism (TypeV ariableBinding) for binding type parameters to types
in order to construct concrete parameterized types. Originally, TypeV ariable
was a concrete class. However, in order to allow for the de�nition of type pa-
rameters that bind to model types rather than object types, the class was rena-
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Fig. 3.4 � Kermeta metamodel : Base Structure
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Fig. 3.5 � Kermeta Metamodel : Type System Structure

med as ObjectTypeV ariable, and its features extracted to an abstract superclass
TypeV ariable.

There are a number of aspects provided for the speci�cation of Kermeta's
action language, the majority of which we will not present here, since they are
not concerned by the addition of models or model types.

The majority of the changes made for model types are implemented as a new
model typing aspect, show in Figure 3.6.

There are three main concerns provided for by this metamodel fragment :
model type de�nition, models, and the necessary changes to type parameters to
support model-typed type parameters and virtual type parameters.

Model types are de�ned using the ModelType class, which inherits
from both Type and TypeDefinition. Model types include type de�nitions
with the includedTypeDefinition reference, although they may not recursi-
vely include other model type de�nitions. Additionally, model types provide
an isModelTypeOf() operation, which serves a role analogous to that of
isInstance() de�ned on Type, in that it replies whether the model type is in-
deed the type3 of the model passed as a parameter.

The Model class is de�ned as a subclass of Object. This is done to ensure
compatibility with EMOF with respect to re�ection. For example, the re�ective
invoke() method de�ned on Object take as parameters, and returns, Objects.
Since we wish to be able to invoke model-type-enabled operations in the same
ways as we do other operations, including re�ectively, we must be able to pass
models as parameters to, and accept models as results from, re�ective invocation.

3Since model types are monomorphic, as explained in Section 3.2.3, a model has only one
type.
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Fig. 3.6 � Kermeta Metamodel : Model Typing Structure

1 c la s s Model inher i t s Object {
2 operation add(o : Object) i s do ... end
3 operation remove(o : Object) i s do ... end
4 operation contents () : Collection <Object > i s do ... end
5 operation filter( t : Type ) : Collection <Object > i s do ...

end
6 }

Listing 3.1 � The Model Class

Therefore, Model inherits Object.
Model de�nes the simple operations that one might expect of a container

of objects : the addition (add()) and removal (remove()) of objects, and the
accessing either of all objects (contents()) or all that conform to a given type
(filter()). To clarify the diagram above, the signature of Model in Kermeta is
show in Listing 3.1.

The add(), remove(), and filter() methods are treated specially by the type-
checker. Invocations of the former two are accepted only when the expression pas-
sed as a parameter is of a type which is �understood by� (is present in) the model
type. Calls to filter() may use as arguments only types (speci�cally Classes or
V irtualTypes) belonging to the model's type (which is either a ModelType or a
ModelTypeV ariable), and has its return type optimised by the type checker to be
a collection of the type passed as a parameter. These special treatments are neces-
sary since Kermeta's type system (like those of most imperative object-oriented
languages) does not support dependent types.

In order to support code reuse through the use of model-type parameters
as detailed in Section 3.2.3, ModelTypeV ariable has been de�ned as a sub-
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Fig. 3.7 � Kermeta Metamodel : Instantiation

class of TypeV ariable. Each ModelTypeV ariable introduces a number of vir-
tual type parameters, which are modelled by the V irtualType class. Speci�-
cally, a ModelTypeV ariable will contain (via the virtualType property) one
V irtualType for each ClassDefinition included in the ModelType given by the
type parameter's supertype constraint. Virtual types resemble classes, in that
each consists of a reference to a class de�nition and a set of type variable bin-
dings.

The �nal fragment of the Kermeta metamodel a�ected by the implementation
of model types that of instantiation, which has been modi�ed for instantiation of
models from model types. Instantiation of objects from classes is represented by
a new() operation on Class, which resides in a separate metamodel fragment. To
this fragment, we add a similar new() operation on ModelType, which yields a
Model. The resultant fragment is shown in Figure 3.7.

3.3.2 Changes to the Kermeta Concrete Syntax
This section presents the changes made to Kermeta's concrete syntax for mo-

del types. These changes fall into three categories ; changes made for de�ning
model types, changes for models, and changes for model-typed and virtual type
parameters. For the most part, these changes do not involve changes to Kerme-
ta's grammar, but to the loading process during the transition from the abstract
syntax tree to the Kermeta model.

Syntactically, a model-type de�nition is introduced using the modeltype key-
word and a name. This is followed by a comma-separated list of type de�nitions
(as fully-quali�ed names) enclosed within braces . The EBNF rule for this is as
follows.

modelTypeDefn ::= "modeltype" ID
LCURLY qualifiedID (COMMA qualifiedID)* RCURLY;

In pure object-oriented languages like Smalltalk, objects have little or no
speci�c syntax ; everything is an object. Even in multi-paradigm object-oriented
languages such as Java4, objects are simply any term whose type is a class ; once
again, there is little syntactic presence.

4Multi-paradigm in that it includes objects as well as value-types such as integers.
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Since we propose to integrate both object- and model-oriented paradigms in
Kermeta, we take an analogous approach. A model has little or no syntax ; any
term in the language whose type is a model type (or a model-type parameter) is
a model.5 Operations on models for addition, removal and inspection of objects
appear using normal operation calls rather than with speci�c in�x syntax. Ins-
tantiation of model types, like instantiation of classes, also appears as a normal
operation call, rather than with a special syntax as in Java. In this way, there is
no change to Kermeta's concrete syntax for models.

Model-typed type parameters do not vary syntactically from object-typed type
parameters. They appear within comma-separated lists within angled brackets
in class or operation declarations, as a name followed by a bounds constraint.
The di�erentiation between the two types of type parameter is made at load-time
based on the type of the bounds constraint. If the constraint is absent, or is a class,
then the type parameter is an ObjectTypeV ariable. If the bounds constraint is a
model type, then it will be a model-typed parameter. Thus, unbounded model-
type parameters must be declared using the Top model type, Model. Subsequent
references to the type parameter, as with other type parameters, are simply by
name. These changes do not a�ect Kermeta's grammar, since they are treated by
the loader, during the conversion from an abstract syntax tree to a model.

As described in Section 3.2.3, a model-type parameter will implicitly intro-
duce a number of virtual type parameters for each class de�nition in the model
type. Since these are implicitly introduced, there is obviously no syntax for their
introduction. When they are subsequently used, these types are used relative to
the scope of the model-type parameter, separated by the :: symbol. So, if a model-
type parameter V is bounded by a model type M containing a class C, then the
corresponding virtual type may be referenced as V :: C. Like the changes for
type parameters, Kermeta's grammar is not a�ected. The changes are made in
the interpretation of quali�ed identi�ers in the loader.

3.3.3 Changes to the Kermeta Type Checker
The changes made to the Kermeta type-checker in order to support checking

programs involving models and model types are many and are scattered throu-
ghout the module's code. However, there are four main elements treated :

� validity of model type de�nitions

5Object-oriented languages are designed for writing programs that treat objects, and many
(typically imperative object-oriented languages like Java or Ei�el) have little or no syntax for
declaring objects. In the same way, Kermeta with model types, as a model-oriented language, is
designed for writing programs that manipulate models, and has little or no syntax for declaring
models.
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� extra checks and optimisations for methods whose parameter and return
types are incompletely speci�ed by the Kermeta metamodel

� type conformance related to model types, model-type parameters and vir-
tual types

� evaluation of model-type matching for model-type parameters
It is necessary to check that the de�nition of a model type is coherent. In fact,

the only requirement at this point is that the type names be unique, in order that
virtual type names will be deterministically resolvable. One possible future check
might be to ensure a degree of local coherence. At present it is possible for a
model type to include a class C that makes reference to another class D, and for
the model to also include another, unrelated class, also named D. Although this
does not e�ect matching (the link to the originally referred is kept and treated
according to subtyping), it may be confusing for the programmer.

There are a number of occasions in Kermeta where the type system is unable
to adequately capture the type constraints present on an operation. The new()
operation, for example, is speci�ed as returning Object, but in fact will return
an instance of the class upon which it is invoked. Since Kermeta's type system
does not support dependent types, this must be enforced by an optimisation of
the return type in the type-checker.

There are four methods for which checks or optimisations of this kind are
introduced because of model types. The new() operation on ModelType returns
a Model, but is optimised to return a model of the correct type, in the same
way as new() on Class. The arguments of the add() and remove() operations on
Model are typed as Object, but in fact must be one of the object types present in
the model type of the model. Similarly, the Type passed to the filter() operation
must, if it is known statically (i.e. is a literal), be one of the types present in the
model type of the model : a Class if the model is typed by a ModelType, or a
V irtualType if the model is typed by aModelTypeV ariable. Also, the return type
of filter(), speci�ed in the metamodel as Collection < Object >, is optimised in
the type-checker to be a collection of the type passed as a parameter (once again,
if the �lter type is known statically).

Since there are new terms (models) and types (model types, model-type pa-
rameters, and virtual types) in the language, consideration must also be given to
type conformance and type substitutability. In fact, these are very simple.

Models only exist when expressed as terms whose types are model types or
model-type parameters, and thus do not need to be checked further. Virtual types
may be used to type objects in the same way that object-type parameters are.

As explained in Section 3.2.3, model types are monomorphic, so type substitu-
tability is simple ; a model type is not substitutable for any other type. The same
applies for a model-type parameter ; a model-type parameter may not be substi-
tuted for any other type, including the model type which serves as its bounds



68 Implementing Model Types in Kermeta

constraint. Virtual types also have no conformance relation with their bounds
constraint (the class from which they take their name ; the bounds is not expli-
cit). However, when two virtual types in the same model-type parameter have
bounds which are related by subtyping, the virtual types will also be related by
subtyping. That is, if the bounds for a model-type parameter V is a model type
M including classes C and D such that C is a subtype of D, then the virtual
type V :: C will be a subtype of the virtual type V :: D.

3.3.4 An Algorithm for Model Type Matching
The decision described in 3.2.4 to not consider the names of types when mat-

ching model types, makes the algorithm for determining matching signi�cantly
more complex.

The dependencies involved when evaluating model type matching are heavily
cyclical. For example, a class C ′ matches another C if for each property C.p of
type D, there is a matching property C ′.p of type D′, such that D′ matches D.
Thus, C ′ <# C requires D′ <# D. However, if C.p is part of an association
between C and D, then D will have a property D.q of type C, so D′ <# D will
equally require C ′ <# C. This is a symmetric dependency, and since there are no
restrictions on cyclic properties, cycles involving three and more types are also
possible.

The implication of these cyclic dependencies is that, in the general case, an
object type cannot de�nitively be locally proven to match another. However, there
are a number of ways that a provided object type C ′ may be locally proven to
fail to match another C. These are formalised in Listing 3.2 as OCL constraints
for provisional local type matching.

A class provisionally matches another if it has matching properties and opera-
tions for each property and operation on the required class. Also, abstract classes
may not match non-abstract classes, since a program may attempt to instantiate
it.

Properties, operations and parameters may be checked to see if their multi-
plicity matches another. Singleton and multi-valued multiplicity elements do not
match one another

The check for matching properties requires that they have the same name and
composition semantics, and covariantly matching multiplicities. A readOnly pro-
perty may not match a non-readOnly property. A property without an opposite
may not match a property with an opposite, and properties with opposites must
have opposites with the same name.

The check for matching operations requires that the two operations have the
same name and arity, and covariantly matching multiplicities. The respective
parameters of the operations must have covariantly matching multiplicities.
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context MultiplicityElement def:
multiplicityMatchFor(m : MultiplicityElement) :

Boolean =
(m.upper = 1) implies ( s e l f .upper = 1)
and s e l f .upper <= m.upper
and s e l f .lower >= m.lower
and m.isOrdered implies s e l f .isOrdered
and s e l f .isUnique = m.isUnique

context Property def:
localMatchFor(p : Property) : Boolean =

s e l f .name = p.name
and s e l f .multiplicityMatchFor(p)
and not c.isReadOnly implies not s e l f .isReadOnly
and s e l f .isComposite = p.isComposite
and not p.opposite ->isOclUndefined implies

not s e l f .opposite ->isOclUndefined
and ( s e l f .opposite.name = p.opposite.name)

context Operation def:
localMatchFor(o : Operation) : Boolean =

s e l f .name = p.name
and s e l f .multiplicityMatchFor(o)
and s e l f .ownedParameter ->size() = o.ownedParameter

->size()
and Set {1..o.ownedParameter ->size()}->forAll( i |

o.ownedParameter ->at(i).multiplicityMatchFor(
s e l f .ownedParameter ->at(i)) )

context ClassDefinition def:
localMatchFor(c : Class) : Boolean =

not c.isAbstract implies not s e l f .isAbstract
and c.ownedAttribute ->forAll( p |

s e l f .ownedAttribute ->exists( p2 | p2.
localMatchFor(p) ) )

and c.ownedOperation ->forAll( o |
s e l f .ownedOperation ->exists( o2 | o2.

localMatchFor(o) ) )
Listing 3.2 � OCL Constraints for provisional local type matching
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The other conditions are those that cannot be assessed locally. The types
of properties and the return types of operations must match covariantly (i.e. the
provided type must match the required type). For parameters, contravariant type
matching is required. That is, either the provided parameter type, or one of its
subtypes in the model type, must match the required parameter type.

When name matching is required, each type in the required model type has
only one type in the provided model type which potentially matches, since (qua-
li�ed) type names in MOF are unique. Thus, cyclic dependencies are not pro-
blematic, since one failing object type match will break the model type match.
An algorithm might thus simply ensure that there exists a like-named provided
type for each required type, and that the provided type does not violate any local
conditions.

By contrast, ignoring type names means that a required object type may
be matched by many provided object types. The algorithm must ensure that
there is one and only one provided object type that matches the required type.
Thus, unlike the name-dependent matching, there arise cases where evaluating
only local conditions will result in ambiguous matches, where non-local conditions
might resolve these ambiguities.

To avoid this, the algorithm for model type matching is based not on �nding
object types that match, but instead eliminating object types that do not match.
In evaluating a potential object type match, the algorithm may either reject the
match outright, or introduce dependencies by which it may be eliminated by
evaluation of subsequent matches. The structures used are shown in Figure 3.8.

A binding is a pair of types (Classes) ; one required (from) and one pro-
vided (to), which represents a potential object-type match. A Dependency is a
relationship whereby one conclusion binding requires another premise (Simple-
Dependency) or a set of other premises (DisjunctiveDependency). The matcher
itself maintains lists of candidate bindings and of dependencies that have not
been disproven.

To begin the evaluation of a model type match, an initial set of candidate
object-type bindings is constructed, consisting of all possible matches, i.e. the
cross-product of the object types in the provided and required model types. After
construction, the list of candidates may not be added to, only reduced. The
pseudo-code for building the list of initial candidates is show in Figure 3.9.

Following this, each candidate match is evaluated in turn. If a candidate de-
pends on another binding, and this other binding is still possible (i.e. is still in
the candidate set), a new dependency is created and added to the collection. In
the case of contravariant matches for parameter types, a new DisjunctiveDepen-
dency is created whose premises are each of the possible bindings (i.e. one binding
for the provided parameter type and for each of its subtypes). This evaluation
process is shown in pseudo-code in Figure 3.10.
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Fig. 3.8 � Structure of model type matcher

operation TypeMatchChecker.buildCandidates()
for each Class C_r ∈ requiredTypes
for each Class C_p ∈ providedTypes

candidates.add ( new Binding(Cr, Cp) )

Fig. 3.9 � Constructing a list of candidate bindings

The evaluation of a binding may fail if it is immediately impossible for a de-
pendency to be satis�ed, e.g. if the premise is not present in the list of candidates.
The binding may also fail if the binding violates one of the local constraints from
above. In either of these cases, a disproof process is carried out. In this disproof
process, the binding is removed from the list of candidates, and all dependencies
are inspected to determine whether their premise included the failed binding. If
so, and the dependency is broken, the disproof process is recursively applied for
the conclusion of the dependency. The disproof mechanism is shown in pseudo-
code in Figure 3.11.

The �nal processing step is to cull ambiguous matches which are related by
inheritance. If a required object type is matched by multiple provided types, but
there is a single matching type which is a supertype of all the others, then the
subtypes are removed. This is shown in Figure 3.12.
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operation TypeMatchChecker.processCandidates()
for each Binding cand ∈ candidates
boolean hasFailed = true
if not cand.to.localMatchFor(cand.from)
hasFailed := true

for each Property p ∈ cand.from.getAllProperties()
Property matchProp := cand.to.getPropertyByName(p.name)
Binding newBinding := new Binding (p.type, matchProp.type)
if candidates contains newBinding

dependencies.add (new Dependency(newBinding → cand) )
else

hasFailed := true

for each Operation o ∈ cand.from.getAllOperations()
Operation matchOp := cand.to.getOperationByName(o.name)
Binding newBinding := new Binding (o.type, matchOp.type)
if newBinding ∈ candidates

dependencies.add (new Dependency(newBinding → cand) )
else

hasFailed := true
for each Parameter parami ∈ o.ownedParameter

Parameter matchParami := matchOp.ownedParameter
Set< Class > matchParamSubtypes :=

getAllSubtypes(matchParami.type)
DisjunctiveDependency newDependency :=

new DisjunctiveDependency ( → cand )
for each Class matchParamSubtype ∈ matchParamSubtypes

Binding newBinding :=
new Binding (parami.type → matchParamSubtype)

if newBinding ∈ candidates
newDependency.premises.add (newBinding)

if newDependency.premises.isEmpty()
hasFailed := true

if hasFailed
disprove(cand)

Fig. 3.10 � Evaluating candidate matches
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operation TypeMatchChecker.disprove(bind : Binding)
for each Dependency dep ∈ dependencies
if disprove(bind, dep)

if dep.conclusion ∈ candidates
eliminate(dep.conclusion)

dependencies.remove(dep)
candidates.remove(bind)

operation SimpleDependency.disprove(bind : Binding) : Boolean
result := premise.equals(bind)

operation DisjunctiveDependency.disprove(bind : Binding) : Boolean
if bind ∈ premises
premises.remove(bind)

result := premises.isEmpty()

Fig. 3.11 � Recursively disproving candidate matches

operation TypeMatchChecker.evaluateCandidates()
for each Class required ∈ requiredTypes
if ∃ Class provided1, provided2 |

Binding (required → provided1) ∈ candidates
and Binding (required → provided2) ∈ candidates
and provided1 <: provided2

candidates.remove( Binding (required → provided1)

Fig. 3.12 � Removing matches related by inheritance

If, after this processing is completed, there remains exactly one binding for
each required object type, then the model type match is successful. The relation
given by the remaining bindings is stored on the model of the Kermeta program,
in the Class.virtualTypeBinding property, to avoid recalculation.

The algorithm is based on assessing all possible type matches based on a cross
product of the provided and required object types. Since each of these processed
exactly once, the matching algorithm isO(n2) complex, which is reasonably costly.
However, since model types even for large metamodels rarely exceed a hundred
types, the complexity is manageable.
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3.3.5 Changes to the Kermeta Standard Library
A model type in Kermeta is a collection of type de�nitions : enumerations,

type aliases, and most importantly class de�nitions. Model types are used mono-
morphically for the classi�cation and also creation of models, and as bounds for
model type parameters using model type matching. Model types also o�er the
following operations :
new() : Model Creates a new model. Since Kermeta does not support de-

pendent types, in the case where the model type is a literal, the type of
the new model is optimized by the type-checker to be the model type in
question.

isModelTypeOf(m : Model) : Boolean Returns true if the provided model
is a model of this model type.

A model in Kermeta is any term whose type is a model type. Conceptually, a
model is a bag of objects, supporting the following operations :
add(o : Object) Adds the object into the model. This method is statically che-

cked to ensure the type of the parameter is present in the model type of the
model.

remove(o : Object) Remove the object from the model, if it is present.
contents() : Collection<Object> Returns a collection containing the objects

in the model.
�lter(t : Type) : Collection<Object> Returns all elements of the model

that are instances of the provided type. The type checker requires that
the parameter be in the form of a literal (so that the type is known stati-
cally) and that the type is present in the model type of the model. Since
Kermeta's type system does not support dependent types, the return type
is optimized by the type-checker to be a collection of the type passed as a
parameter .

3.3.6 Changes to the Kermeta Runtime
There are a very few changes in the Kermeta runtime as a result of model

types.
The runtime representation of a model type is simply a link to their included

types. Models at runtime maintain a link to their contained objects, as well as a
link to the model type from which they were created.

As a result of the introduction of package merge, type references in Kermeta
code may be rebound in a class that acquires the code via a merge. To enable
this, the runtime representation of a class includes bindings for any types that
are rebound in this way.
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3.3.7 Runtime access to Type Parameters
Another signi�cant change made while implementing model types in Kermeta

was to provide the programmer with runtime access to type parameters. This
change is not directly required for model typing, but is useful in that model types
encourage heavier use of type parameters.

When writing a model transformation, it is frequently necessary to create new
objects and add them into a model. When writing against a speci�c model type,
this is not problematic, since one may simply instantiate the class required.

However, in the case of a transformation which has been written to be ge-
neric to a set of model types, it is not so simple. There is no class available to
instantiate ; the programmer has access only to a virtual type, in other words
a type parameter, and type parameters do not provide for instantiation. Before
this change, type parameters were used only as types, and not as terms, in the
language.

To alleviate this, an incidental change made to Kermeta during the imple-
mentation of model typing was to provide the programmer with runtime access
to type parameters.

When the programmer uses a normal variable, he/she has access to all of the
features that are statically known to be available on the object. Initially, however,
type parameters had meaning only as a type-checking convenience. For example,
although all types provide an isInstance() operation, the programmer did not
have access to the isInstance() operation on a type parameter. This is despite
the fact that the parameter is sure to have been �lled some type which provides
the method.

If one considers only ObjectTypeV ariables, then it is certain that generic
code at runtime will be executed in the context of a class whose type parameters
(or V irtualTypes) are bound to some instance of Class. Therefore, it seems
reasonable to provide access to the operations available on Class. The same
applies for ModelTypeV ariables and the operations available on ModelTypes.

One problem with this is that it makes certain static checks impossible. Spe-
ci�cally, instantiation involves a static check that the class being instantiated is
not abstract (nor semantically abstract). This is not possible in the case of a type
parameter, since the exact class to be instantiated, and thus whether or not it is
abstract, is not statically known.

The alternative to providing runtime access to type parameters is to insist
that the model type provide factory methods for each type which the programmer
wishes to instantiate. This is an imposition to the programmer, particularly when
the cost, the loss of static certainty that abstract classes will not be instantiated,
may be limited to those cases where type parameters are instantiated. By contrast,
the potential bene�t also includes access by type parameters to the full range of
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re�ective interfaces, which is potentially a powerful tool for metaprogramming.
The strategy taken, therefore, was to allow access on type parameters to those

operators that might be statically known (based on the bounds constraint) to
be available on the type to which they would bind at runtime. The check for
abstract class instantiation remains in those cases where the target is statically
known (type literals), and is implemented as a runtime check for those cases (type
parameters) where it is not.

3.4 Example : The State Machine Workbench
This section presents a workbench for the treatment of state machines, in order

to demonstrate model types in Kermeta by showing their use in a small example
project. The majority of the code derives from a sample from the Kermeta project,
and includes code presented in [MFV+05]. It has been modi�ed to use model
types, in order that it should work for the di�erent variants of state machines
presented in Section 2.2.1.

The workbench consists of model type de�nitions, as well as operators for
� The import and export of state machine models to and from �les (models

are stored using the XMI format)
� The export of models to the dot format.
� The simulation of the state machines based on an event stream provided by

the user through the command-line.
� Determinization of state machine models to remove non-deterministic tran-

sitions.
� Minimization of state machine models to produce machines with the mini-

mal number of states such that the machine behaves in the same way.
In Section 3.4.1 we show the de�nition of the di�erent state machine variants

as packages and model types. Section 3.4.2 then shows a simple serializer for state
machines that is reusable for the variants according to model type matching. A
number of more useful operators may be added to the state machine workbench
in a similar way, and these are detailed in Annex A.

A more in-depth discussion of using model types in Kermeta for the construc-
tion and extension of languages and operators upon them is presented in Chap-
ter 4.

3.4.1 Model Types for State Machine variants
The following �gures show the de�nitions and model types for the �ve di�erent

state machine variants described in Section 2.2.1.
Figures 3.3, 3.4, and 3.5 show the de�nitions and model types for basic state
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1 package basic_fsm {
2
3 c la s s FSM {
4 attribute alphabet : set String [0..*]
5 attribute ownedState : set State [0..*]# owningFSM
6 attribute ownedTransition : set Transition [0..*]
7 reference initialState : State
8 reference finalState : set State [0..*]
9 }

10
11 c la s s State {
12 attribute name : String
13 reference owningFSM : FSM#ownedState
14 reference incomingTransition : Transition [0..*]# target
15 reference outgoingTransition : Transition [0..*]# source
16 }
17
18 c la s s Transition {
19 attribute input : String
20 attribute output : String
21 reference source : State#outgoingTransition
22 reference target : State#incomingTransition
23 }
24 }
25
26 modeltype basic_fsm_type { basic_fsm ::FSM , basic_fsm ::State ,

basic_fsm :: Transition }
27
28 abstract c la s s FSMException {}
29 c la s s NonDeterminism inher i t s FSMException {}
30 c la s s NoTransition inher i t s FSMException {}
31 c la s s NoInitialStateException inher i t s FSMException {}

Listing 3.3 � Model Type : Basic State Machines

machines, state machines with mandatory start states, and state machines mul-
tiple start states, respectively.

The de�nitions for composite state machines and state machines with �nal
states are de�ned using merges of basic state machines. These, and the associated
model types, are shown in Figures 3.6 and 3.7 respectively.

3.4.2 State Machine Operators
Having de�ned the model types corresponding to the di�erent state machine

variants, operators for state machine models may now be de�ned as classes para-
meterized by a model type parameter.
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1 package mandstart_fsm {
2
3 c la s s FSM {
4 attribute alphabet : set String [0..*]
5 attribute ownedState : oset State [0..*]# owningFSM
6 attribute ownedTransition : set Transition [0..*]
7 reference initialState : State [1]
8 reference finalState : set State [0..*]
9 }

10
11 c la s s State {
12 attribute name : String
13 reference owningFSM : FSM#ownedState
14 reference incomingTransition : Transition [0..*]# target
15 reference outgoingTransition : Transition [0..*]# source
16 }
17
18 c la s s Transition {
19 attribute input : String
20 attribute output : String
21 reference source : State#outgoingTransition
22 reference target : State#incomingTransition
23 }
24 }
25
26 modeltype mandstart_fsm_type {mandstart_fsm ::FSM ,

mandstart_fsm ::State , mandstart_fsm :: Transition}

Listing 3.4 � Model Type : Mandatory Start State
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1 package multstart_fsm {
2
3 c la s s FSM {
4 attribute alphabet : set String [0..*]
5 attribute ownedState : set State [0..*]# owningFSM
6 attribute ownedTransition : set Transition [0..*]
7 reference initialState : set State [0..*]
8 reference finalState : set State [0..*]
9 }

10
11 c la s s State {
12 attribute name : String
13 reference owningFSM : FSM#ownedState
14 reference incomingTransition : Transition [0..*]# target
15 reference outgoingTransition : Transition [0..*]# source
16 }
17
18 c la s s Transition {
19 attribute input : String
20 attribute output : String
21 reference source : State#outgoingTransition
22 reference target : State#incomingTransition
23 }
24 }
25
26 modeltype multstart_fsm_type { multstart_fsm ::FSM ,

multstart_fsm ::State , multstart_fsm :: Transition }

Listing 3.5 � Model Type : Multiple Start States

1 package composite_fsm merges basic_fsm {
2 c la s s FSM inher i t s State { }
3 }
4
5 modeltype composite_fsm_type { composite_fsm ::FSM ,

composite_fsm ::State , composite_fsm :: Transition }

Listing 3.6 � Model Type : Composite State Machines

1 package finalstates_fsm merges basic_fsm {
2 c la s s FinalState inher i t s State { }
3 }
4
5 modeltype finalstates_fsm_type { finalstates_fsm ::FSM ,

finalstates_fsm ::State , finalstates_fsm ::Transition ,
finalstates_fsm :: FinalState }

Listing 3.7 � Model Type : Final States
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1 package fsm;
2
3 require "../ kermeta/basic_fsm_type.kmt"
4 using kermeta :: standard
5 using kermeta ::utils
6 using kermeta :: exceptions
7
8 c la s s Serializer <MT : basic_fsm_type > {
9 operation printFSM(fsm : MT::FSM) i s do

10 fsm.ownedState.each
11 { s |
12 stdio.writeln ("State : " + s.name)
13 s.outgoingTransition.each { t |
14 var outputText : String
15 i f ( t.output != void and t.output != "" )
16 then outputText := t.output
17 e l se outputText := "NC"
18 end
19 stdio.writeln (" Transition : " + t.source.name + "-("

+ t.input + "/" + outputText + ") ->" + t.target.
name)

20 }
21 }
22 end
23 }

Listing 3.8 � State Machine Serialization

To illustrate this, Figure 3.8 shows a simple serializer for state machine models.

This class may then be reused to serialize either basic, mandatory-start, �nal-
state, or composite state machines, as shown in the screen capture in Figure 3.13.
As explained in Chapter 2, state machines with multiple start states are not a
model-type match for basic state machines, and this is detected by the type-
checker, as is shown by the error in the �gure.

If we consider an example state machine such as the one in Figure 3.14,
encoded using each of the four di�erent metamodels, each of the four di�erent uses
of the serializer will work to produce the output shown in Listing 3.9. Obviously,
�nal states are not shown, since their display would require an extension to the
serializer. Composite states will be shown as separate state machines, but not as
nested composites.

A number of other, more complex operators may be found in Annex A.
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Fig. 3.13 � Multiple-start state machines do not match basic state machines
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Fig. 3.14 � A sample state machine for serialization

State : 1
Transition -(evt1/x)->3
Transition -(evt2/y)->2

State : 2
Transition -(evt3/z)->3

State : 3
Listing 3.9 � Output of state machine serialization

3.5 Conclusion
The process of building support for model types into Kermeta involves an

expansion of the principles of model typing as provided in Chapter 2. This includes
securing the model abstraction mechanism using parametric polymorphism rather
than subtyping, providing a more sophisticated relation for model type matching,
and supporting better code reuse when de�ning metamodels.

The addition of model types to Kermeta provides the language with �rst-
class notions of models and model types, and allows the developer to build MDE
tools for manipulating models that are robust to changes and variations in their
metamodels. This is shown in the state machine workbench case study, and has
been con�rmed by early user feedback.



Chapitre 4

Model Types and The Expression
Problem

4.1 Introduction
Managing simultaneous, unanticipated evolutions of a software system is one

of the key issues of software engineering. It has echoes in many di�erent soft-
ware engineering communities, including Software Con�guration Management,
Software Product Lines, Design Patterns, Aspect-Oriented Software Develop-
ment, Model-Driven Engineering and Advanced Programming Languages. In this
context, the expression problem plays a similar role to drosophila [Mor10] for
geneticists : a realistic yet simple example of a central problem of the domain.
Originally named as such by Phil Wadler [Wad98], the expression problem boils
down to the parallel extension of both a hierarchy of data types (e.g. ; an Exp
class that is going to be subclassed with Lit, Plus, etc., see Figure 4.1) and a set of
operations for processing them (e.g. ; eval, show, etc.). Odersky and Zenger [ZO05]
list several constraints of this problem :

� Extensibility in both dimensions (data type and operations)
� Strong static type safety
� No modi�cation or duplication of existing code
� Separate compilation
� Independent extensibility
This problem has been used as a benchmark to evaluate a wide variety of re-

search ideas, ranging from design patterns and product-line engineering to aspect
orientation and new language design [LHBC05]. In this chapter, we look at it
from the point of view of Model-Driven Engineering, and more speci�cally, Mo-
del Typing, as an illustration of the interest of model types in addressing reuse
in MDE. The main perspective o�ered in this chapter is that MDE allows us
to reason about the expression problem in a model-based way, whereas most of

83
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the previous approaches were class-based. This is less a revolution than a slight
shift of point of view. Model types provide the user with an environment capable
of solutions to the expression problem similar to those proposed elsewhere, but
using a lightweight taxonomy that more smoothly blends into existing practices
in MDE.

In Section 4.2, we reformulate the Expression Problem with Model Types as a
problem of operations on languages, using two di�erent approaches, characterised
as data-centric and operator-centric [Tor04]. These solutions are presented using
the Kermeta language with its support for model types, as described in Chapter 3.
Section 4.3 provides an assessment of our two solutions with respect to Odersky's
and Zenger's criteria [ZO05] as well as to a few others, including transparency to
unplanned extensions. Section 4.4 discusses related works and how they compare
to the solutions in Kermeta.

4.2 Model Types And The Expression Problem
As related brie�y above, the expression problem is a presentation of the dif-

�culty associated with de�ning simultaneous extensions to a software system
de�ned as a language and a set of operators on that language. Although it has
existed for longer, the expression problem was named as such in an email by Phi-
lip Wadler to the java-genericity mailing list [Wad98]. Since then, a number of
papers have appeared with solutions, which di�er in method. Indeed, the problem
is not one to be solved canonically, but a sandbox for demonstrating the features
of programming languages and systems. The criteria by which solutions to the
expression may be judged are discussed in Section 4.3.

The expression problem as it is usually presented, and as we shall treat it, in-
volves a simple arithmetic expression language. Structurally, the language consists
of expressions, which initially may be only numeric literals, but which in a la-
ter extension may include binary additions. There are also two operators given :
an evaluator for expressions, and a pretty-printer. These operators may be de�-
ned against any of the structural languages. For example, Figure 4.1 shows an
extension hierarchy with the base language without operators (Base) extended
structurally for the provision of addition expressions (BaseP lus), for the addi-
tion of evaluator operators for each of these (BaseEval and BaseP lusEval, and
a pretty-printer for the extension (BaseP lusShow).

From an MDE perspective, the problem may be thought of as the de�nition
of the metamodels for two modelling languages, Base and BaseP lus, followed by
the de�nition of transformations (or programs) for evaluation and pretty-printing.
Although MDE tends to distinguish more strongly between data extension and
operator extension, the problem is the same.
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Fig. 4.1 � A hierarchy of language extensions

This section presents two approaches to the expression problem using model
types. According to the classi�cation of approaches presented in [Tor04], the two
examples represent respectively data-centric and operator-centric approaches to
the problem.

4.2.1 A Data-Centric Approach
Listing 4.1 shows the structures for a data-centric solution, as written in Ker-

meta. Speci�cally, Base represents a structural metamodel for an expression lan-
guage with numeric literals. BaseP lus is an extension of this metamodel to add
the concept of an addition expression.
1 package Base {
2 abstract c la s s Exp { }
3 c la s s Num inher i t s Exp {
4 attribute val : Integer
5 }
6 }
7
8 modeltype BaseT { Base::Exp , Base::Num }
9

10 package BasePlus merges Base {
11 c la s s Plus inher i t s Exp {
12 reference left , right : Exp
13 }
14 }
15
16 modeltype BasePlusT
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17 { BasePlus ::Exp , BasePlus ::Num , BasePlus ::Plus}

Listing 4.1 � Data-centric approach : structures

Clearly, these metamodels are very simple. In order to add support for evalua-
tion and pretty-print operators, we again extend the metamodels to add them. Lis-
ting 4.2 shows three such extensions ; BaseEval andBaseP lusEval are incremen-
tally de�ned evaluators for Base and BaseP lus respectively, and BaseP lusShow
is a pretty-printer forBaseP lus. These extensions di�er slightly from that ofBase
by BaseP lus, in that new features are �added� to classes.
1 package BaseEval merges Base {
2 c la s s Exp {
3 operation eval() : Integer i s abstract
4 }
5 c la s s Num {
6 operation eval() : Integer i s do
7 result := val
8 end
9 }

10 }
11
12 modeltype BaseEvalT { BaseEval ::Exp , BaseEval ::Num }
13
14 package BasePlusEval merges BasePlus , BaseEval {
15 c la s s Plus {
16 operation eval() : Integer i s do
17 result := left.eval + right.eval
18 end
19 }
20 }
21
22 modeltype BasePlusEvalT
23 { BasePlusEval ::Exp , BasePlusEval ::Num , BasePlusEval ::Plus }
24
25 package BasePlusShow merges BasePlus {
26 c la s s Exp {
27 operation show() : String i s abstract
28 }
29 c la s s Num {
30 operation show() : String i s do
31 result := val.toString
32 end
33 }
34 c la s s Plus {
35 operation show() : String i s do
36 result := left.show + " + " + right.show
37 end
38 }
39 }
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Fig. 4.2 � Diagram of data-centric solution

40
41 modeltype BasePlusShowT
42 { BasePlusShow ::Exp , BasePlusShow ::Num , BasePlusShow ::Plus }
43
44 package ShowEval merges BasePlusEval , BasePlusShow { }
45
46 modeltype ShowEvalT
47 { ShowEval ::Exp , ShowEval ::Num , ShowEval ::Plus }

Listing 4.2 � Data-centric approach : operators

Interestingly, models and model types �gure only a little in this solution, which
is based principally on merging the packages of successive variants. As can be seen
with the ShowEval extension, the extensions written are also combinable in a
diamond pattern, in order to provided �independent extensibility�, as discussed
in [ZO05].

For an alternative notation, Figure 4.2 shows the data-centric solution gra-
phically using a UML class diagram notation1.

1The model types associated with each package are not shown graphically.
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4.2.2 An Operator-Centric Approach
The previous solution is not very typical of MDE. Speci�cally, MDE has a

tendency to not mix the de�nitions of structures (metamodels) and operators.
One reason for this is its origins in distributed systems2. If we were designing a
solution for use in a web services or other RPC environment, the solution would
not work, since a model coming from outside, although structurally conformant
to our extensions, would not include the de�nitions of the operators we need.

To address this, we may take what Torgersen [Tor04] calls an operator-centric
approach. In Listing 4.3, we show the Base and BasePlus metamodels again, but
with an additional Visitor [GHJV95] class (generalized for return type), as well
as corresponding generic accept operations on each of the concrete subclasses of
Exp.
1 package Base {
2 abstract c la s s Exp {
3 operation accept <R>(v : Visitor <R>) : R i s abstract
4 }
5 c la s s Num inher i t s Exp {
6 attribute val : Integer
7 method accept <R>(v : Visitor <R>) : R i s do
8 result := v.visitNum( s e l f )
9 end

10 }
11 abstract c la s s Visitor <R> {
12 operation visitNum(n : Num) : R i s abstract
13 }
14 }
15
16 modeltype BaseT { Base::Exp , Base::Num , Base:: Visitor }
17
18 package BasePlus merges Base {
19 c la s s Plus inher i t s Exp {
20 reference left , right : Exp
21 method accept <R>(v : Visitor <R>) : R i s do
22 result := v.visitPlus( s e l f )
23 end
24 }
25 abstract c la s s Visitor <R> {
26 operation visitPlus(n : Plus) : R i s abstract
27 }
28 }
29
30 modeltype BasePlusT

2The MOF 1.x speci�cations were written as mappings of modelling language concepts to
CORBA interfaces.
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31 { BasePlus ::Exp , BasePlus ::Num , BasePlus :: Visitor }

Listing 4.3 � Operator-centric approach : structures

At this point, the second solution di�ers from the �rst only in that we have
added a visitor pattern. The visitor class is extended in the BaseP lus package
to add a visit method for plus. As in the data-centric solution, this extension
is achieved using package merge, not class inheritance, meaning that there is no
subtype relationship between the two visitor classes.

This is already less concise and intuitive than the data-centric solution. Ho-
wever, it allows the de�nition of the Eval and Show operators outside of the
language classes themselves, as in Listing 4.4.
1 c la s s BaseEval <MT : BaseT > inher i t s MT::Visitor <Integer > {
2 operation apply(e : MT::Exp) : Integer i s do
3 result := e.accept(this)
4 done
5 method visitNum(n : MT::Num) : Integer i s do
6 result := n.val
7 end
8 }
9

10 c la s s BasePlusEval <MT : BasePlusT > inher i t s Eval <MT >, MT::
Visitor <Integer > {

11 method visitPlus(p : MT::Plus) : Integer i s do
12 result := p.left.accept( s e l f ) + p.right.accept( s e l f )
13 end
14 }
15
16 c la s s BasePlusShow <MT : BasePlusT > inher i t s MT::Visitor <String

> {
17 operation apply(e : MT::Exp) : String i s do
18 result := e.accept(this)
19 done
20 method visitNum(n : MT::Num) : String i s do
21 result := n.val.toString
22 end
23 method visitPlus(p : MT::Plus) : String i s do
24 result := p.left.accept( s e l f ) + " + " + p.right.accept(

s e l f )
25 end
26 }

Listing 4.4 � Operator-centric approach : operators

The most interesting part of this solution is that the operator classes are
de�ned as subclasses not of the Base :: V isitor and BaseP lus :: V isitor classes,
but of the MT :: V isitor virtual type parameters.

In general, it can be dangerous to inherit from a type parameter, since the
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full details of the inherited type are not known when de�ning the class. Consider
the example in Figure 4.5.
1 c la s s C<T : D> inher i t s T {
2 attribute foo : String
3 }
4 c la s s D { ... }
5 c la s s E inher i t s D {
6 attribute foo : Integer
7 }

Listing 4.5 � Inheriting from a type parameter is potentially problematic

On its own, there is no problem with the class C. However, a concretization
of the class as a type C〈E〉 will obviously result in a con�ict between the foo
attributes in E and C. So, in addition to checking that our prospective actual type
parameter E satis�es the bounds constraint (D), it needs to be checked for any
con�icts arising through playing the role of superclass. The nature of this con�ict
detection is not essentially di�erent from that conducted when detecting con�icts
between multiple superclasses. The main di�erence is that it is performed not on
the generic class de�nition, but on its use.

Using this pattern actually achieves nothing from the point of view of
BaseEval. Since BaseP lus is a model-type match for Base, and since there are
no con�icts between features in BaseP lus :: V isitor and BaseEval, it would be
possible to create a type BaseEval〈BaseP lus〉. However, BaseEval〈BaseP lus〉
e�ectively inherits from BaseP lus :: V isitor but provides no implementation of
the abstract method visitP lus().

To recall from Section 3.1.1, Kermeta includes a notion called semantically
abstract classes. A semantically abstract class is one that, although not declared
as abstract, does not implement some necessary abstract operations. These classes
are accepted by the type checker, but an attempt to instantiate them is not.
Therefore, a type BaseEval〈BaseP lus〉 would pass the type checker, but we
would be unable to instantiate it since, by not implementing visitP lus(), it is
semantically abstract. In this way, a BaseEval processor is not able to treat
BaseP lus models.

When we come to de�ne BaseP lusEval, the use of model type parameters
becomes useful. A direct inheritance of the visitor classes would have resulted
in a mix of Base and BaseP lus object types in the resultant BaseP lusEval
signature. Being parameterized by a model type allows these types to be re-
bound, however, uniformly to BaseP lus types.

To use the terminology of [Tor04], this second solution o�ers code-level
reuse, since there is no non-trivial code duplicated between BaseEval and
BaseP lusEval. It does not allow object-level reuse, though. That is, a Base
model cannot be evaluated or printed by the operators written against BaseP lus.
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Also, unlike the earlier data-centric solution, this operator-centric solution
does not support recombination of the PlusEval and ShowPlus operators, be-
cause a class inheriting from the two classes would result in a con�ict between
the visit methods, which di�er on return type.

4.3 Evaluation
An interesting aspect of the expression problem is that, increasingly, it is not

a problem that is solved or not solved. Rather, what is important is the nature
of the solution, in terms of its characteristics with respect to certain criteria. In
this section we evaluate the two solutions, both individually and collectively as a
re�ection of the �t of model types to the problem.

4.3.1 Basic Criteria
Several basic criteria for assessing solutions to the expression problem have

been established in [Wad98] (and well clari�ed in both [ZO05] and [Tor04]). These
are

� Extensibility in both dimensions. It should be possible to add new data
variants and new processors, and to do so any number of times.

� Strong static type safety. There should be no risk of unhandled combinations
of data and operations.

� No modi�cation or duplication. An extension should not require the mo-
di�cation of code in the extended system. Furthermore, the duplication of
non-trivial code should be avoided.

� Separate compilation. The addition of an extension should not require the
re-type-checking or recompilation of existing code.

Clearly, both the data-centric and operator-centric solutions above allow for
the addition of both data and operator extensions, using package merges. This is
done without modi�cation of existing code, and without need for recompilation.
Although model types do not support extension, their de�nitions are single lines
of code, and thus not overly burdensome. Although we do not have a full formal
type system for Kermeta, we believe that both of our solutions are statically
type-safe.

Although we do not demonstrate further extensions, there is no restriction
either for order of application or for number of extensions with the data-centric
approach, provided that, for example, data extensions provide implementations
for abstract methods. The operator-centric approach may also be extended in a
linear fashion, subject to the conditions described in the next section.
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4.3.2 Reuse and extensibility

In [ZO05], the authors add the criterion that the solutions be independently
extensible. This means that independent extensions of a system should be recom-
binable to form a single extending form supporting both extensions.

As shown with the �diamond� merge, the recombination of extensions in our
data-centric approach is not only possible, but very simple. By contrast, the
operator-centric approach is found wanting in this criterion. Although data va-
riant extensions may still be recombined (since they use the same extension tech-
nique as the data-centric approach), this is not true for the addition of new
operators, since it is based on the visitor pattern. (The various visit methods
of BaseP lusEval and BaseP lusShow would con�ict in an evaluator inheriting
from both).

As mentioned, one drawback of our data-centric approach is that it requires
models to have been created using the types with extensions already added. This
is part of what [Tor04] calls object-level extensibility. In general, this refers to
the ability of a given extension to treat models constructed from previous or
less-featured versions of the language.

As we discuss, our data-centric approach does not provide object-level extensi-
bility. The operator-centric approach is more interesting. Clearly, BaseP lusEval
has been designed to support the evaluation of BaseP lus models that do not have
knowledge of evaluation. However, as we described, BaseP lusEval is not capable
of evaluating Base expressions, since Base :: V isitor would not be an acceptable
superclass (Base does not satisfy the bounds constraint BaseP lus on the model
type parameter MT ). So, this solution provides object-level extensibility with
respect to operator addition, but not with respect to data extension.

Another criterion of reuse is the necessity for the developer to anticipate the
extension of the original system, and prepare the design of the system appropria-
tely. The operator-centric solution we present requires the application of a visitor
pattern in the initial system in order to support extension (speci�cally, in order
to support the addition of new operators). Had the user not anticipated extension
of the original system, it is not certain that they would have used such a pattern.
A small amount of planning is required.

By contrast, the data-centric approach requires little or no anticipation by the
developer. The initial design of the metamodels would not di�er had the developer
not expected the system to be extended. From this perspective, the solution is
robust to evolution in that it does not depend on the user preparing the system
for evolution.
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4.3.3 User considerations
A third and important axis of evaluation is that of the user. From the point

of view of the user, does the solution represent a simple and understandable
representation of the problem they are confronting ? Does the solution require
them to learn new concepts of the language in which they are solving it ?

Obviously, such judgements are highly subjective. There might often be a
trade-o�, for example, between solutions that are succinct but use advanced lan-
guage features, and those that are more verbose and complex but use simpler
constructs. The choice as to which is more appropriate will vary greatly depen-
ding on the developer using it.

The solutions we present here represent simple encapsulations of the problem.
The data-centric solution, in particular, is a reasonably natural representation
of the systems being modelled. The new language concepts that we introduce
to permit this are essentially those of model and of model type. It is our hope
that this paradigm is intuitive to developers who are already familiar with soft-
ware modelling, and in particular those familiar with the ideas of model-driven
engineering.

4.4 Related Work
The expression problem has been the subject of a number of recent works.

The solutions that these propose vary with respect to both the criteria to which
they aspire and the nature of the solutions they propose.

Wadler's initial posing of the problem in [Wad98] included a solution built
using the visitor pattern in combination with classes parameterized by themselves.
However, Wadler's solution contained a subtle type error and was later retracted.

This error is, to a certain extent, resolved by Torgersen in [Tor04], who pro-
poses four solutions based on fairly elaborate use of parameterized types. The
fourth, and most elaborate, of these, proposes a framework for a parameteri-
zed solution that o�ers advantages for both data-centric and operator-centric
perspectives. Although they are complex, Torgersen's latter solutions also en-
joy object-level reuse, meaning that outdated models may still be evaluated by
extended versions of the system.

In [Bru03], Bruce presents a survey of approaches to the expression problem,
using functional languages, the interpreter pattern, the visitor pattern, and a
solution based on LOOM's type groups. The type groups solution is based on the
work in [BV99], from which many of the ideas behind model types were drawn in
Chapter 2, but nonetheless the solution di�ers greatly from those shown here in
Kermeta. As pointed out in [ISV05], LOOM's inheritance between corresponding
types in di�erent type groups is considered to invoke subtyping, which results in
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the necessity of using exact types.
Igarashi et al, in [ISV05], present a formalization of lightweight family po-

lymorphism, originally proposed but not formalised by Ernst in [Ern01], which
shares the aims of type groups in wanting to handle the parallel specialization
of mutually recursive types. Igarashi uses a deep extension relationship similar
to our model type merging, but requires that types be explicitly notated as vir-
tual (using �relative path types�), whereas we treat this as the default usage for
any types also present in the model type. Also, the class structure is used as
the containing structure for type members, which allows for recursive structures.
By contrast, we use the distinct model type construct, which rules out recursive
containment, but allows us to use two distinct extension mechanisms : package
merging, which does not result in subtyping, and class inheritance, which does
(to an extent).

Zenger & Odersky propose a number of solutions in [ZO05] using the Scala
language. Their �rst, data-centric, solution, based on deep mixin composition,
bears a strong resemblance to our data-centric solution. The major di�erence is
that their abstract types must be initialized by the programmer, whereas with
model types this is done implicitly by the model type. They also provide an
operator-centric solution which uses self-type references to avoid some of the type
parameterization seen in Torgersen's solutions. On the whole, Scala's expressive
type system makes for a wide range of powerful solutions, albeit that these depend
on the programmer coming to grips with some fairly advanced typing concepts.

In [LHBC05], the authors approach the expression problem from the perspec-
tive of product families, treating the addition of data variants and operators as
features. They compare �ve solutions based on di�erent, even disparate, technolo-
gies, from aspect-oriented approaches such as AspectJ, to programming languages
such as Scala, to more product-family-speci�c techniques such as the AHEAD sys-
tem. They �nd none of these solutions wholly satisfying from a product-family
perspective, and discuss the general problem from the point of view of a feature
composition algebra.

One of the signi�cant di�erences between the application of model typing here
and that presented as examples in Chapters 2 and 3 is the use of package merge,
as described in Section 3.2.5 to improve the reuse of class de�nitions.

There are a number of similar techniques for the simultaneous exten-
sion of interrelated object type de�nitions. In particular, of the above works,
Bruce [BV99, Bru03], Igarashi [ISV05], and Odersky [ZO05] all de�ne operators
for this purpose. Of these, package merging most closely resembles Igarashi's
family extension.

From the domain of MDE, the most recent version of UML [Obj05c] (and
by inclusion that of CMOF) also introduces the notion of a package merge. This
relationship, which is used extensively to construct the UML and MOF meta-
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models themselves, serves a similar goal to model type merge, and is indeed the
origin of the name. Package merge has changed considerably during the UML
2 standardisation process, and its de�nition, though greatly improved, remains
informal and incomplete. Like most of UML and MOF, the speci�cation of the
package merge relationship does not discuss its implications for type checking.
We believe that the package merge will induce matching between model types
(subject to the conditions in Section 3.2.5). Whether this is the case for UML
package merge is to be investigated.

4.5 Conclusion
Since the expression problem is all about the de�nition of languages and opera-

tors upon them, it is of central of interest to MDE. Up to now however, relatively
little consideration has been given in MDE to the de�nition of these languages and
operators with consideration for extensibility or reuse based on rigorous theories.

In this chapter we have reformulated the expression problem in a MDE
context, and we have proposed the notion of model type (i.e. using a group of
classes as a type) to deal with independent evolutions. We have shown that mo-
del types present to the user an environment built on theoretical backgrounds and
capable of solutions similar to those proposed elsewhere, but using a lightweight
taxonomy familiar to existing MDE users. Initial feedback from users suggests
that it e�ectively addresses reuse issues among meta-models and their operatio-
nal semantics in an intuitive way.
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Chapitre 5

Conclusion and Perspectives

Model-driven engineering is a developing �eld. Research into the theories,
techniques, and tools for the various parts that make up a model driven system -
models, transformations, injectors/extractors - is active, and is seeing uptake in
industrial contexts. However, as MDE progresses, it will face the challenges that
characterize software engineering such as managing scalability, reliability and of
particular interest to this thesis, reuse and evolution.

In order to address these, MDE as a �eld must develop mechanisms for ma-
naging the reuse and integration of its component pieces in a manageable and
sound way that ensures that systems do not become brittle or degrade.

To address this, this thesis presents a notion of model typing, which applies
and adapts ideas from the domain of type systems to the speci�c structures and
problems of MDE. Model types allow models to be represented as �rst-class,
typed entities. Furthermore, it allows the artefacts that manipulate models to be
de�ned in a way that is robust to variations and evolutions of the metamodels
against which they were originally written.

5.1 Summary and Conclusion
Chapter 1 presents a summary of the state of the art in model-driven enginee-

ring, and a survey of existing approaches to managing the reuse, evolution and
integration of its pieces. Also, a number of works in type systems research which
treat related problems are reviewed for their potential applicability to the realm
of model-driven systems.

In Chapter 2, the speci�c needs of a model-typing system are outlined using a
simple example based on state machines. The ideas of type groups and type mat-
ching are then adapted for use with models and model transformations, yielding a
simple model transformation language including a number of type-checking rules.
It is shown that the application of this language allows a simple state machine
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transformation de�ned using such a language permits the use of a set of variant
state machine metamodels.

The principles of model typing established in Chapter 2 are then illustrated
in a wider setting in Chapter 3, which describes the addition of support for mo-
del typing to the Kermeta language. This includes a consideration of the speci�c
requirements of model types in the context of Kermeta as an imperative language
for modelling and model manipulation. After a description of the design of the im-
plementation, it is demonstrated in the form of a workbench for the manipulation
of state machines based on the motivating example.

The expression problem is associated with the simultaneous extension of an
expression language for the addition of new operators and new language concepts.
Chapter 4 argues that this problem is endemic to model-driven engineering, and
argues that model types, and speci�cally their implementation in Kermeta, o�er
an approach to managing the problem based on intuitive MDE concepts which
nonetheless o�ers expressivity comparable to existing programming-language ap-
proaches.

Two of the great contributions of object-oriented languages were to present a
more natural paradigm for describing systems, and to include in that paradigm a
system for allowing code written against one object type to work polymorphically
against others. Model-driven engineering extends this by shifting the focus from
thinking about the objects in a system, to thinking about the systems formed
by structuring these objects. Model types pursue the second axis, by allowing
us to reason about and re�ne the types of these systems as a whole rather than
reasoning about the types individually. In so doing, they permit a more �exible
notion of reuse than would otherwise have been possible.

Concretely, model types o�er two signi�cant bene�ts for the construction of
model-driven systems. Having a formalised the concept of models and model types
using well-founded ideas from type systems, we can reason about the model-
driven artefacts such as model transformations that make up an MDE system,
and the models they manipulate, as �rst-class concepts in a modelling language.
Secondly, by providing a relationship for model substitutability, these artefacts
may be de�ned in a way that is robust to variation and evolution of metamodels.

5.2 Perspectives

The ideas contributed in this thesis represent a �rst step towards formalising
the foundations of model-driven engineering in the form of type systems. There
are a number of future avenues of research which are evoked.



Perspectives 99

5.2.1 A full and richer type system
Chapter 2 shows how existing type systems might be modi�ed to support

the de�nition and matching of model types. However, a full formal type system
including proofs for soundness and completeness, as well as for decidability of
relationships such as model-type matching, has not yet been de�ned. The begin-
nings of a type system for Kermeta are provided in [Fle06], and would serve as a
logical starting point for such a de�nition. as would the type systems de�ned for
systems supporting virtual types, such as νObj [OCRZ03], the basis of Scala.

A full de�nition of the type system would also permit exploration of the
application of other type systems ideas to model types. For example, variance
annotations on type parameters, such as those found in Scala, permit more �exible
parametric polymorphism by restricting the use of type parameters to either co-
or contravariant roles. Annotations for model-type parameters might restrict the
use of typed models for checking or construction only, and permit more �exible
reuse.

The implementation of model types in Kermeta is based on manifest type
declaration. An alternative might be to infer the model types used by a model
transformation based on the code or rules which make up a transformation. Such
type inference has been successfully applied in many functional programming
languages.

5.2.2 Constraints
One element of metamodel de�nition that has not been considered in this the-

sis is that of constraints. In addition to de�ning the concepts and relationships of
a language, metamodels frequently also include constraints that apply on models
written using the language. These constraints, which are not expressible using
structural concepts, may be de�ned using a constraint language such as OCL
[Obj06c]. A logical step would be to include such constraints in model types, and
to consider them when comparing model types.

In general, the problem of comparing the constraints which exist on two model
types to see whether models of one type are guaranteed to satisfy the constraints
of another is a problem of constraint subsumption. Depending on the constraint
language, such comparison may very well be undecidable. One solution might be
to relegate the checking of these constraints to a runtime type-check, in the same
manner that some multiplicity checks are presently only assessed at runtime (see
Section 3.2.4.1).

One basis for the evaluation of constraints on di�erent model types might be
the work of Edwards, Jackson and Torlak in [EJT04], in which they describe a
type system for determining the re-applicability of constraints to di�erent object
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models based on safety and relevance deductions.

5.2.3 Application of model typing to languages other than
Kermeta

A type system is, to a large extent, dependent on the operators de�ned by
the programming language. It would be interesting to see the extent to which the
principles of model typing as outlined in Chapter 2 could be applied to languages
based on very di�erent paradigms than Kermeta. This might include rule-based
languages such as Tefkat [LS05] or relational QVT [Obj05b], or grammar-based
languages for specifying syntax, such as Sintaks.

The ideas of model typing might equally be applied at a higher level of abs-
traction for type-safe assembly of models, transformations and other tools to form
model-driven tool chains. This includes shared access using mechanisms such as
the Model-Bus [BGS04], as well as "megamodels" for representing the relation-
ships between models, metamodels and tools in the style of [BJV04].

5.2.4 Model Types as an Abstraction Mechanism
One of the characteristics of types systems is that in addition to providing

a static veri�cation technique, they formalise mechanisms for abstraction. Here,
models and model types have been formalised as abstraction techniques for com-
posing model-driven systems. Whether these constructs are appropriate for en-
capsulating the reuse boundaries when building systems is a question best ans-
wered by observation and/or empirical measurement of their application to MDE
problems.

One interesting example of this might be the use of model types as a structu-
ring concept for de�ning modular operational semantics for languages speci�ed
using metamodels, as presented by Mosses in [Mos04]. Common metamodel se-
mantics could be encoded as operational semantics modules and the model types
upon which they depend syntactically. These could then be applied for families
with structural and semantic commonalities.

5.2.5 A Type System for Models, Models for Type Systems
As discussed in a roundtable discussion at the EW-MDA2 workshop [Ste04],

types have a number of roles to play in model-driven engineering. This thesis
presents a technique for reasoning about the types of models. Speci�c languages
which are de�ned using model-driven means frequently have speci�c type systems
that apply for their models, which go far beyond the constraints enforced by their
metamodel and OCL constraints.
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The MDE approach to such a problem would be to de�ne a metamodel in
which the language designer might describe their type system, probably based
on the deductive rule system in which type systems are currently formalised.
Such a metamodel might be accompanied by tools for fully or partially automa-
ting the generation of a type-checker. Equally, a language's type system model,
in combination with a model of its operational semantics, might be mapped to
proof-checking tools which permit the construction of proofs for soundness, com-
pleteness, and decidability of relevant aspects of the language's de�nition.



102 Conclusion and Perspectives



Annexe A

State Machine Operators

There are three operators de�ned for state machines : simulation, determi-
nization and minimization. Of these, only the �rst two are shown here, in the
interests of brevity.

Each of these operators are applicable to basic state machines, mandatory
start-state machines, composite state machines, and machines with �nal states.
State machines with multiple start states are not supported, since as described
in Section 2.4.4, their model type is not a match for basic state machines.

However, the operators do not consider the speci�cities of these variants. For
example, the simulator will not descend into composite states if provided with a
composite state machine. A presentation of the problem of extending operators
in parallel with extending structures is presented in Chapter 4.

A.1 Simulation
Figure A.1 shows a simple simulator for state machines. The simulator accepts

signals from the user on the command line, and �res the appropriate transitions,
printing the strings speci�ed by the activated transitions. The simulator termi-
nates if it is provided with an input for which there is either no transition or
multiple possible transitions (non-determinism), or if instructed by the user.
1 package fsm;
2
3 require "../ kermeta/basic_fsm_type.kmt"
4 using kermeta :: standard
5 using kermeta ::utils
6 using kermeta :: exceptions
7
8 c la s s Runner <MT : basic_fsm_type > {
9

10 reference currentState : Hashtable <MT::FSM , MT::State >
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11
12 operation run(machine : MT::FSM) : Void ra i se s FSMException

i s
13 do
14 currentState := Hashtable <MT::FSM , MT::State >.new
15 // reset if there is no current state
16 i f currentState.getValue(machine) == void
17 then
18 s e l f .currentState.put(machine , machine.initialState)
19 end
20 from var str : String i n i t " i n i t "
21 unt i l str == "quit"
22 loop
23 stdio.writeln (" Current state : " + currentState.getValue

(machine).name)
24 str := stdio.read("give me a letter : ")
25 i f str == "quit" then
26 stdio.writeln ("")
27 stdio.writeln (" quitting ...")
28 e l se
29 i f str == "print" then
30 stdio.writeln ("")
31 Serializer <MT >.new.printFSM(machine)
32 e l se
33 stdio.writeln(str)
34 stdio.writeln (" stepping ...")
35 do
36 var textRes : String
37 textRes := step(currentState.getValue(machine),

str)
38 i f ( textRes == void or textRes == "" )
39 then
40 textRes := "NC"
41 end
42
43 stdio.writeln (" string produced : " + textRes)
44
45 rescue (err : ConstraintViolatedPre)
46 stdio.writeln(err.toString)
47 stdio.writeln(err.message)
48 str := "quit"
49 rescue (err : ConstraintViolatedPost)
50 stdio.writeln(err.toString)
51 stdio.writeln(err.message)
52 str := "quit"
53
54 rescue(err : NonDeterminism)
55 stdio.writeln(err.toString)
56 str := "quit"
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57 rescue(err : NoTransition)
58 stdio.writeln(err.toString)
59 str := "quit"
60 end
61 end
62 end
63 end
64 end
65
66 // Go to the next state
67 operation step(s : MT::State , c : String) : String ra i se s

FSMException i s
68
69 // Declaration of the pre -condition
70 pre notVoidInput i s
71 c != void and c != ""
72
73 do
74 // Get the valid transitions
75 var validTransitions : Collection <MT::Transition >
76 validTransitions := s.outgoingTransition.select { t | t.

input.equals(c) }
77 stdio.writeln ("Found " + validTransitions.size.toString +

" valid transitions for " + s.name)
78 // Check if there is one and only one valid transition
79 i f validTransitions.empty then ra i se NoTransition.new end
80 i f validTransitions.size > 1 then ra i se NonDeterminism.new

end
81
82 // Fire the transition
83 result := fire(validTransitions.one)
84 end
85
86 // Declaration of the post -condition
87 post notVoidOutput i s
88 result != void and result != ""
89
90 // Create a new state from self state
91 operation fire(transition : MT:: Transition) : String i s
92 do
93 // update FSM current state
94 currentState.put(transition.source.owningFSM , transition.

target)
95 result := transition.output
96 end
97 }

Listing A.1 � State Machine Simulation
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A.2 Determinization
Figure A.2 shows the code for determinizing state machines. This code has

been modi�ed from that presented in [MFV+05]. The only change has been to
extract the combinations property into a variable local to the algorithm, so that
models de�ned without it may be normalized, and to replace direct type references
with virtual types, in order that the code be reusable for state machine variants.
1 package fsm;
2
3 require kermeta
4 require "../ kermeta/basic_fsm_type.kmt"
5
6 using fsm
7 using kermeta :: standard
8 using kermeta ::utils
9 using kermeta :: persistence

10
11 c la s s Determinization <MT : basic_fsm_type >
12 {
13 reference processed_states : Set <MT::State >
14 reference repository : EMFRepository
15
16 attribute combinations : Hashtable <MT::State , Set <MT::

State >>
17
18 operation determinize(input : MT::FSM , output : MT::FSM ,

output_state : MT::State) i s do
19
20 i f not processed_states.contains(output_state) then
21 processed_states.add(output_state)
22 // For each letter of the alphabet
23 input.alphabet.each { nextl |
24 // There exists a state x of q' (where q' is a P(Q))
25 // and state -y from Q so that : x --l--> y belongs

to input.transitionSet
26 var newq : MT:: State i n i t MT::State.new
27 combinations.put( newq ,
28 input.ownedTransition.select { e | e.input.equals(

nextl) }.
29 select { a |
30 output_state.name == a.source.name
31 or
32 combinations.getValue(output_state).detect { i |
33 i.name==a.source.name } != void }. collect { b

|
34 b.target }.asSet)
35
36
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37 newq.name := join(combinations.getValue(newq).
collect{ a | a.name })

38
39 // Add the state to the output automaton if we found

one
40 i f (newq.name.size > 0) then
41 // Add the new state
42 i f (output.ownedState.detect { e | newq.name == e.

name } == void) then
43 output.ownedState.add(newq)
44 e l se
45 newq := output.ownedState.detect { e | e.name ==

newq.name }
46 end
47 // Add the new transition
48 var newt : MT:: Transition
49 newt.source := output_state
50 newt.target := newq
51 newt.input := nextl
52 output.ownedTransition.add(newt)
53 s e l f .determinize(input , output , newq)
54 end
55 } // End of Loop
56 end
57 end
58
59 operation join( str_seq : Collection <String >) : String i s

do
60 resu lt := ""
61 from var it : Iterator <String > i n i t str_seq.iterator
62 unt i l it.isOff
63 loop
64 result .append(it.next)
65 end
66 end
67
68 }

Listing A.2 � State Machine Determinisation

A.3 Input and Output
Typed persistence of models to and from XMI �les is a signi�cant motivator

for model types. The provision of a general facility for loading resources from
�le to produce typed models is planned as a future extension for Kermeta. In
the interim, loading and saving models must be performed with respect to the
speci�c model type. In some cases, such as those of basic state machines and
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mandatory-start state machines, a degree of code sharing is possible.
Figure A.3 shows a class that, once parameterized, will turn an untyped re-

source, into a typed model. The loading of the textual form into an untyped
Resource object is handled by Kermeta's existing I/O features, which are in turn
built on (and thus closely resemble) those of EMF.
1 c la s s GenericLoader <MT : basic_fsm_type > {
2 operation resourceToModel(resource : Resource) : MT i s
3 do
4 var newModel : MT i n i t MT.new
5 resource.instances.select {o | MT::FSM.isInstance(o)

}.each { f |
6 var fsm : MT::FSM
7 fsm ?= f
8 newModel.add(fsm)
9 fsm.ownedState.each{s | newModel.add(s) }

10 fsm.ownedTransition.each{t | newModel.add(t) }
11 }
12 resource.instances.select{o | MT::State.isInstance(o)

}.each { s |
13 var state : MT:: State
14 state ?= s
15 newModel.add(state)
16 }
17 resource.instances.select{o | MT:: Transition.

isInstance(o) }.each { t |
18 var transition : MT:: Transition
19 transition ?= t
20 newModel.add(transition)
21 }
22 result := newModel
23 end
24 }

Listing A.3 � State Machine Loader
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<# Represents the matching relation.
Beta Object-oriented programming language de�ned in the 70s and 80s as a

successor to the Simula languages. Was the �rst language to feature virtual
types.

EMF Eclipse Modeling Framework.
EMOF Essential MOF. Part of MOF 2.0.
Expression Problem Symptomatic problem in programming and software en-

gineering whereby a system is extended simultaneously by adding new ope-
rators and new terms to a language implementation.

Family Polymorphism Idea of polymorphism based on groups of interrelated
types that evolve as a group rather than individually, proposed by Ernst
and �rst demonstrated in gbeta.

HUTN Human-Usable Textual Notation.
JMI Java Metadata Interface.
Kermeta Imperative metamodelling / modelling / model-oriented programming

language.
LOOM Object-oriented programming language based on matching rather than

subtyping. Includes the notion of type groups.
Matching The matching relation, as used by Cardelli and Bruce, is a weaker

form of type conformance than subtyping, in that it does not enjoy sub-
sumption, but is useful in cases such as parametric polymorphism, as a more
intuitive relationship than F-Bounds.

MDA Model-Driven Architecture. Trademark of OMG.
MDD Model-Driven Development.
MDE Model-Driven Engineering.
MDSD Model-Driven Software Engineering.
Metamodel Structure for de�ning the concepts and relationships of a modelling

language using a meta-metalanguage, e.g. MOF.
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Model A graph of objects and links used to represent some or all of a system.
De�ned in terms of a metamodel.

Model type The type of a model, represented by the set of classes of which
objects in the model are instances.

MOF Meta-Object Facility. A meta-metalanguage for the de�nition of modelling
languages. Standardised by the OMG.

MTL Model Transformation Language. Imperative language intended for model
transformation as part of UMLaut framework. A precursor to Kermeta.

Multiplicity In MOF, a multiplicity consists of lower and upper bounds for an
element's cardinality, as well as �ags for orderedness and uniqueness.

OMG Object Management Group.
Operation In MOF, an operation is a named function with a return type and

named parameters, each of which are characterised by multiplicities.
Property MOF mechanism for data abstraction on objects. Also used in related

pairs for modelling associations in EMOF.
Quokka A small scrub-wallaby found on Rottnest Island, Western Australia.
QVT Query / View / Transformation. OMG speci�cation for de�ning model

transformations.
Recursion See recursion.
Tefkat Declarative model transformation language and engine. The language

was formerly known as XMorph and the engine formerly known as Tarzan.
Virtual type A type de�ned within or relative to another type. First featured

in Beta.
XMI XML-Based Model Interchange.
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