
Weaving Multiple Aspects in Sequence

Diagrams ?

Jacques Klein1, Franck Fleurey1, and Jean-Marc Jézéquel2

1 IRISA/INRIA, Campus de Beaulieu,
35042 Rennes cedex, France,
jacques.klein@irisa.fr,
franck.fleurey@irisa.fr

2 IRISA/ Université de Rennes 1, Campus de Beaulieu,
35042 Rennes cedex, France,

jezequel@irisa.fr

Abstract. Handling aspects within models looks promising for manag-
ing crosscutting concerns early in the software life-cycle, up from pro-
gramming to design, analysis and even requirements. At the modeling
level, even complex behavioral aspects can easily be described for in-
stance as pairs of sequence diagrams: one for the pointcut specifying the
behavior to detect, and the second one for an advice representing the
wanted behavior at the join point. While this is fine for informal docu-
mentation purposes, or even intuitive enough when a single aspect has
to be woven, a more precise semantics of both join point detection and
advice weaving is needed for using these modeling artifacts for Model
Driven Engineering activities such as code generation or test synthe-
sis. This paper proposes various interpretations for pointcuts that allow
multiple behavioral aspects to be statically woven. The idea is to allow
join points to match a pointcut even when some extra-messages occur in
between. However, with this new way of specifying join points, the com-
position of the advice with the detected part cannot any longer be just
a replacement of the detected part by the advice. We have to consider
the events (or the messages) of the join point, but also the events which
occur between them, and merge them with the behavior specified within
the advice. We thus also propose a formal definition of a new merge
operator, and describe its implementation on the Kermeta platform.

1 Introduction

The idea of encapsulating crosscutting concerns into the notion of aspects looks
very promising for complementing the usual notion of modules available in most
languages. By localizing these crosscutting concerns, the software engineer can
get a better control over variations, either in the product line context or for soft-
ware evolutions. The need to isolate these crosscutting concerns has been popu-
larized by the AspectJ programming language, but there is a growing interest in

? This work has been partially supported by the European Network of Excellence on
Aspect-Oriented Software Development (AOSD-Europe), 2004-2008.

2

also handling them earlier in the software life-cycle, for instance at design time
[6], or during requirements analysis [2, 29, 24, 14] and notably through the Early
Aspect community and the series of Early Aspect workshops[3].

At modeling level, even complex behavioral aspects can easily be described
for instance as pairs of UML 2.0 Sequence Diagrams (SDs), one SD for the point-
cut (specification of the behavior to detect), and the second one for an advice
representing the wanted behavior at the join point. This is usually fine enough
for informal documentation purposes, or even intuitive enough when a single
aspect has to be woven. The idea of Model Driven Engineering is however that
it should be possible to use these modeling artifacts beyond mere documentation
purposes, for example for validation purposes (simulation or test case generation)
and also for code generation, including targeting non-aspect-oriented platforms
(e.g. vanilla Java, or real-time embedded systems). A more precise semantics of
both join point detection and advice weaving is then needed.

In this paper, we focus on finite scenarios expressed by means of SDs. We
will call base scenario a scenario which describes the concern that determine
the dominante structure of the system, and behavioral aspect a pair of scenarios
which describes a concern that crosscuts the base scenario. For join point detec-
tion at modeling time, we need to statically find where in the base scenarios are
the join points. The partial order induced by a SD and the hierarchical nature
of UML 2.0 SD (similar to High-Level Message Sequence Charts [13]) makes it
necessary to address the problem at the semantic level [18] with static analysis
techniques such as loop unrolling, etc.

For the composition of the advice into the base SD, when we are weaving
a single aspect into a base SD and when a join point3 is a strict sequences of
messages, the composition is trivial once the join point has been identified: the
advice SD just replaces the portion of the SD that is matched by the pointcut at
the join point. However weaving multiple aspects at the same join point can be
difficult if a join point is simply defined as a strict sequence of messages, because
aspects previously woven might have inserted messages in between.

The contribution of this paper is to propose a new interpretation for point-
cuts expressed as SDs to allow them to be matched by join points where some
messages may occur between the messages specified in the pointcut. However,
with this new way of specifying join points, the composition of the advice with
the detected part cannot any longer be a replacement of the detected part by
the advice. We have to consider the events (or the messages) of the join point
which are not specified within the pointcut and merge them with the behavior
specified within the advice. We thus propose a formal definition of a new merge
operator, called an amalgamated sum, and describe its implementation on the
meta-modeling platform Kermeta [19].

3 Note that in this paper, we borrowed the term ”join point” from AspectJ terminol-
ogy. In contrast to AspectJ, however, we consider ”join points” as a representation
of an element or a collection of elements of the language of scenario used rather that
as “well-defined points in the execution of the program” (cf. [16]). The term join
point will be formally defined in Section 3.

3

The rest of the paper is organized as follows. Section 2 formally introduces
the scenario language used and the notion of behavioral aspects. Section 3 in-
troduces various interpretations for join points and Section 4 describes three
detection algorithms for these join points. Section 5 presents our composition
operator for sequence diagrams (amalgamated sum). Section 6 presents its imple-
mentation on the Kermeta platform [19]. Section 7 discusses future works whose
aim at overcoming a current limitation of our approach. Section 8 compares our
approach with related works, and section 9 concludes this work.

2 Sequence Diagrams and Aspects

2.1 Scenarios: UML 2.0 Sequence Diagrams

Scenario languages are used to describe the behaviors of distributed systems at
an abstract level or to represent systems behavioral requirements. They are close
to users understanding and they are often used to refine use cases with a clear,
graphical and intuitive representation. Several notations have been proposed,
among which UML 2.0 Sequence Diagrams (SDs) [21], Message Sequence Charts
(MSCs) [13] or Live Sequence Charts [8]. In this paper, the scenarios will be
expressed by UML 2.0 SDs. To define formally SDs in an easier way, we call
basic sequence diagrams (bSD), a SD which corresponds to a finite sequence of
interactions. We call combined sequence diagrams (cSDs) a SD which composes
bSDs (with sequence, alternative and loop operators). In this way, a cSD can
define more complex behaviors (even infinite behaviors if the cSD contains loops).

More specifically, bSDs describe a finite number of interactions between a set
of objects. They are now considered as collections of events instead of ordered
collections of messages in UML 1.x, which introduce concurrency and asynchro-
nism increasing their power of expression. Figure 1 shows several bSDs which
describe some interactions between the two objects customer and server. The
vertical lines represent lifelines for the given objects. Interactions between ob-
jects are shown as arrows called messages like log in and try again. Each message
is defined by two events: message emission and message reception which induces
an ordering between emission and reception. In this paper, we use arrows rep-
resented with an open-head that corresponds to asynchronous messages4 in the
UML2.0 standard notation. Asynchronous means that the sending of a mes-
sage does not occur at the same time as the corresponding reception (but the
sending of a message does necessarily precede the corresponding reception). Con-
sequently, in Figure 2, the event e3 corresponding to the reception of the first
message a and the event e2 corresponding to the sending of the second message
a are not ordered. Events located on the same lifeline are totally ordered from
top to bottom (excepted in specific parts of the lifeline called coregions).

We recall that in the UML2.0 specification, the semantics of an Interaction
(a Sequence Diagram) is a set of traces, i.e., a set of sequences of events. Conse-
quently, all events are not totally ordered. For instance, in Figure 2, the bSD M

4 We use asynchronous messages to be more general

4

generates two traces: {< e1, e3, e2, e4 >; < e1, e2, e3, e4 >}. These traces imply
that the events e2 and e3 are not ordered. For this reason, we use the notion of
partial order as used in other languages of scenarios as Message Sequence Charts
to define formally the notion of bSD:

Fig. 1. Examples of bSDs and combined SD

Fig. 2. Example of a bSD

Definition 1. A basic sequence diagram is a tuple B = (I, E,≤, A, α, φ,≺)
where: I is a set of objects participating to the interaction, E is a finite set
of events (message emissions and receptions), ≤ is a partial ordering imposed by
lifelines and messages, A is a set of actions (message name), and α and φ are
mappings associating respectively an action name and a location (i.e. an object
affected by the event) with an event. ≺⊆ E × E is a relation that pairs message
emissions and receptions.

In Definition 1, the sentence “≤ is a partial ordering imposed by lifelines
and messages” means that events are totally ordered along a same lifeline (for

5

instance, in Figure 2 the event e1 precedes the event e2, and the event e3 precedes
the event e4), and a message emission must always precede the corresponding
reception (for instance, the event e1 precedes the event e3, and the event e2

precedes the event e4). Then, by transitivity, the partial order ≤ is obtained.
Note that the events within an individual lifeline are totally ordered only if each
event is unique. To ensure the uniqueness of each event, we use a unique identifier
for each event.

We will denote by T (e), the type of an event e. The type of an event indicates
whether an event is a send event or a receive event. We will denote by min(E) =
{e ∈ E|∀e′ ∈ E, e′ ≤ e ⇒ e′ = e}, the set of minimal events of E, i.e., the set
of events which have no causal predecessor. We will denote by pred≤,E(e) =
{e′ ∈ E|e′ ≤ e}, the set of predecessors of the event e, and by succ≤,E(e) =
{e′ ∈ E|e ≤ e′}, the set of successor of e. These two notations can be used
with a subset E′ of the set E: pred≤,E(E′) = {e ∈ E|∃e′ ∈ E′, e ≤ e′} and
succ≤,E(E′) = {e ∈ E|∃e′ ∈ E′, e′ ≤ e}. Slightly misusing the notation, when
M ′ is a bSD which is a “part” of a bSD M , we will denote pred(M ′) as the set
of events of M ′ plus the set of predecessors of the events of M ′. Finally, we will
also use, for instance, the notation pred<,E(e) = {e′ ∈ E|e′ < e} to denote the
set of strict predecessors of the event e (order < instead of ≤) .

Basic SDs alone do not have sufficient expressive power: they can only define
finite behaviors, without real alternatives. For this reason, they can be composed
with operators such as sequence, alternative and loop to produce a SD called
combined SDs (cSD) (also called UML 2.0 Interaction Overview Diagram). Fig-
ure 1 shows two equivalent views of the same cSD called log in (one view is
more compact). This cSD log in represents the specification of a customer log
on a server. If the customer makes two bad attempts, then he/she is rejected.
Else, he/she is accepted. We can see that the cSD allows an alternative be-
tween the bSDs Accept and Retry, and between the bSDs Accept and Rejected.
The cSD also composes sequentially the bSDs Propose and Accept (denoted
Propose•Accept), the bSDs Propose and Retry (denoted Propose•Retry), etc...
The notion of sequential composition (noted • or seq with the UML2 notation)
is central to understanding the semantics of cSD. Note that we use the notion
of weak sequential composition presented in the UML 2.0 specification [21](p
454). Roughly speaking, (weak) sequential composition of two bSDs consists of
gluing both diagrams along their common lifelines. Note that the sequence op-
erator only imposes precedence on events located on the same lifeline, but that
events located on different lifelines in two bSDs M1 and M2 can be concurrent
in M1 • M2. Sequential composition can be formally defined as follows:

6

Definition 2 (Sequential Composition). 5

The sequential composition of two bSDs M1 = (I1, E1,≤1, A1, α1, φ1,≺1) and
M2 = (I2, E2,≤2, A2, α2, φ2,≺2) is the bSD M1 • M2 = (I1 ∪ I2, E1] E2,≤1•2

, A1 ∪ A2, α1 ∪ α2, φ1 ∪ φ2,≺1] ≺2), where: ≤1•2=
(

≤1] ≤2]{(e1, e2) ∈

E1 × E2 | φ1(e1) = φ2(e2)}
)∗

To calculate the new partial ordering ≤1•2, sequential composition consists in
ordering events e1 in bMSC M1 and e2 in bMSC M2 if they are situated on the
same lifeline, and then compute the transitive closure of this ordering. In this
definition,] is the disjoint union of two multisets, i.e. an usual union operation
where common elements of both sets are duplicated. This operator is necessary
because even if the two operands have two identical events (events with the same
name), the two events have to present in the result. Indeed, for instance imagine
we want to make the sequential composition B • B, where B is a bSD which
contains only one message A. In this case, it is obvious that the two operands
contain the same events, but in the result we want that all the events appear.
Thus, in the sequential composition we have to copy and rename the identical
events and it is made with the disjoint union.

The cSD log in can be considered as a generator of a set of behaviors. For in-
stance, the cSD log in generates the set of behaviors {Propose•Accept, Propose•
Retry • Accept, Propose • Retry • Rejected}. This set of behaviors can be po-
tentially infinite (as soon as a combined SD contains the operator loop, the set
of bSDs generated is infinite), but in this paper we will only consider finite SDs.

Figure 3 depicts the sequence diagram metamodel used to implement the
weaving process presented in this paper (the implementation is described in
Section 6). We present this metamodel in this section to show that it fits very
well with the previous definitions of bSD and cSD. In Figure 3, we can note that
cSD has an automata structure, in that a cSD contains a set of nodes and a
set of transitions which are linked to bSDs. In this way, cSD can compose bSDs
through sequences, alternatives and loops. We can also note that a bSD contains
a set of objects (class Instance), a set of events (class Event) and a partial
order on the events. The partial order is built with the class EventCouple which
orders two events: the event “prec” precedes the event “succ”. A set of pairs of
events (prec, succ) forms the partial order. The class Event is linked to the class
Instance. In this way, we obtain the mapping φ of Definition 1. Finally, the class
Event contains an attribute “action” which represents the message name (with
this attribute, we easily obtain the mapping α of Definition 1).

2.2 Behavioral Aspects

We define a behavioral aspect as a pair A = (P, Ad) of bSDs. P is a pointcut,
i.e. a bSD interpreted as a predicate over the semantics of a base model satisfied

5 We recall that we use the notion of weak sequential composition. It also exists a
strong sequential composition. In a strong sequential composition of two bSDs M1

and M2, all the events of M1 have to occur before an event of M2 can occur.

7

Fig. 3. Metamodel of SD

8

by all join points. Ad is an advice, i.e. the new behavior that should replace the
base behavior when it is matched by P . Similarly to AspectJ, where an aspect
can be inserted ’around’, ’before’ or ’after’ a join point, we will show in the next
sections that an advice may equally complete the matched behavior, replace it
with a new behavior, or remove it entirely.

When we define aspects with sequence diagrams, we keep some advantages
related to sequence diagrams. In particular, it is easy to express a pointcut
as a sequence of messages. Figure 4 shows three behavioral aspects. The first
allows the persistence of exchanges between the customer and the server. In the
definition of the pointcut, we use regular expressions to easily express three kinds
of exchanges that we want to save (the message log in followed by either the
message ok, the message try again, or the message no). The second aspect allows
the identification of a log in which fails. The third aspect allows the addition of
a display and its update.

In Figure 1, the cSD log in represents a customer log in on a server. The
customer tries to log in and either he succeeds, or he fails. In this last case, the
customer can try again to log in, and either he succeeds, or the server answers
“no”. The expected weaving of the three aspects depicted in Figure 4 into the
cSD log in is represented by the cSD in Figure 5.

Fig. 4. Three behavioral aspects

3 Various definitions of join points

As mentioned in the introduction, weaving multiple aspects at the same join
point can be difficult if a join point is simply defined as a strict sequence of
messages, because aspects previously woven might have inserted messages in
between. In this case, the only way to support multiple static weaving is to define
each aspect in function of the other aspects, which is clearly not acceptable.

9

Fig. 5. Result of the weaving

The weaving of the three aspects depicted in Figure 4 allows us to better
explain the problem. If the join points are defined as the strict sequence of
messages corresponding to those specified in the pointcut, the weaving of these
three aspects is impossible. Indeed, when the aspect security is woven, a message
save bad attempt is added between the two messages log in and try again. Since
the pointcut detects only a strict sequence of messages, after the weaving of
the aspect security, the aspect display cannot be woven anymore. We obtain
the same problem if we weave the aspect display first and the aspect security
afterwards.

To solve this problem of multiple weaving, we introduce new formal defini-
tions of join points which make possible the detection of join points where some
events can occur between the events specified in the pointcut. In this way, when
the aspect security is woven, the pointcut of the aspect display will allow the
detection of the join point formed by the messages log in and try again, even if
the message save bad attempt has been added.

In our approach, the definition of join point will rely on a notion of part of a
bSD. A join point will be defined as a part of the base bSD such that this part
corresponds to the pointcut. To define the notion of correspondence between a
part and a pointcut, in Sub-Section 3.2, we introduce the notion of isomorphism
between bSD. To define in a rigorous way the notion of join point, we also have
to formally define the notion of part of a bSD. In Sub-Section 3.1, we propose
four definitions for parts of a bSD, some of which allow the multiple weaving of
aspects.

10

Fig. 6. Illustration of the notions of parts

3.1 Notion of Part of a bSD

We propose four definitions of parts of a bSD which allow the definition of four
different types of join points. These definitions of parts will be called: strict

part, general part, safe part and enclosed part. Before introducing formally the
definitions of parts, we use Figure 6 to give a first intuitive idea of these parts.

Let us imagine we want to detect a message m1 followed by a message m2
from C2 to C3 in the bSDs in Figure 6. Firstly, it is clear that the messages m1
and m2 form a join point in the bSD M1, but it is not obvious that these two
messages form a join point in the other bSDs because there is either a message
which “surrounds” m1 and m2 (in M2), or a message between m1 and m2 (in
M3 and M4).

We propose a first definition of part called strict part which only allows the
detection of the message m1 and m2 in the bSD M1. This definition is the most
restrictive, because with this definition, the wanted behavior can be presented in
a bSD without to be detected when, for instance, it is surrounded by a message
or when another message is present between the messages forming the wanted
behavior.

Conversely, we propose a definition of part called general part which allows
the detection of the message m1 and m2 in all the bSDs. This definition is the

11

less restrictive. Some messages can be present between the messages forming the
wanted behavior.

We also propose one variant of strict part called enclosed part, and one
variant of general part called safe part. An enclosed part allows the detection of
the message m1 and m2 in the bSDs M1 and M2. As a strict part, an enclosed
part allows the detection of a strict sequence of messages, but in addition, the
sequence of messages can be surrounded by others messages as in the bSD M2.
A safe part allows the detection of the message m1 and m2 in the bSDs M1, M2
and M3, i.e., a safe part allows the detection of a sequence of messages which is
not necessarily a strict sequence of message, but unlike general part, the order
on the events specified in a pointcut have to be preserved in a safe part (this
last remark will be detailed afterwards).

Now, we formally introduce the four definition of parts. A strict part char-
acterizing a strict sequence of messages can be defined by:

Definition 3 (Strict Part). Let M be a bSD. We will say that M ′ is a strict
part of M if there exist two bSDs X and Y such that M = X • M ′ • Y , • being
the operator of sequential composition6.

In Figure 6, the messages m1 and m2 form a strict part only into the bSD
M1.

A general part, characterizing a part which can be “surrounded” by messages
and where some messages can occur between the messages of the part, can be
defined by:

Definition 4 (General Part). Let M = (I, E,≤, A, α, φ,≺) be a bSD. We will
say that M ′ = (I ′, E′,≤′, A′, α′, φ′,≺′) is a general part of M if:

– I ′ ⊆ I, E′ ⊆ E, A′ ⊆ A, α′ = α|E′ , φ′ = φ|E′ ;
– ≤′⊆≤|E′, ≺′=≺|E′, ∀(e, f) ∈≺, e ∈ E′ ⇔ f ∈ E′.

In Figure 6, the messages m1 and m2 form a general part into all the bSDs.
A safe part allows the characterization of a join point where some events can

occur between the events specified in the pointcut, if and only if the order of the
events specified in the pointcut is preserved in the join points. A safe part can
be formally defined by:

Definition 5 (Safe Part). Let M = (I, E,≤, A, α, φ,≺) be a bSD. We will say
that M ′ = (I ′, E′,≤′, A′, α′, φ′,≺′) is a safe part of M if:

– M ′ is a general part of M ;
– ≤′=≤|E′.

In Figure 6, the messages m1 and m2 form a safe part into the bSDs M1,
M2 and M3. The order of the events of a safe part is the same as the order of
the events of the initial bSD restricted to the events of the safe part (≤′=≤|E′).

6 Note that according to Definition 2, the sequential composition of two bSDs provides
a bSD

12

That is why the messages m1 and m2 do not form a safe part into M4, because
with only the messages m1 and m2, the receiving of the message m1 and the
sending of the message m2 are not ordered whereas in the bSD M4, these two
events are ordered (by transitivity) because of the message m5.

Finally, an enclosed part defines a strict sequence of messages but this se-
quence can be “surrounded” by others messages. More formally:

Definition 6 (Enclosed Part). Let M = (I, E,≤, A, α, φ,≺) be a bSD. We
will say that M ′ = (I ′, E′,≤′, A′, α′, φ′,≺′) is an enclosed part of M if:

– M ′ is a safe part of M ;
– pred≤,E(E′) ∩ succ≤,E(E′) = E′.

In Figure 6, the messages m1 and m2 form an enclosed part into the bSDs M1
and M2. Since an enclosed part is a part where no event can be present between
the events forming the enclosed part, the message m1 and m2 do not form an
enclosed part into M3.

The set pred≤,E(E′) ∩ succ≤,E(E′), which represents the intersection be-
tween the set of predecessors of E′ and the set of successors of E′ 7, indi-
cates the presence of events “between” the events of E′. Indeed, if an event
e /∈ E′ come between two events e′ and e′′ of M ′ (e′ ≤ e ≤ e′′ and φ(e′) =
φ(e) = φ(e′′)), then e belongs to pred≤,E(E′) and to succ≤,E(E′). Therefore
pred≤,EE′ ∩ succ≤,E(E′) 6= E′

Let us note that for the four proposed definitions of part of a bSD, the
definitions are based on the semantics of the language of scenarios used, since
we take account of the message names, but also of the partial order induced by
the pointcut.

3.2 Join Point

Roughly speaking, a join point is defined as a part of the base bSD such that this
part corresponds to the pointcut. Since we have defined four notions for parts of
a bSD, we have four corresponding strategies for detecting join points. It remains
to define the notion of correspondence between the pointcut and the part. To do
so, we introduce the notions of morphisms and isomorphisms between bSDs.

Definition 7 (bSD Morphism). Let M = (I, E,≤, A, α, φ,≺) and M ′ =
(I ′, E′,≤′, A′, α′, φ′,≺′) be two bSDs. A bSD morphism from M to M ′ is a triple
µ =< µ0, µ1, µ2 > of morphisms, where µ0 : I → I ′, µ1 : E → E′, µ2 : A → A′

and:

(i) ∀(e, f) ∈ E2, e ≤ f ⇒ µ1(e) ≤
′ µ1(f) (iii) µ0 ◦ φ = φ′ ◦ µ1

(ii) ∀(e, f) ∈ E2, e ≺ f ⇒ µ1(e) ≺
′ µ1(f) (iv) µ2 ◦ α = α′ ◦ µ1

7 Let us note that E′ is necessarily inclued in pred≤,E(E′) and in succ≤,E(E′) because
each event of E′ is its own predecessor and its own successor (e ≤ e, ≤ being reflexive
by definition)

13

Fig. 7. Illustration of the notion morphism

Note that properties (i) and (ii) mean that by a bSD morphism the order
and the type of the events are preserved (the type of an event is preserved means
that, for instance, a sending event of M will be always associated with a sending
event of M ′). Note that property (iii) also means that all events located on a
single lifeline of M are sent by µ1 on a single lifeline of M ′. Figure 7 shows a
bSD morphism f =< f0, f1, f2 >: pointcut → M2 where only the morphism f1

associating the events is represented (for instance, the event ep1 which represents
the sending of the message m1 is associated with the event em2). Note that since
each event of a bSD is unique, a bSD morphism f from a bSD M to a bSD M ′

always defines a unique part of M ′.

Definition 8 (bSD isomorphism). A bSD morphism µ = (µ0, µ1, µ2) from a
bSD M to a bSD M ′ is an isomorphism if the three morphisms µ0, µ1, and µ2

are isomorphic and if the converse morphism µ−1 = (µ−1
0 , µ−1

1 , µ−1
2) is also a

bSD morphism.

With this definition of isomorphism, we can define the notion of join point
in a general way:

Definition 9 (join point). Let M be a bSD and P be a pointcut. Let M ′ be a
part of M . We will say that M ′ is a join point if and only if there exists a bSD
isomorphism µ = (µ0, µ1, µ2) from P to M ′ where the morphisms µ0 and µ2 are
identity morphisms (P and M ′ have the same objects and action names).

In a nutshell, for each definition of a part of a bSD, there is a corresponding
definition of join point. In Figure 7, if we consider the pointcut depicted, it is
easy to see that the messages m1 and m2 are a join point if we take the enclosed
part, the safe part or the general part as definition of part of a bSD, because
there exists a bSD isomorphism between the pointcut and an enclosed part, a
safe part or a general part of M2.

14

3.3 Successive join points

To define the notion of successive join points the simple definition of join point
is not precise enough. Indeed, in Figure 8, the pointcut P1 matches two different
parts of M1, but these parts become entangled. Let us consider now the pointcut
P2 and the bSD M2. If we take the definition of general part as the definition of
part, there are four possible join points. Indeed, the first message a and the first
message b can form a join point, as can the second message a and the second
message b, but the first message a with the second message b or the second
message a with the first message b can also form join points.

Fig. 8. Multiple possible matching

These multiple conflicting join points pose a problem. Among the conflicting
join points, which should be chosen? Considering all these potential join points
might not make sense from the point of view of someone using aspect weaving
tools. In practice, we can reasonably expect that when a join point is detected,
no elements of this join point can be used to form another join point. Roughly
speaking, we can define successive join points as a set of disjoint join points
taken in sequence.

The advantage of this definition is that it is safe in the sense that the weaving
of the advice at a join point cannot conflict with the weaving of the advice at
another join point. For instance, let us imagine that a weaving of an aspect
removes a join point. If we weave this aspect into the bSD M2 in Figure 8, and
if J1 is the first detected join point, then the messages a and b forming J1 are
removed. In this case, the conflicting join points J3 and J4 have no meaning
anymore since one of its constituent messages no longer exists.

However this answer is debatable. In the proposed example, J1 and J2 can
form a join point because they don’t share the same messages. The ideal solution

15

is perhaps to give the choice to the user by proposing several semantics of notion
of successive join points. Nevertheless, in the sequel of this paper, we will only
give a definition of the notion of successive join points which is (in an informal
way) a sequence of disjoint join points. Other semantics of successive join points
could be considered as interesting future work.

To define this sequence of disjoint join points, firstly we propose a way to
order the parts of a bSD which are isomorphic to a pointcut in order to find
the first join point matched by the pointcut. Then we show the first join point
is always unique, because the order defined on the parts is a lattice. Secondly,
we define successive join points in an inductive way by considering the first join
point J which appears in a bSD M , and by continuing with M minus J .

Definition 10 (ordered parts). Let M = (IM , EM ,≤M , AM , αM , φM ,≺M)
be a bSD and P = (IP , EP ,≤P , AP , αP , φP ,≺P) be a pointcut. Let J1 and J2 be
two parts of M such that there exist two bSD isomorphisms f =< f0, f1, f2 >:
P → J1 and g =< g0, g1, g2 >: P → J2 . We will say that J1 precedes J2 (or
that J2 succeeds J1), denoted J1 � J2,if and only if:

∀e ∈ EP such that T (e) = send, f1(e) ≤M g1(e).

In Figure 8, with this order we can say that the part J1 precedes J2 in bSD
M1. We can also say that the part formed by the first message a and the first
message b in the bSD M2 precedes all the other parts formed by a message a
and a message b.

Afterwards, we will be especially interested in the minimum part of the
order �, that is to say the part which precedes all the other parts. For a set
JP,M of all the parts of a bSD M isomorphic to a pointcut P , we will denote by
min(JP,M) the minimum part. In the same way, if JP,M is the set of all the join
points of P in M , we will call the minimum join point the join point equal to
min(JP,M). However, � doesn’t define a total order. For instance, in Figure 8,
J3 and J4 are not ordered by �. Therefore, it is not obvious that min(JP,M)
is unique. To demonstrate the uniqueness of min(JP,M), we show that � is a
lattice.

Theorem 1. Let JP,M be the set of join points of a bSD M corresponding to a
pointcut P and let � be the order on these join points as defined by Definition 10,
then (JP,M ,�) is a lattice.

The proof of this theorem is given in Appendix.
Now, we can inductively define successive join points as follows:

Definition 11 (Successive Join Points). Let M be a bSD and P be a point-
cut. Let J1, J2, . . . Jk be k parts of M isomorphic to P . These k parts are suc-
cessive join points of P in M if:

1. J1 is the minimum join point of P in M ;
2. ∀i ∈ {2 . . . k}, Ji is the minimum join point of P in M ′, M ′ being the bSD

which contains the events of M minus the events of Ji−1 and all the events
which precede the events of Ji−1, so M ′ = M − pred(Ji−1).

16

Taking the minimum join point every time guarantees the uniqueness of the
successive join points. Roughly speaking, successive join points are detected in
sequence at the earliest position where they appear in a bSD.

However the result M ′ = M − pred(Ji−1) is not always a well-formed bSD.
Indeed, in Figure 9, the minimum join point J1 of P in M is formed by the two
first messages a and b. When we remove the events pred(J1) (the events of J1

and the events which precede J1), we have to remove the event corresponding to
the sending of the message c. Therefore, the result M ′ = M − pred(J1) is only
formed by the two last messages a and b, and the event corresponding to the
reception of the message c. This is not really a problem because the algorithms
proposed afterwards can be applied even if a bSD is of the kind of M ′.

Fig. 9. Example of a not well-formed bSD

3.4 Which detection stategies should be chosen?

Each definition of part of a bSD presented in the previous sub-section leads to a
specific join point detection strategy. This sub-section discusses some arguments
for and against these strategies.

First, it is important to note that for the four proposed definitions of part
of a bSD (so the four strategies), the definitions are based on the semantics of
the language of scenarios used, since we take account of the message names, but
also of the partial order induced by the pointcut.

The definition of strict part is the most restrictive, because with this defi-
nition, the wanted behavior can be presented in a bSD without being detected
when, for instance, it is surrounded by a message. On the other hand, this def-
inition is easy: we only search a decomposition of a base bSD M such that
M = M1 •J •M2 (J being the join point). In [18], we have showed that this sim-
plicity allows the achieving of good decidability results for join point detection
in infinite scenarios.

Conversely, the definition of general part is the least restrictive. Some mes-
sages can be present between the messages forming the wanted behavior. This
fact can imply the detection of join points interleaved with behaviors not ex-
pected by the user. Moreover, the partial order defined by the pointcut is not
necessarily preserved in the detected join point. The major advantage of a join
point defined as a general part remains the property to easily weave several
aspects at the same join point.

17

The definitions of enclosed part and safe part combine the advantages and
the drawbacks of a strict part and a general part. An enclosed part looks like a
strict part, but it can be surrounded by some messages. Therefore, if we want
to look for a strict sequence of messages in a certain way, this definition seems
to be appropriate. However, an enclosed part has the drawback that it does not
tolerate the weaving of multiple aspects at the same join point. If we want to
weave several aspects at the same join point, while the partial order defined
by the pointcut is preserved, the definition of safe part seems to be appropriate.
However, a safe part has the drawback for the detection of join points interleaved
with behaviors not expected by the user, because some messages can be present
between the messages of the join points.

Despite this short discussion on the advantage and the drawbacks of each
definition, the main interest of the proposed approach is that a user can choose
as he/she wishes the semantics of the weaving in finite scenarios. The user is free
to choose the definition of part which suits him/her the better by adapting the
algorithm of detection according to the chosen definition. We will show how this
flexibility can be easily implemented with the Kermeta environment in Section
6.

4 Join point detection

In [18], Klein et al. propose an algorithm to detect a strict part, i.e. a strict
sequence of messages. In this paper we propose three new algorithms to detect
join points defined as an enclosed part, a general part, or a safe part of a bSD.

Firstly, in Sub-Section 4.1, we introduce a general algorithm which contains
two “abstract functions” findSetsOfEvent and min. Secondly, in Sub-Section 4.2,
we show how these functions can be specialized for each notion of join points to
obtain the three new algorithms.

4.1 General Algorithm

Algorithm 1 allows the construction of an isomorphism µ = (µ0, µ1, µ2) from a
pointcut P to a part M ′ of a bSD M , such that µ0 and µ2 are identity morphisms.
In this way, the isomorphism indicates the first join point M ′ in M . We denote
by πi(M) ⊆ EM the projection of a bSD M on an object i of M and by πE(M)
the restriction of a bSD M to a subset E ⊆ EM . Moreover, we use a function
βE which, for an event e of E, gives the position of e on the object containing e.
More specifically, the position of an event on an object is defined by the number
of events which precede it on this object: ∀e ∈ E, βE(e) = card({e′ ∈ E|φ(e) =
φ(e′) ∧ e′ ≤ e}). Finally, we introduce the function ΓE,o(n) which gives the
event of E localized on the nth position on the object o (ΓE,o(n) = e such that
βE(e) = n ∧ φ(e) = o).

For all objects of a pointcut P , the first part of the algorithm (line 1 to 4)
allows the construction of the sets of events of M localized on the same object,
such that the actions related to these events are the same as the actions related
to the events of P . The variable wi represents a word of all events on an object
i of the base bSD M . With the function findSetsOfEvent, we take, for each

18

object i, all the set of (strict or non-strict) sequence of events of M which have
the same action names as the events of P on the object i. Since the decision to
take a strict sequence of events or a non-strict sequence of events depends on the
definition of parts, the function findSetsOfEvent has to be detailed for each
definition of parts.

The second part of the algorithm (line 5 to 13) allows the construction of a
part M ′ of M when it is possible. After the first part of the algorithm, with the
function min, we take the first (or minimum) set of events forming a part. Since
we propose four definitions of parts, this function min has to be specified for
each definition of parts. The notion of minimum set of events or minimum parts
is the one defined in the previous section (related to the definition of ordered
parts, Definition 10).

An example of how the algorithm works in a practical way is given in the
following sub-section.

Note that to detect successive join points in a base bSD M , we start to
apply Algorithm 1 on M to obtain the first join point, which we denote J1

(more precisely, we obtain an isomorphism µ = (µ0, µ1, µ2) which defines J1).
Secondly, we apply Algorithm 1 on M ′ = M − pred(J1) to obtain the second
join point J2, and then we continue in this way as long as the last join point
obtained is not null.

Algorithm 1 Abstract Algorithm of Join Point Detection (P,M)

input:pointcut P = (IP , EP ,≤P , , AP , αP , φP ,≺P),
input: bSD M = (IM , EM ,≤M , AM , αM , φM ,≺M)
output:µ = (µ0, µ1, µ2) : P → M ′,M ′ = (IM′ , EM′ ,≤M′ , AM′ , αM′ , φM′ ,≺M′) join
point of M

1: For each i ∈ IP do
2: aaawi = πi(M) /* a word of all events on the object i */

3: aaaVi = findSetsOfEvent(wi, πi(P))
4: End For
5: EM′ = min(∪i∈IP

Vi)
6: If (EM′ = ∅) then
7: aaareturn(null)
8: Else
9: aaaµ0 is the identity isomorphism from IP to φM (EM′),

10: aaaµ2 is the identity isomorphism from AP to αM (EM′),
11: aaaµ1 is the isomorphism from EP to EM′ such that ∀e ∈ EP ,

aaaµ1(e) = Γvφ(e),φ(e) ◦ βEP
(e) aa/* for each object o of Ip, µ1 is built

by associating with the event of o in the ith position, the event

belonging to EM′ on o in the ith position.*/

12: aaareturn(µ = (µ0, µ1, µ2))
13: End If

19

4.2 Specialization of the Abstract Algorithm

Enclosed Part Detection

For the detection of enclosed part, the function findSetsOfEvent is equivalent
to Vi = {v ∈ E∗

M | ∃u, w, wi = u.v.w ∧ α(v) = α(πi(P))}. For a word of events
wi on the object i, the function findSetsOfEvent returns a set Vi where each
element v of Vi is a strict sequence of events which have the same action names
as the events of P on the object i.

With the function min, it remains to check if the order of the events of P
is the same as the order of the events associated to M ′. For that, we check if
for all pairs of sending-reception of events of P , the events of M ′ at the same
position also form a pair of sending-reception of events. Then, we take the first
(or minimum) set of events satisfying the properties. More formally, the function
min can be rewritten by:

min{v1, . . . , v|IP | ∈ V1 × · · · × V|IP ||

aaaaaaaaaaaaaaaa ∀(e, f) ∈≺P ,
(

Γvφ(e),φ(e) ◦ βEP
(e), Γvφ(f),φ(f) ◦ βEP

(f)
)

∈≺M}

Fig. 10. Illustration of the general algorithm using the enclosed part strategy

In Figure 10, with the pointcut P and the bSD M , we are going to show
how Algorithm 1 works in a practical way if the function findSetsOfEvent and
min are defined as above. The table in Figure 10 represents the values of some
variables used in the algorithm. The two first variables α(πI1(P)) and α(πI2(P))
(used in line 3 of the algorithm) represent respectively the label of the projection

20

of P on the objects I1 and I2. These two labels are equal to ab. The two next
variables wI1 and wI2 (in Figure 10, in table) represent the projection of M on re-
spectively the objects I1 and I2 (computed in line 2 of the algorithm). Then, for
I1, with the function findSetsOfEvent, the algorithm computes the sets of suc-
cessive events of wI1 which have the same action names (or labels) as α(πI1(P)).
We obtain VI1 = {e′5e

′
6; e

′
7e

′
8} since the labels of e′5e

′
6 and e′7e

′
8 are equal to ab. We

do the same for I2 and we obtain VI2 = {e′11e
′
12; e

′
14e

′
15; e

′
17e

′
18}. At line 5, with

the function min, the algorithm computes the first (or minimum) set of events
which form an enclosed part. The first set of events is {vI1 = e′5e

′
6; vI2 = e′11e

′
12},

but it does not satisfy the properties of line 5. Indeed,
∀(e1, e3) ∈≺P ,

(

Γvφ(e1),φ(e1) ◦ βEP
(e1), Γvφ(e3),φ(e3) ◦ βEP

(e3)
)

=

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
(

ΓvI1,I1(1), ΓvI2,I2(1)
)

= (e′5, e
′
11) /∈≺M .

The set of events {vI1 = e′5e
′
6; vI2 = e′14e

′
15} is the first set which satisfies the

properties, so EM ′ = {e′5e
′
6; e

′
14e

′
15}. The rest of the algorithm builds the isomor-

phism µ = (µ0, µ1, µ2) from P to the bSD formed by the events of EM ′ .

Safe Part Detection

For the detection of safe part, the function findSetsOfEvent is equivalent to
Vi = {v = x1.x2...xk ∈ E∗

M | ∃ui ∈ E∗
M , i ∈ {1...k + 1},

aaaaaaaaaaaaaaaaaaaaaaaaa wi = u1.x1.u2.x2...uk.xk.uk+1∧α(v) = α(πi(P))}.
In this way, we can detect a join point even if there are some events (represented
by the ui) between the events of the join point. Let us note that for i ∈ {1...k+1},
ui can contain no event.

The function min looks like the one defined for the detection of enclosed
pattern, but in addition, we also have to check if the order of the events of
EM ′ is the same as the order of EM restricted to the event of EM ′ (we check
if ≤M ′=≤M|EM′

), because the fact that we allow the presence of other events
between the events of a general part can introduce a difference between ≤M ′

and ≤M|EM′
. Formally:

min{v1, . . . , v|IP | ∈ V1 × · · · × V|IP ||

aaa ∀(e, f) ∈≺P ,
(

Γvφ(e),φ(e)◦βEP
(e), Γvφ(f),φ(f)◦βEP

(f)
)

∈≺M ∧ ≤M ′=≤M|EM′
}

General Part Detection

For the detection of general part, the function findSetsOfEvent is the same as
the one used for the detection of safe part.

The function min is similar to the one used for the detection of safe part,
except for one difference. According to the definition of a general part, it is not
necessary to check whether ≤M ′=≤M|EM′

. So, in the function min, this checking
is not performed (let us note that the property ≤M ′⊆≤M|EM′

is always verified).

5 Operator of composition

Now that we can detect join points in a base bSD, it remains to compose the
bSD Advice with the join points. In [18], they use the notion of strict part
to define the join points. If we note by J the join point and by B the base

21

bSD, by definition, there exist two bSDs B1 and B2 such that we can write
B = B1 • J •B2 (• being the operator of sequential composition). If we note Ad
the advice representing the expected behavior, all you have to do to compose
the advice with the join point is to replace the join point by the advice, and the
woven bSD is B = B1 • Ad • B2 .

When we use the notions of general part, safe part or enclosed part to define
the join points, the composition of the advice is not so easy. Indeed, with these
kinds of join points, some messages can surround a join point or some messages
can be present between the messages forming the join point. In these cases, it
is not possible to simply replace a join point by an advice because the result
cannot be always expressed with the standard operators of composition such as
the sequential composition operator. Therefore, we have to define a new operator
of composition which takes into account the common parts between a join point
and an advice to produce a new bSD which does not contain copies of similar
elements of the two operands. We propose an operator of composition for bSDs
called left amalgamated sum. This sum is inspired by the amalgamated sum
proposed in [17]. We add the term left because our operator is not commutative,
but it imposes a different role on each operand.

Figure 11 shows an example of left amalgamated sum where the two bSDs
base = (Ib, Eb,≤b, Ab, αb, φb,≺b) and advice = (Ia, Ea,≤a, Aa, αa, φa,≺a) are
amalgamated. For that, we use a third bSD which we call bSD pointcut =
(Ip, Ep,≤p, Ap, αp, φp,≺p) and two bSD morphisms f : pointcut → base and
g : pointcut → advice which allow the specification of the common parts of the
two bSDs base and advice. Moreover, f has to define an enclosed part, a safe
part or a general part M ′ in the bSD base such that f is an isomorphism from
the pointcut to M ′. We can note that the morphism f is automatically obtained
with the process of detection described into the previous section.

The morphism g, which indicates the elements shared by the advice and the
pointcut, has to be specified when the aspect is defined. In this way, g allows
the specification of abstract or generic advices which are “instantiated” by the
morphism. For instance, it is not mandatory that the advice contains objects
having the same name as those present in the pointcut. In the three aspects in
Figure 4, the morphism g is not specified but it is trivial: for each aspect, we
associate the objects and the actions having the same names, and the events
corresponding to the actions having the same name. The advice of the aspect
Display in Figure 4 could be replaced by the “generic” Advice in Figure 11. It is
the morphism g which indicates that the object customer plays the role of the
object subject and that the object server plays the role of the object A.

In Figure 11, the elements of the bSDs base and advice having the same
antecedent by f and g will be considered as identical in the bSD result, but
they will keep the names specified in the bSD base. For instance, the objects
subject and A in the bSD advice are replaced by the objects customer and
server. All the elements of the bSD base having an antecedent γ by f such
that γ has not an image by g in the bSD advice are deleted. This case does not
appear in the example proposed, but in this way we can delete messages of the

22

bSD base. For instance, in an amalgamated sum, if the right operand (the bSD
advice in the example) is an empty bSD then the part of the left operand which
is isomorphic to the pointcut (that is to say the join point), is deleted. Finally,
all the elements of the bSDs base and advice having no antecedent by f and g
are kept in the bSD result, but the events of the bSD advice will always form
a “block” around which the events of the bSD base will be added. For instance,
in Figure 11, in the bSD base, if there were an event e on the object customer
just after the message try again, then this event e would be localized just after
the sending of the message update (event ea7) in the woven SD.

Fig. 11. An example of left amalgamated sum

23

Formally, a left amalgamated sum is defined by:

Definition 12 (left amalgamated sum). Let M0 = (I0, E0,≤0, A0, α0, φ0,≺0

), M1 = (I1, E1,≤1, A1, α1, φ1,≺1) and M2 = (I2, E2,≤2, A2, α2, φ2,≺2) be three
bSDs. Let f =< f0, f1, f2 >: M0 → M1 and g =< g0, g1, g2 >: M0 → M2

be two bSDs morphisms such that f(M0) defines a part M ′
1 of M1 and that f

is a isomorphism from M0 to M ′
1. The left amalgamated sum of M1 and M2

is the bSD M = M1 +f,g M2 where M = (I, E,≤, A, α, φ,≺) is defined by:
I = I1 ∪ {i2 ∈ I2|@i0 ∈ I0, g

−1
0 (i2) = i0};

E = {e1 ∈ E1|∃e0 ∈ E0, ∃e2 ∈ E2, f
−1
1 (e1) = e0 ∧ g1(e0) = e2} ∪ {e1 ∈

E1|@e0 ∈ E0, f
−1
1 (e1) = e0} ∪ {e2 ∈ E2|@e0 ∈ E0, g

−1
1 (e2) = e0};

≤=

{

(e1, e2) ∈ (E1 ∩ E)2|e1 ≤1 e2

}

∪
{

(e1, e2) ∈ (E2 ∩ E)2|e1 ≤2 e2

}

∪
{

(e1, e2), e1 ∈ (f1(E0) ∩ E), e2 ∈ (E2 ∩ E)|
∃e′2 ∈ E2, e

′
2 = g1 ◦ f−1

1 (e1) ∧ e′2 ≤2 e2

}

∪
{

(e1, e2), e1 ∈ (E2 ∩ E), e2 ∈ (f1(E0) ∩ E)|
∃e′2 ∈ E2, e

′
2 = g1 ◦ f−1

1 (e2) ∧ e1 ≤2 e′2
}

∪
{

(e1, e2), e1 ∈
(

pred<1,E1f1(E0) − f1(E0)
)

, e2 ∈ (E2 ∩ E)|
φ(e1) = φ(e2)

}

∪
{

(e1, e2), e1 ∈ (E2 ∩ E), e2 ∈
(

succ<1,E1f1(E0) − f1(E0)
)

|
φ(e1) = φ(e2)

}

∗

∀e ∈ E, α(e) =

{

α1(e) if e ∈ E1

α2(e) if e ∈ E2
;

∀e ∈ E, φ(e) =

{

φ1(e) if e ∈ E1

φ2(e) if e ∈ E2
;

A = α(E);
≺= (≺1 ∪ ≺2) ∩ E2

The first line of the definition of ≤ means that each pair of events of E1

present in E and ordered by ≤1 remains ordered by ≤. The second line is equiv-
alent but for the events of E2. The third line means that an event e1 of E1

present in E precedes an event e2 of E2 present in E, if there exists an event
e′2 of E2 preceding e2 and corresponding to e1 in M0. The fourth line means
that an event e2 of E1 present in E succeeds an event e1 of E2 present in E,
if there exists an event e′2 of E2 succeeding e1 and having the same antecedent
as e2 in M0. Finally, the fifth line means that an event e1 of E1 preceding the
part detected in M1, will precede all event e2 of E2 if e1 and e2 are localized on
the same object in M . The last line is equivalent but for the events of E1 which
succeed the detected part.

Let us note that this operator of composition can lead to some situations
where there are several possibilities to order the events. For instance, in Figure
11, let us suppose that the messages update in the bSD advice are sent by the
object A instead of the object customer. Then, when we compose the bSD base
with the bSD advice, the sending of the message update and the message save
bad attempt cannot be ordered. In this case, it is the designer who has to specify
the expected order.

24

6 Implementation with Kermeta

To apply the detection and composition algorithms proposed in this paper on
practical examples, we have implemented them within the Kermeta environment.
This section is divided in three sub-sections. The first one presents the Kermeta
environment and details our motivations for using it. The second details how the
weaving process is implemented, and the third presents the use of our weaver
from a user perspective.

6.1 The Kermeta environment

Kermeta [19] is an open source meta-modeling language developed by the Triskell
team at IRISA. It has been designed as an extension to the EMOF 2.0 to be the
core of a meta-modeling platform. Kermeta extends EMOF with an action lan-
guage that allows specifying semantics and behaviors of metamodels. The action
language is imperative and object-oriented. It is used to provide an implemen-
tation of operations defined in metamodels. As a result the Kermeta language
can, not only be used for the definition of metamodels but also for implementing
their semantics, constraints and transformations.

The Kermeta action language has been specially designed to process models.
It includes both Object Oriented (OO) features and model specific features.
Kermeta includes traditional OO static typing, multiple inheritance and behavior
redefinition/selection with a late binding semantics. To make Kermeta suitable
for model processing, more specific concepts such as opposite properties (i.e.
associations) and handling of object containment have been included. In addition
to this, convenient constructions of the Object Constraint Language (OCL), such
as closures (e.g. each, collect, select), are also available in Kermeta.

A complete description of the way the language was defined can be found
in [19]. It was successfully used for the implementation of a class diagram com-
position technique in [25] but also as a model transformation language in [20].
To implement the detection and composition techniques proposed in this paper
we have chosen to use Kermeta for two reasons. First, the language allows im-
plementing composition by adding the algorithm in the body of the operations
defined in the composition metamodel. Second, Kermeta tools are compatible
with the Eclipse Modeling Framework (EMF) [5] which allows us to use Eclipse
tools to edit, store, and visualize models.

6.2 The weaving process as model transformations

As detailed previously, the weaving process consists of two steps. Firstly, the
detection step uses the pointcut model and the base model to compute a set of
join points. Each join point is characterized by a morphism from the pointcut to
a corresponding elements in the base model. Secondly, using these morphisms,
the advice is composed with each join point in the base model. The first step
processes models to extract join points and the second is a model transformation.
Figure 12 details the input and output models of these two steps (each ellipse

25

is a model and the black rectangle on the top left-hand corner indicates its
metamodel). Except for morphisms, all models are SDs.

The first step to process or transform models in Kermeta is the definition
of the input and output metamodels. Thanks to the compatibility of Kermeta
with Eclipse tools, we have used Omondo UML [22] which provides a graphical
editor for metamodels in addition to UML editors. Figure 3 presents the simple
metamodels we are using for SDs. We use this sequence diagram metamodel
rather than that of UML2.0 for two major reasons. Firstly, as shown in Section
2, the metamodel in Figure 3 fits very well with the formal definitions intro-
duced in this paper. So, the metamodel is relatively small, concise and easy to
understand, and the algorithms presented in this paper are easier to write with
this metamodel rather than with that of UML2.0. Secondly, it is very simple to
write a transformation from the UML2.0 sequence diagram metamodel to the
metamodel in Figure 3 because the concepts are very close. So, we can apply the
weaving on a model compliant to the UML2.0 metamodel by performing a trans-
formation from the UML2.0 sequence diagram metamodel to the metamodel in
Figure 3 before the weaving process.

Once the metamodel is defined this way, EMF provides generic tools to cre-
ate, edit and save instance models. Kermeta allows, on one hand to complete the
metamodel with the specification of the bodies of operation and on the other
hand to process models created with EMF. We used the same process to de-
fine a simple metamodel to represent morphisms. This metamodel contains only
one class called Morphism which encapsulates associations between, instances,
messages and events of two SDs.

Fig. 12. Transformation of Models

Using the metamodels for SDs and morphisms, we have designed and imple-
mented the complete weaving process. For the detection transformation we have
defined a Kermeta abstract class Detection and three sub-classes to implement

26

the different detection strategies. The composition is implemented in a single
Kermeta class.

Both the implementation of detection algorithms and the implementation
of the composition operator were used to validate the techniques proposed in
this paper. The composition was implemented first and tested by providing test
cases composed of a base scenario, a pointcut scenario, an aspect scenario, and
the morphisms between the pointcut and the advice and between the pointcut
and the base scenario. We chose the set of test cases to intuitively cover the
structures of sequence diagrams such as messages between two instances, mes-
sages on a single instance, crossing messages or cSD with alternatives, etc. For
all test cases, we checked manually that the composed models correspond to the
expected models. The implementation of the detection algorithms was tested us-
ing various simple scenarios corresponding to detection and non-detection cases.
We especially had to test the detection algorithms in situations where several
potential matches could be chosen. In addition to the testing of each step of the
weaving, we applied our prototype tool on several small academic examples.

6.3 Using the prototype tool

This goal of this section is to present the use of our weaving technique from a
user perspective.

Fig. 13. Screenshot of the base scenario

27

First, the developer has to model the base scenario of his/her application. To
do so we use the UML 2.0 sequence diagram editor available in the TopCaseD
eclipse plugin [27]. Figure 13 presents a screenshot of this editor with a base
model. The base model consists of an interaction between two instances names
user and server. Figure 14 presents the two scenarios of a behavioral aspect to
weave in the base model. The pointcut and advice are presented respectively at
the top and at the bottom of the figure. This goal of this aspect is to update a
display object whenever a customer object sends a log in message or receives a
response from the server.

Fig. 14. Screenshot of the aspect scenarios

Once the scenarios for both the base model and the behavioral aspect are
defined, a wizard can be used to perform the weaving. Figure 15 presents a
screenshot of this wizard. To apply our weaving algorithms, the user has to
provide the scenarios corresponding to the pointcut and advice and specify in
which base models the weaving should be applied. In addition to this, the user
can choose the detection strategy to use. If the strict sequence of messages is
selected then the detection strategy corresponds to the notions of strict part
and enclosed part of a bSD. The check-box allow surrounding messages allows

28

choosing between these two strategies. It the non-strict sequence of messages is
selected, then the notions of safe part and general part of a bSD are used. The
check box preserve event order allows choosing between these two strategies.
After choosing the detection strategies, the weaving can be performed at once
using the Weave All button or interactively using the Weave and Skip buttons.

Fig. 15. Screenshot of the weaving wizard

Figure 16 presents the result of the weaving of the behavioral aspect in the
base model of figure 13, with as settings in the wizard, “Non-strict message
sequence” and “Preserve event order” selected.

7 Future Works

The algorithms of join point detection proposed in this paper (when the join
points are enclosed parts, safe parts or general parts of a bSD) only work for bSDs
or combined SDs which generate a finite number of behaviors (cSDs without loop,
in this case the weaving can be applied to each bSDs of the set generated by a
cSD). When the join points are strict parts of a bSD, the join point detection
within infinite behavior is already solved in [18]. More specifically, the detection
of join points within infinite behaviors always terminates when the pointcut
is connected, i.e., when the pointcut has no parallel component (the pointcut
cannot be written as a parallel composition of two other bSDs). However for the

29

Fig. 16. Screenshot of the result

new definitions of join points proposed in this paper, the problem of detection
is more complicated. For instance, let us consider the behavioral aspect and the
cSD example depicted in Figure 17. When the join points are general parts of a
bSD, the join point formed by the messages a and b is detected in each behavior
generated by the cSD example. So, the expected behaviors allows any number
of messages c between a and b. Since the message d surrounds this potentially
infinite number of messages c, the expected behaviors cannot be represented
with SDs (we cannot isolate anymore the message c in a loop).

When we consider the join points as general parts, safe part or enclosed part,
our future works are to identify the cases for which our static weaving is always
possible, even if the base scenario generates an infinite number of behaviors.

In the paper we have chosen to limit the approach to simple name matching.
However, in future work, our approach could be extended with more powerful
matching mechanisms such as roles or wildcards on object names.

8 Related Works

Clarke and Baniassad [7] use the Theme/UML approach to define aspects.
Theme/UML introduces a theme module that can be used to represent a concern
at the modeling level. Themes are declaratively complete units of modularization,
in which any of the diagrams available in the UML can be used to model one view
of the structure and behavior the concern requires to execute. In Theme/UML,

30

Fig. 17. Impossible weaving

a class diagram and sequence diagrams are typically used to describe the struc-
ture and behaviors of the concern being modeled. The question addressed by
their work is more the specification of aspects than the weaving process into
non-aspectual models, but our definitions and detection of join point, and our
operator of composition can easily be adapted to the Theme approach to keep
the advantages of the two approaches.

Similarly to our approach, Whittle and Araujo ([29] and [2]) represent be-
havioral aspects with scenarios. Aspectual scenarios are modeled as interaction
pattern specifications (IPSs introduced in [12]) and are composed with specifi-
cation scenarios. The weaving process defined in [29] composes scenarios with
instantiation and ad-hoc composition operators. The weaving process proposed
by [2] is performed in two steps. The first step is to generate state machines from
the aspects and from the specification. The weaving process is then a composi-
tion of these state machines. However, in these two approaches, the detection of
join points is not automated: users have to specify them with a binding relation
between an aspect and a specification. Moreover, their composition operator for
SDs is not defined formally.

In [26], Stein et al. introduce a way to express various conceptual models of
pointcuts in aspect-oriented design. But, they do not provide a way to detect
the join points specified by these pointcuts. By contrast, in our approach the
detection of the join points and their composition is automatic.

More generally, in [10] and [11], Douence et al. are interested in event pattern
matching, which is close to our approach. A significant difference is that they use
a monitor to perform event pattern matching at runtime on a program execution,
whereas our weaving is made statically at a modeling level. Similar to Douence et
al., Walker and Viggers [28] have proposed declarative event patterns as a means
to specify patterns of events to detect sequence of events in the execution of a
system based on a context-free-language-based pattern matching, while Allan et

31

al. [1] have proposed a new history-based language feature called tracematches
that enables the programmer to trigger the execution of extra code by specifying
a regular pattern of events in a computation trace. Our approach differs from
both in that we allow the entire pattern (join point) to be replaced or completed,
rather than just the final event in the pattern. We can do that because our
weaving is static. We do not perform the weaving during the execution of the
sequence diagram, but we transform a sequence diagram into another sequence
diagram where the aspect is woven.

Still at a programming level, recently Bockisch et al. [4] have proposed a
novel implementation of the mechanism of cflow present in AspectJ for which
the efficiency of join point detection for dynamic weaving is improved. However,
it is only applicable for the detection of sequence of messages in the control
flow of a method, whereas with our approach, we can detect any interactions.
Moreover, since our weaving is static, performance is not a primary issue.

The aspect model and in particular the mechanism to identify join points
plays a critical role in the applicability of the aspect-oriented methodology. Ac-
cording to Kiczales [15], the pointcuts definition language probably has the most
relevant role in the success of the aspect-oriented technology but most of the so-
lutions proposed so far are too tied to the syntax of the programs manipulated.

Ostermann et al. [23] try to address this problem by proposing a static joint
point model that exploits information from different models of program seman-
tics. They show that this model of joint points increases the abstraction level
and the modularity of pointcuts.

9 Conclusion

In this paper we have proposed a technique to statically weave behavioral as-
pects into sequence diagrams. Our weaving process is automated, and takes into
account the semantics of the model used, i.e., the partial order that a SD induces.

To enable the weaving of multiple aspects, we have proposed a new interpre-
tation for pointcuts to allow join points to match them more flexibly. However,
with this new way of specifying join points, the composition of the advice with
the detected part could not any longer be a replacement of the detected part by
the advice. We thus had to consider the events (or the messages) of the join point
which are not specified within the pointcut and merge them with the behavior
specified within the advice. We proposed a formal definition for such a merge
operator, and described its implementation on the Kermeta platform. Moreover,
we have presented the use of our weaving technique from a user perspective.

However, our approach suffers from limitations: our algorithms for join point
detection only work for bSDs or combined SDs which generate a finite number
of behaviors. This has to be considered for further research.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhotak,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching

32

with free variables to aspectj. In OOPSLA ’05: Proceedings of the 20th annual
ACM SIGPLAN conference on Object oriented programming, systems, languages,
and applications, volume 40, pages 345–364. ACM Press, 2005.

2. J. Araujo, J. Whittle, and Kim. Modeling and composing scenario-based require-
ments with aspects. In Proceedings of RE 2004, Kyoto, Japan, September 2004.

3. E. Aspect, 2006. http://www.early-aspects.net/.
4. C. Bockisch, S. Kanthak, M. Haupt, M. Arnold, and M. Mezini. Efficient con-

trol flow quantification. In OOPSLA ’06: Proceedings of the 21th annual ACM
SIGPLAN conference on Object oriented programming, systems, languages, and
applications, volume 41, pages 125–138. ACM Press, 2006.

5. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose. Eclipse Modeling
Framework. The Eclipse Series. Addison Wesley Professional, 2003.

6. S. Clarke. Composition of Object-Oriented Software Design Models. PhD thesis,
Dublin City University, 2001.

7. S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design: The Theme
Approach. Number ISBN: 0-321-24674-8. Addison Wesley, 2005.

8. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. vol-
ume 19, pages 45–80, 2001.

9. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
Mathematical Textbooks, 1990.

10. R. Douence, P. Fradet, and M. Südholt. A framework for the detection and reso-
lution of aspect interactions. In Proceedings of GPCE’02, LNCS. Springer, 2002.

11. R. Douence, O. Motelet, and M. Südholt. A formal definition of crosscuts. In
Reflection’01, pages 170–186, 2001.

12. R. B. France, D.-K. Kim, S. Ghosh, and E. Song. A uml-based pattern specification
technique. IEEE TSE, vol.30(3), 193-206, March 2004, 2004.

13. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-
TS, Geneva, September 1999.

14. I. Jacobson and P.-W. Ng. Aspect-Oriented Software Development with Use Cases.
Addison-Wesley, 2004.

15. G. Kiczales. The fun has just begun. Keynote of AOSD’03, 2003.
16. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.

An overview of AspectJ. Lecture Notes in Computer Science, 2072:327–355, 2001.
17. J. Klein, B. Caillaud, and L. Hélouët. Merging scenarios. In Workshop on FMICS,

pages 209–226, Linz, Austria, sep 2004.
18. J. Klein, L. Hélouet, and J.-M. Jézéquel. Semantic-based weaving of scenarios. In

AOSD, Bonn, Germany, 2006. ACM.
19. P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving executability into object-

oriented meta-languages. In Proc. of MODELS/UML, LNCS, Jamaica, 2005.
20. P.-A. Muller, F. Fleurey, D. Vojtisek, Z. Drey, D. Pollet, F. Fondement, P. Studer,

and J.-M. Jézéquel. On executable meta-languages applied to model transforma-
tions. In Model Transformations In Practice Workshop, Jamaica, 2005.

21. OMG. Uml superstructure, v2.0. OMG Document number formal/05-07-04, 2005.
22. Omondo, 2006. http://www.omondo.com.
23. K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for increased

modularity. In Proceedings of ECOOP’05. Springer LNCS, 2005.
24. A. Rashid, A. M. D. Moreira, and J. Araújo. Modularisation and composition of

aspectual requirements. In proceedings of AOSD’03, pages 11–20, 2003.
25. R. Reddy, R. France, S. Ghosh, F. Fleurey, and B. Baudry. Model composition -

a signature-based approach. In AOM Workshop, Montego Bay, Oct. 2005.

33

26. D. Stein, S. Hanenberg, and R. Unland. Expressing different conceptual models of
join point selection in aspect-oriented design. In AOSD, Bonn, Mars 2006.

27. TopCaseD, 2006. http://www.topcased.org/.
28. R. J. Walker and K. Viggers. Implementing protocols via declarative event pat-

terns. In ACM Sigsoft International Symposium on Foundations of Software En-
gineering (FSE-12), 29(6):159–169, 2004.

29. J. Whittle and J. Araújo. Scenario modelling with aspects. IEE Proceedings -
Software, 151(4):157–172, 2004.

Appendix

This appendix contains the proof of Theorem 1.
Proof:
To demonstrate Theorem 1, we assume that two overtaking messages cannot

have the same name and we use the following lemma which can be found in the
book “Introduction to Lattices and Order” [9](p.110):

Lemma 1. Let (L,∨,∧) be a triple where L is a non-empty set equipped with
two binary operations ∨ and ∧ which satisfy for all a, b, c ∈ L:

– (1) a ∨ a = a and a ∧ a = a (idempotency laws);
– (2) a ∨ b = b ∨ a and a ∧ b = b ∧ a (commutative laws);
– (3) (a ∨ b) ∨ c = a ∨ (b ∨ c) et (a ∧ b) ∧ c = a ∧ (b ∧ c) (associative laws);
– (4) a ∨ (a ∧ b) = a et a ∧ (a ∨ b) = a (absorption laws).

then:

– (i) ∀a, b ∈ L, a ∨ b = b ⇔ a ∧ b = a;
– (ii) If we define ≤ by a ≤ b if a ∨ b = b, then ≤ is an order relation;
– (iii) With ≤ as in (ii), (L,≤) is a lattice such that ∀a, b ∈ L, a∨b = sup{a, b}

and a ∧ b = inf{a, b}.

�

We will show that JP,M can be equipped with two binary operations ∨ and
∧ which verify the properties 1 to 4 of the lemma.

Let JP,M be the set of join points corresponding to a pointcut P = (IP , EP ,≤P

, AP , αP , φP ,≺P) in a bSD M = (I, E,≤, A, α, φ,≺). Let ∨ and ∧ be the oper-
ators defined for each Ji, Jj of JP,M by:

Ji ∨ Jj = {e, f ∈ Ji|e ≺ f, ∃e′ ∈ EP , e = µi1(e
′), µj1 (e

′) ≤ e}∪
{e, f ∈ Jj |e ≺ f, ∃e′ ∈ EP , e = µj1(e

′), µi1(e
′) ≤ e}

Ji ∧ Jj = {e, f ∈ Ji|e ≺ f, ∃e′ ∈ EP , e = µi1(e
′), e ≤ µj1(e

′)}∪
{e, f ∈ Jj |e ≺ f, ∃e′ ∈ EP , e = µj1(e

′), e ≤ µi1(e
′)}

µi =< µi0 , µi1 , µi2 > and µj =< µj0 , µj1 , µj2 > being the isomorphisms
associating P to the respective join points Ji and Jj .

34

For (JP,M ,∨,∧), the properties (1) and (2) of the lemma are verified (triv-
ial). Let Ji, Jj and Jk be three join points and µi =< µi0 , µi1 , µi2 >, µj =<
µj0 , µj1 , µj2 > and µk =< µk0 , µk1 , µk2 > the three isomorphisms associating
respectively P to Ji, Jj and Jk. Let e and f be two events of M such that e ≺ f .
If e and f belong to Ji and (Ji ∨ Jj) ∨ Jk, let e′ be the corresponding event
in P such that e = µi1(e

′), then according to the definition of ∨, e succeeds to
µj1(e

′) and µk1(e
′). Therefore, e and f also belong to Ji ∨ (Jj ∨Jk). In this way,

we easily show that (Ji ∨ Jj) ∨ Jk = Ji ∨ (Jj ∨ Jk). In the same way, we also
show that (Ji ∧ Jj) ∧ Jk = Ji ∧ (Jj ∧ Jk). Finally, to prove the property (4),
let us consider the two join points Ji and Jj and their associated morphisms µi

and µj . Let e2 and f2 be two events belonging to Jj and Ji ∨ (Ji ∧ Jj) (and
consequently to Ji ∧ Jj) but not to Ji. Let us note e′ the event belonging to P
such that e2 = µj1(e

′). If e1 = µi1(e
′), then since e2 belongs to Ji ∧ Jj , e2 ≤ e1,

and since e2 belongs to Ji∨(Ji∧Jj), e1 ≤ e2. Impossible, therefore all the events
of Ji ∨ (Ji ∧ Jj) belong to Ji.

According to the lemma, (JP,M ,�′), with �′ defined by Ji �
′ Jj if Ji∨Jj =

Jj , is a lattice. Moreover �′ is equivalent to the order � of Definition 10. The
equivalence is easy to demonstrate. Let Ji and Jj be two join points, and µi and
µj their associated isomorphisms to P . If Ji �

′ Jj , by definition Ji ∨ Jj = Jj ,
and thus all the message send events of Jj succeed those of Ji. The converse is
trivial.

�

