Semantic-based Weaving of Scenarios’

Jacques Klein
IRISA/INRIA
Campus de Beaulieu
35042 Rennes Cedex, France

jacques.klein@irisa.fr

ABSTRACT

The notion of aspect looks promising for handling cross-

cutting concerns earlier in the software life-cycle, up from

programming to design, analysis and even requirements. Sup-
port for aspects is thus now raising interest also at the

modeling level, including with behavioral modeling languages
such as scenarios. With this kind of modeling languages,

even if aspect weaving can be performed at the abstract syn-

tax level, a weaving at the semantics level seems a far more

appealing and powerful mechanism. In this paper we present

a semantic-based aspect weaving algorithm for Hierarchical

Message Sequence Charts (HMSCs). The algorithm pro-

posed uses a set of transformations that take into account

the compositional semantics of HMSCs to weave an initial

HMSC and a behavioral aspect expressed with scenarios.

Keywords
Aspects Weaving, Scenarios, Aspect-Oriented Modeling

1. INTRODUCTION

The idea of encapsulating crosscutting concerns into the
notion of aspects looks very promising for complementing
the usual notion of modules available in most languages. By
localizing these crosscutting concerns, the software engineer
can get a greater control over variations, either in the s-
patial dimension (product line context) or in the temporal
dimension (software evolutions). The need to isolate these
crosscutting concerns has been popularized by the Aspect-
J programming language, but there is a growing interest
in also handling them earlier in the software life-cycle, for
instance at design time [2], or during requirements analysis
[1], [17], [16], [10]. Beyond being able to represent aspects
at requirement or design time, an automatic aspect weaver
at these stages can be very useful for validation purposes

*This work has been partially supported by the AOSD-
Europe Network of Excellence.

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

AOSD 06, March 2024, 2006, Bonn, Germany

Copyright 2006 ACM 1-59593-300-X/06/03 ...$5.00.

Loic Hélouét
IRISA/INRIA
Campus de Beaulieu
35042 Rennes cedex, France

loic.helouet@irisa.fr

Jean-Marc Jézéquel
IRISA/ Université de Rennes 1
Campus de Beaulieu
35042 Rennes Cedex, France

jezequel@irisa.fr

(simulation or test case generation) and also for targeting
non-aspect-oriented platforms (e.g. vanilla Java).

Many works address aspect weaving at the model level, in-
cluding with behavioral modeling languages such as scenario
languages. Within this paper, we choose High-level Message
Sequence Charts (HMSCs) as the scenario model. With be-
havioral models, aspect weaving can be performed either at
the abstract syntax level (where weaving simply consists of
searching for a specific pattern that shall be replaced in the
syntactic definition of some behaviors), or at the seman-
tic level (where weaving consists of replacing a part of the
behaviors defined by the semantics of the description with
another behavior). This makes a real difference: syntactic
weaving directly transforms a description X into a descrip-
tion X’ with aspects, while semantic weaving transforms X
into another description X’ such that the semantics of X’ is
the semantics of X woven with an aspect.

Consider for instance the simple HMSC H of Figure 1,
which contains a loop over a basic scenario with messages
’try again’ and 'new attempt’. Suppose we want to weave
some extra-behavior into our system every time a message
’try again’ directly follows a message ‘new attempt’. A sim-
ple way to define a behavioral aspect is firstly to specify a
pointcut with a scenario representing the behavior to detect,
and secondly to specify the expected behavior with another
scenario (called the advice in Figure 2). When weaving is
performed at a syntactic level, since the pointcut described
by our aspect does not appear explicitly in the HMSC of
Figure 1, the description would remain unchanged. At the
semantic level, some executions defined by our HMSC may
contain parts that are matched by our pointcut, and should
then be replaced. The main idea is to compute the HMSC
of Figure 4, whose semantics is exactly the semantics of H
where all join points have been completed by the additional
behaviors specified within the advice. Note that this kind
of weaving cannot be defined as a simple syntactic replace-
ment since it is applied on the semantics of the model, i.e.
on behaviors generated by a HMSC. As we will discuss later
in the paper, the weaving of behavioral aspects may even be
intractable in some cases.

The rest of the paper is organized as follows. Section 2
presents the scenario language used for behavioral weaving
and the general principles of our semantics-based aspect
weaving algorithm. Section 3 introduces some definitions
related to the detection of a pointcut within a scenario.
Section 4 presents several transformations allowing the
application of the weaving operation. Section 5 presents
limitations of our approach. Section 6 compares our

HMSCH| e

Propose

customer server

bMSC
Accept

new attempt

Figure 1: An example of HMSC

Aspect

o] [) (oo] []

Pointcut : Advice :

bMSC P1 bMSC Al

new attempt

try again

Figure 2: An example of aspect

approach with related works, and section 7 concludes this
work and discusses possible extensions.

2. SCENARIOSAND WEAVING

Scenario languages are mainly used to describe behaviors
of distributed systems at an abstract level or to capture re-
quirements in early development stages with a clear,
graphical, and intuitive representation. In this paper, we
will use Message Sequence Charts, a scenario formalism
standardized by the ITU [9]. Note however that MSC and
UML 2.0’s sequence diagrams are very similar languages. In-
deed, UML 2.0 sequence diagrams [14] are largely inspired
by MSCs (a comparison between UML2.0 and MSC-2000 is
given in [6]). Therefore the approach defined in this paper
could also be applied to sequence diagrams. Message Se-
quence Charts (MSC) propose two specification levels. At
the lowest level, basic MSCs (bMSCs) describe simple com-
munication patterns between entities of the system called
instances. All events located on the same instance are to-
tally ordered, and messages are supposed asynchronous. In
Figure 2, bMSC Al represents a behavior where the mes-
sages ‘new attempt’ and ’try again’ are exchanged between
the instances customer and server, and where a local event
’save attempt’ is performed by the instance server. More
formally, bMSCs can be defined as partial orders on a set of
events, labeled by action names and by the names of each
process executing them:

DEFINITION 1 (Basic MSC). A bMSC is a tuple M =
(I,BE,<,A,a, ¢), where I is a set of instances, E is a set
of events (local event, message send, message receive), < is
a partial ordering on E imposed by instances and messages,
A is a set of actions, « : E — A maps events to action-
s, ¢ : E — I maps events to instances. (Slightly abusing
the notation, we will note ¢(E) = {p(e)|le € E} the set of

instances appearing in any set of events E).

We will also define an empty bMSC denoted by M. that
does not contain events. BMSCs alone do not have suf-
ficient expressive power: they can only define finite be-
haviors, without real alternatives. For this reason, MSCs
have been extended with High-level MSCs, a higher level
of specification that allows the composition of bMSCs with
operators such as sequence, alternative and loop. Figure 1
shows a HMSC H with an alternative between the bMSCs
Accept and Retry, where Propose and Accept are composed
sequentially, Retry is in a loop, etc... HMSCs can be
considered as automata labeled by bMSCs. They can be
formally defined as follows:

DEFINITION 2 (HIGH-LEVEL MSC). A HMSC is a graph
H = (N,T,qo0, Qena, M) where: N is a set of nodes, T C
N x M x N is a set of transitions, qo is the initial node,
Qend 15 a set of end nodes, and M 1is a finite set of bMSCs.
For a transition t = (p,l,q) € T, node p will be called the
origin of a transition t and denoted by A_(t), node q will
be called the goal of t and denoted by Ay (t), and | will be
called the label of t and denoted by A(t). Furthermore, we
will require that no transition of H leaves from an end node.

To simplify the notation, we will sometimes depict HMSCs
as automata labeled by bMSC names when the exact con-
tents of bMSCs labeling H is not useful. For example, the
HMSC of Figure 1 can also be represented by the automata
of Figure 5-a.

The notion of sequential composition (noted e) is central
to understanding the semantics of HMSCs. Figure 3 gives
an example of this operator. Roughly speaking, sequential
composition of two bMSCs consists of gluing both diagrams
along their common instance axes. Note that the sequence
operator only imposes precedence on events located on the
same instance, but that events located on different instances
in two bMSCs M1 and M2 can be concurrent in M1 e M2.
Sequential composition can be formally defined as follows:

DEFINITION 3 (SEQUENTIAL COMPOSITION). The
sequential composition of two bMSCs Mi and M is the
bMSC Mie My = (E1L+JE'2,§1.2,a1Ua2,¢1U¢2,A1UA2,-<1
C] <2), where: <ie2= (Sl H <> L‘!’J{(El,ﬁQ) € Ey x E> |

p1(e1) = pa(e2)})”

bMSC A bMSC B
T] [| [1) (ot] [megem | [|
data ack

req
data
ack

bMSC AeB

o | [] [|
data

data

req

Figure 3: Sequential Composition of A and B

To calculate the new partial ordering <ie2, sequential
composition consists in ordering events e; in bMSC M; and
e2 in bMSC M if they are situated on the same instance,
and then compute the transitive closure of this ordering. In

this definition, W is the disjoint union of two multisets, i.e.
an usual union operation where common elements of both
sets are duplicated.

We will also denote by M" the sequential concatenation
of k copies of M, and by M~ the set [J,cy M? with the
convention that M° = M.. When two bMSCs M1, M2 are
such that M1eM2 = M2e M1, we will say that M1 and M2
are independent, and write M1||M2 (this situation occurs
only when ¢(E;) N ¢(E2) = B). A bMSC B will be called
an atom iff there does not exist two bMSCs N # M. and
M # M. such that B = M e N. For a set of bMSCs M,
we will denote by At(M) the set of all atoms of bMSCs in
M. Note that an algorithm to find a decomposition of a
bMSC into atoms can be found in [7]. For a bMSC M such
that M = X, ¢ Xy e --- 0 X, where all X;’s are bMSCs,
XieXse---0X; will be called a factorization of M.

An initial path of a HMSC H is a sequence of transitions
p = ti.ta...tx such that the origin of ¢; is the initial node
qo- If moreover the goal of ¢ is a node of Q.y,q, then p is
called an accepting path. The bMSC \(p) associated to a
path p is the sequential composition of bMSCs labeling the
transitions, A(p) = A(t1) e A(t2)e...e\(tx). The semantics of
a HMSC H is the set of behaviors defined by concatenation
of labels along all accepting paths, i.e. the set of bMSCs
L(H) = {\(p)|p is an accepting path of H}.

HMSC H BMSC

Propose

:

log in
N__ B W
bMSC bMSC
Accept ReTry Y
server
customer L -
try again

|
|

bMSC
ReTry2 woven2

|cusmmer| | server | |cuslomer| | server |

new attempt
save
try agail attempt

new attempt

Figure 4: Result of the weaving

A behavioral aspect is a pair A = (P, Ad) of bMSCs. P is
a pointcut, i.e a bMSC interpreted as a predicate over the
semantics of HMSCs satisfied by all join points. Ad is an
advice, i.e. the new behavior that should replace the base
behavior when it is matched by P. Similarly to Aspect-J,
where an aspect can be inserted ’around’, ’before’ or ’after’
a join point, with our approach, an advice may indifferently
complete the matched behavior, replace it with a new beha-
vior, or remove it entirely. For a given bMSC M and a given
aspect A, we will denote by M ® A the bMSC obtained by
replacing sequentially every occurrence of P by Ad in M (we
will detail in section 3 how this replacement mechanism is

implemented).

Consider a HMSC H and a behavioral aspect A = (P, Ad).
The goal of the semantic-based weaver is to produce a new
HMSC H' where the aspect A is woven every time that the
pointcut is detected within a bMSC M of L(H). More for-
mally, after weaving we should have L(H') = {M ® A|M €
L(H)}. Consider for example the HMSC H of Figure 1 and
the behavioral aspect of Figure 2. The weaving should pro-
duce a HMSC such as H' in Figure 4.

3. MATCHING

Let us now describe how a pointcut can be detected within
a finite bMSC.

DEFINITION 4 (MATCHING). We will say that a point-
cut P matches a bMSC M, which will be denoted by P> M,
if and only if there exists two bMSCs X1 and X> such that
M = X,ePeX,. Furthermore, if X1 is the smallest possible
bMSC allowing a decomposition of M, we will say that the
matching is minimal.

A pointcut P matches a bMSC M k times (denoted by
Pk M) if there are k +1 bMSCs {Xi}icq1. k13 Such that

e M =X ePeXre..0X, 0Pe X,

o Vi, X;ePeX; 1 is a minimal matching. This property
guarantees the uniqueness of matching: successive join
points are detected in sequence at the earliest position
where they appear in a bMSC.

Using this definition of multiple matching, we can now
formally define bMSC weaving. For a behavioral aspect
A = (P,Ad) and a bMSC M, if Pk M, ie. if M is of
the foorm M = X, ePe Xse---0 Pe X1, then the weaving
of M and A is defined as M @ A = X, e Ade Xy 0 --- 0
Ad e Xj41. In the examples of Figures 1 and 2 the point-
cut P1 does not match the bMSC Retry but matches the
bMSC Retry e Retry once, the bMSC Retry e Retry e Retry
twice, etc... A different definition of matching based on
the existence of an injective mapping from P to M was
proposed in [13, 12]. We think that the pointcut detec-
tion approach proposed hereafter can be adapted to work
with this definition. However, to keep the weaving pro-
cess as clear as possible, we will only deal with the simple
matching mechanism of definition 4. Since a bMSC is finite,
an algorithm to detect a pointcut P within a bMSC M is
rather straightforward. In this algorithm, we will denote by
mi (M) C Eum the projection of a bMSC M on a single ins-
tance, and by 7z (M) the restriction of a bMSC M to a
subset of events E C Ejp;. Furthermore, we will consider
that messages from an instance to another never overtake
one another. Note that matching detection remains feasible
without these assumptions, but that it slightly complicates
the algorithm.

For a pointcut P and a bMSC M, the first part of the
algorithm (lines 1 to 4) finds for each instance p of P, se-
quences of events of M located on p such that the labeling
of these sequences is exactly the labeling of the restriction
of P to instance p. In other words, P is detected locally on
instance p by each sequence extracted from M. The second
part of the algorithm (lines 5 to 10) checks if all the local
sequences can be combined to see whether P is contained
or not in M. In such a case, the minimal solution (the so-
lution where locally matched sequences are located as early
as possible on their respective instance) is returned.

Algorithm 1 Matching (P,M)

input: pointcut P = (Ip,Ep,<p,,Ap,ap,¢p),
bMSC M = (In, Ex, <ar,, Aur, anr, dar)

output: E, subset of events matched by P
(E=0if P} M)

—_

: for all i € Ip do

w; = mi(M) /* a word consisting of all events
on instance i */

30 Vi={veFE|Juww =uvvwAa()=a(m(P))}
/* Yv € V;, the events of v have the same
action name as the events of P located on
the instance ¢ */

N

4: end for
5: if Fvi,v2,..., 01 € Vi X Vo X -+ x V|1, such that
oy U U 1) (M) = P then
6: V:min{ul,...,vup‘ GVIX"'X‘/\IP|
' | Mo U-Uv gy (M) =P}
70 return(U,, ¢y vi)
8: else
9: return(()
10: end if

To extend the notion of weaving to HMSCs, we have to
deal with the following problem: for a path p =¢;...¢, of
a HMSC H, when P >? A(p), all occurrences of P are not
necessarily detected on a single transition. Indeed, a part
of P can be detected in the label of a transition A(¢;), and
completed later in the label of another transition A(¢;1x).

Let us again consider the HMSC H in Figure 1, and its
automaton representation in Figure 5-a. Consider also point-
cut P1in Figure 2. The weaver has to detect a message "new
attempt” followed by a message ”try again” within all exe-
cutions of H. To explore the paths of H, we start from the
initial node of H and try to see if P1 matches the transi-
tion labeled by bMSC Propose. Since P1 does not match
Propose and since P1 does not start to match Propose, we
can continue our exploration from node ¢1, and look at the
next transitions, i.e. the transitions labeled by bMSC Accept
and bMSC Retry. P1 does not match Accept and since 2
is an end node, we know that P1 does not match after node
q2. P1 does not entirely match Retry either, but starts to
match because the message "new attempt” is detected at the
end of bMSC Retry. So, the pointcut could match a longer
bMSC. As there are two transitions t1 = (qi, Accept,q2)
and t2 = (qu1, Retry,q1) in H, according to the semantics
of HMSCs, we can consider a matching of P1 in bMSCs
Retry o Accept and Retry e Retry. P1 [Retry e Accept,
but P1> Retry e Retry, and a new potential matching of P1
starts within this second bMSC.

The matching definition indicates how many times a point-
cut P was entirely detected in a bMSC M. In addition to
this definition, we also need information about the matches
that were started in M, and that could eventually be com-
pleted in an extension M e M’. For this, we introduce a
new notion called potential match. Roughly speaking, for a
bMSC M and a pointcut P, the potential match PMp as is
the biggest concatenation of parts of M that are completely
matched by a part of P and could eventually be completed
to obtain a complete match of P in M.

Figure 6 shows an example where pointcut P2 matches

Propose

Accept Accept

Accept Retry
a) b)

Figure 5: a) Automata-like representation b) HMSC
with context

bMSC M once. M can be written X; e P2 ¢ X5, but P2
starts to match the ”end” of M. Indeed, if we add bMSC N
to M, P2 matches M e N three times, and each of these new
matchings involve events of M. The part of M which parti-
cipates to the two additional matches is a potential match,
and is depicted by the area denoted PMps s in Figure 6.

bMSC M
/l 11 | | 12 | | 13 | | 14 |
B T I R
ST e ™ 1
Y RN X,
' 2
bMSC | /# I [a]
Potential Match
PM oy |

bMSC N:allows additional matches if added to M

Lo 1w !

| L J[]
m3

Pointcut : bMSC P2
Lo T 10w J[w |
ml

n2

m3

Figure 6: An example of Potential Match

A potential match indicates that currently started match-
ings have to be studied on longer executions, and that the
paths studied can be extended to obtain a longer bMSC
where P matches.

The weaving of an aspect A = (P, Ad) into a base HMSC
H can be decomposed into two main phases. The first
phase consists of detecting join points, and the second phase
rewrites them. The main difficulty of weaving resides in the
detection: we have to identify all parts of the base HMSC
semantics where join points may appear without unrolling

the potentially infinite set of behaviors it generates. In
the approach proposed hereafter, detection mainly consists
of transforming the original HMSC H into an equivalent
HMSC Himp (i.e. L(H) = L(H¢mp)) in such a way that the
pointcut P only matches a finite number of paths in Hipp.
For the sake of clarity, the transformation process is decom-
posed into smaller problems. Note that with this decom-
position, some parts of the algorithms may be redundant.
We can however combine them to obtain a much more effi-
cient algorithm merging all the transformations and saving
exploration time. After detection, the rewriting algorithm
is trivial, and consists of replacing the occurrences of P in
all transitions of the transformed HMSC.

4. BUILDING MATCHED PATHS

This section presents the detection part of our weaving
process. From a pointcut P and a base HMSC H, the goal is
to transform H into an equivalent HMSC Hyy,p, such that the
weaving consists of rewriting only a finite number of paths
of Himyp. This transformation of H into Himp is performed
with several simple transformations.

The first step (implemented by algorithm 2) is to unfold a
base HMSC H to exhibit all potential matches of a pointcut
and compute an equivalent HMSC H, such that each node
of Hy is a pair (q,C) where ¢ is a node of H, and C is the
potential match of pointcut P for an initial path that ends
at node ¢ (this potential match will hereafter be called the
context of ¢). In this way, for each node with a context,
the context indicates if a currently started match has to be
studied on longer paths. However, as we will see in subsec-
tion 4.2, when P matches an extension of a behavior that
has lead to a context C, C'is not always entirely used by the
matching. For this reason, we have to compute the parts of
the potential match which are actually matched by P for
some paths of Hi. These parts will be called the future
matches contained in C. This second step is performed by
algorithm 3 which transforms an HMSC Hy into an equi-
valent HMSC Hy, such that each node of Hy is a triple
(¢,C,F), where (q,C) is a node of Hy and F is a future
match contained in C. So, in each node the future match
indicates if a currently started match of the context will
actually end on longer paths. Figure 9 shows an example
of transformation from an HMSC H to another HMSC H.
Note however that this transformation has some limitations,
that are described in section 5.

Algorithm 4 allows the resolution of problems related to
the loops in a HMSC (subsection 4.3 and 4.4): as soon as a
HMSC Hy contains at least one loop ¢ such that all nodes of
¢ have a non-empty future, the weaving cannot be performed
without suitable permutations of bMSCs. Finally, when al-
gorithm 4 terminates successfully, algorithm 5 (subsection
4.5) builds the set Py, of minimal acyclic paths where the
pointcut matches. The weaving process finally consists of
replacing these paths by a woven transition to obtain the
woven HMSC H ® A (algorithm 6).

4.1 Stepl: Potential matches

The first transformation, implemented by algorithm 2, is
roughly speaking an unfolding of the base HMSC H. This
algorithm transforms a HMSC H into an equivalent HMSC
H, such that each node of Hy is a pair (¢, PM) where ¢
is a node of H, and PM is the potential match of point-
cut P (called context) for an initial path that ends at no-

de ¢. For instance, for a pointcut P and an initial path
p = (q0, M1,q1).(q1, M2,q2).(q2, M3, q3), we will build the
nodes (qO,ME),(ql,PMp,Ml),(qz,PMp,Ml.Mz), and
(q3, PMp,m1err2ens3). These nodes can only be found one
after another. The first pair (node, context) created is ob-
viously (g0, M:). Then we can compute PMp pr1 and build
the node (g1, PMp,ar1). To compute the potential part
PMp ariens2 of node g2, it is not necessary to entirely consi-
der M1: considering the context PMp 1 of node g2 created
previously is sufficient, since PMp e =
PMP,PMp,M10M2- Finally, to compute PMP,Ml.Mz.Mg, we
also use a previously discovered context attached to node
q2, that is to say, PMp rienm2, and we simply compute
PMp,prip arienraena- This way, all reachable contexts can
be built inductively from the initial node. To build the pos-
sible contexts of a node g, it is not necessary to study all
initial paths that end at node ¢, but only the contexts al-
ready computed that are attached to a predecessor of g. This
is the approach used by algorithm 2. Since this algorithm is
just an unfolding of the initial graph, it is obvious that the
set of executions generated by H and H+ are equivalent.
Note however that this algorithm terminates if and only if
the number of potential matches for each node of H is finite
(NV is finite by definition), which this is not always the
case. This problem will be developed in section 5.

For the pointcut P1 in Figure 2, algorithm 2 transforms
the HMSC H in Figure 5-a into the HMSC Hy in Figu-
re 5-b where M. represents the empty bMSC and PM a
bMSC with a single message "new attempt” from the ins-
tance customer to the instance server. The context asso-
ciated with ¢1 for path p = (qo, Propose,ql) is M, since P1
matches Propose neither fully nor partially. For any path
ending with transition (ql, Retry,ql), the context associa-
ted to ¢l is PM since P1 starts to match the message "new
attempt”.

Algorithm 2 Context(P,H)
input: pointcut P, HMSC H = (N, T, qo, Qena, M)

output: HMSC H: = (N+, T+, q+, Qend+,M+)
1: M+ = Ma q+o = (qoyME)

2: CurrentStates = {q4, }, futureStates = {),

3 Ny ={q4}, T+ =0

4: while CurrentStates # () do

5: for all ¢+ = (q,M,) € CurrentStates and t =

(¢,M,q) €T do

6: 4y = (¢, PMpr,en)

7 if ¢/, ¢ N then

8: futureStates = futureStates U gy
9: Ny =Ny Ud,,

10: end if

11: 4 = (Q-HM:qu)

12: if t+ ¢ T+ then

13: Ty =Ty Uty

14: end if

15: end for

16: CurrentStates = futureStates,futureStates =)
17: end while

18: andJr = {(n,M) EN+ | n e Qend}

19: return Hy = (N+,T+,q+0, Qend+7M+)

4.2 Step2: Future matches

For a pointcut P and two bMSCs M and M’, the context
PMp, s is not always entirely used when P matches Me M.
Consider for example the bMSC M and the pointcut P2
in Figure 6, and the bMSC M’ in Figure 7. The bMSC
M o M' is depicted in Figure 7 and we can see that the part
of the context C' = PMp, r which is actually used when P
matches M e M', only consists of a message 'm1’. This part
of a context C, will be called the future match of context C'
when M’ follows, and it will be denoted FMp.c -

bMSC M.M'
i e e v
RN X,
ml
\>¢.\m3. P2
4
Context C | PE—— ‘km/g X
of M \m', , [2] 2
omsc | A w ‘ P2
Future Match R :!, ,,,,,,,,,,,,
of C 2 3
if M' follows —»
b:l n4 X3
f—
1
\m>¢.\m3. P2
\- I -/
bMSC M
|n||rz||13||14|
n4 = m3
] B—
"y m2 -
E—
I I

Figure 7: An example of Future Match

Similarly, for a peculiar node ¢+ = (¢, C) of a HMSC H,
the part of C' that will be used to find a join point depends
on the path that may start from q. If g+ € Qenay, it is
obvious that the future match associated to the node (g, C)
is M., since no extension of a path ending in ¢4 is possible.
If g+ € Qena,, then the part of C' that is matched by a
pointcut depends on the transitions that follow. Even if the
number of paths starting from a node ¢4 and ending on an
end node can be infinite, the set of possible future matches
can be defined inductively as follows:

DEFINITION 5. Let Hy be a HMSC (with context), P be
a pointcut, and q+ = (q,C) be a node of Hy. A future
match associated to node q+ is a subset F(q+) of C defined
as follows:

1. F(q+) = M. qu-‘,— € Qend+’
2. F(q+) = FMpem U(CNF') if qr ¢ Qendy, and

if there ezists a node ¢, = (¢',C") and a transition
t=(q+,M,q,) € Ty such that F' is a future match of
!

ds-

Let us discuss the second item of this definition. The ele-
ment that appears in FMp ¢, is the part of the context C'
which is actually matched if the bMSC M follows. However,
some other events of C' can be matched with a longer bMSC,

but these events necessarily appear in the future match F’
associated to ¢/.. So these other events are contained in
CNnF.

According to this definition, algorithm 3 that computes all
possible futures matches for a contextual HMSC immediate-
ly follows. This algorithm transforms a HMSC H. into an
equivalent HMSC Hy such that each node of Hy is a triple
(¢, C, FM) where (q,C) is anode of Hy, and F'M is a future
match for context C. Like algorithm 2, the transformation
implemented by algorithm 3 is roughly speaking an unfold-
ing of H;, and hence produces an equivalent HMSC. The
main difference is that this unfolding starts from end nodes.

Consider the HMSC H and the pointcut P in Figure 8.
Figure 9 presents H as an automaton labeled by bMSC
names, and the HMSCs H, and Hyx obtained by applying
algorithms 2 and 3. In Hy, C1 is the context of node ¢;.
C1 = X, and after each transition (q1,Y,q1), C1 remains
unchanged. In Hy, node (¢1,C1) is duplicated with two
different future matches, as the part of bMSC X that will
be used to match P is not the same when Z immediately
follows X and when at least a copy of Y is inserted between
X and Z. Figure 10 shows another example of a HMSC H
obtained from the HMSC H in Figure 5.

Note that if algorithm 2 terminates, then algorithm 3 al-
so terminates. Indeed, if the number of potential matches
is bounded for a HMSC H and a pointcut P (condition
of convergence for algorithm 2), then the number of future
matches is also bounded because a future match is always a
subset of a potential match.

Algorithm 3 Future(P,Hy)
input: pointcut P,
HMSC H+ = (N+7 T+7 940> Qend+) M+)
output: HMSC Hy = (Nx,Tx,qxy, Qendy, Mx)

P My = M+, Qendx = {(ny M, Me)|(n, M) €e QendJr}

: CurrentStates = Qena, , futureStates = 0,

: Ny = CurrentStates, Tx =)

while CurrentStates #) do
for all gx = (q,C,F) € CurrentStates and t+ =
((qlv Ol)v M7 (qa C)) € T+ do

6 F' = FMpci U (C'NF)
T g% =(¢,C", F')

8: if ¢\ ¢ N« then

9: futureStates = futureStates U ¢’
10: Ny =Ny Udk,

11: end if

12: tX:(qlvaqu)

13: if t>< ¢ T)(then

14: Ty =Tx Uty

15: end if

16: end for

17: CurrentStates = futureStates, futureStates = ()
18: end while

19: qxo = (q07M67M6)7

20: return Hy

4.3 Unbreakable loops

From a pointcut P and a HMSC H, we have built a HMSC
H whose nodes contain a context and a future. As we wan-
t to isolate the join points into a finite number of paths of

HMSC H Pointcut :
bMSC P
[o]
1
Y
bMSCZ¢ bMSC Y ¢
Co 0= 1) (Lo J0 e]
t 2 i 1
A

Figure 8: A HMSC

Figure 9: Transformation of H into Hy

Figure 10: HMSC Hy related to the HMSC H, in
Figure 5

a transformed HMSC, the next thing to do is to rewrite
Hy into an equivalent HMSC where the number of paths
starting from nodes with an empty future M. and ending on
nodes with also an empty future is finite. Algorithm 5 builds
the set Py, of these paths and defines them more formally.
This set P, ensures that P matches entirely bMSC A(p) as-
sociated to any path p of P, a certain number of times,
and that a potential matching is not initiated from this
path.

However, algorithm 5 cannot be directly applied on Hy. If
H contains at least one loop ¢ such that all nodes of ¢ have
a non-empty future, then the algorithm diverges. Consider,
for example, the HMSC in Figure 10: there is an infinite
number of paths starting and terminating with an empty
future: Retrye Retrye Accept, Retrye Retrye Retrye Accept,
etc...

So, before using Algorithm 5, we have to break the cy-
cles of Hy that loop infinitely on nodes with non-empty
future. Let us denote by Cr, the set of elementary cycles
of Hy and UCw, the set of “unbreakable” elementary cy-
cles, i.e. cycles for which algorithm 5 generates an infinite
set of paths. Formally, we have UCn, = {c = t1.t2..tx €
Ca Vi€ {l..k}, FM(A_(t;)) # M.}. Sometimes, breaking
a cycle just consists of splitting a bMSC labeling a transi-
tion into smaller parts, so that an empty future appears. For
instance, in Figure 10, the transition t = (gx,, , Retry, qx,,)
can be split into two transitions t' = (gx,,, Retryl, gnew)
and t" = (qnew, Retry2,qx,,) such that Retryl is a bMSC
with a single message ’try again’ and Retry2 is a bMSC
containing a single message 'new attempt’. After this trans-
formation, one can easily note that the future of node gnew
is the empty bMSC M..

However, things are not always so easy. Consider for ex-
ample HMSC Hj of Figure 11: pointcut P3 matches an infi-
nite number of bMSCs (X1X2, X1Y1X2, X1Y1Y1X2, ..),
but for each of these matched bMSCs, the events of Y1 as-
sociated to the loop are never matched by P3. Algorithm 5
cannot be applied to a HMSC containing this kind of cy-
cle because there is an infinite number of paths starting
and ending at nodes with empty future. Since bMSCs X1
and Y1 are independent, a possible solution is to rewrite
the HMSC of Figure 11 into an equivalent one, where the
loop on Y1 is performed before bMSC X'1. We obtain the
HMSC H3' in Figure 11. Note that within this new HMSC
the matching of pointcut P3 no longer involves an infinite
number of occurrences of Y1. Let us now try to formalize
this transformation, and see whether it can be applied in a
systematic way to solve loop problems.

DEFINITION 6. Let Hx be a HMSC augmented with po-
tential and futures matches, P be a pointcut. Let UCH, be
the set of unbreakable cycles of Hy . An unbreakable gene-
rator of Hyx and P is an acyclic path p = t1...tr of Ht
that:

e starts from a mnode with an empty future, i.e.,
F(A_(t1)) = M.

e ends on a node with empty future, i.e. F(Ay(tr)) =
M.

e never passes through a node with empty future other
than A—(t1) and A+(tx), i.e. Vi € 2.k, F(A_(t;)) #
M.

Pointcut : bMSC P3
[v]
o]
\V

1

HMSC H3

bMSC X1

Figure 11: A loop problem solved with a permuta-
tion

e crosses an unbreakable cycle of Hy i.e 3j € 2..k,c =
th...ty €UCH, such that _(t;) € U;c, , A= ()

o PoF \(p)

Let P.(Hx) be the set of unbreakable generators of Hy.
Any unfolding of an unbreakable loop in an unbreakable ge-
nerator produces a new path where P matches, and that
does not pass through a node with empty future. The main
idea behind the algorithm that follows is to check whether
there is an equivalent HMSC up to permutation of indepen-
dent bMSCs that does not contain unbreakable generators.

4.4 Breaking generatorswith permutations

So far, we have identified a problem related to acyclic
paths that are connected to a loop where a pointcut matches
but that do not pass through a node with an empty future.
In this situation, weaving is not just a simple replacement
of a finite set of paths by a woven expression. The main
objective is then to find if there is a transformation of pro-
blematic paths into equivalent sequences of transitions such
that loops systematically pass through a node with emp-
ty future. We will say that a loop is splittable if it passes
through a node with empty future, and we will say that
a loop is null — match if an initial node of the loop has
an empty future. This section provides a solution for cases
where unbreakable cycles are disjoint, i.e. Ve =t1...tg,c =
ity € UCh,, Uiey p A () N U;ey, A= (t5) = 0. This
transformation is better described using regular expressions.

DEFINITION 7. A regqular ezpression on an alphabet of

atoms Y a¢ is an expression of the form E ::= o.E | (E)* |
El1+ E2 | M., where o € ¢ is an atomic bMSC, (E)*
denotes iteration, and E1+ E2 is an alternative.

Regular expression and finite automata have the same ex-
pressive power. Moreover, from a regular expression we can
compute an automaton generating the same language (using
Brzozowski’s algorithm [8]), and from an automaton, we can
compute an equivalent expression (using a reduction algo-
rithm). Hence, we can manipulate indifferently regular ex-
pressions on bMSCs or HMSCs, and get back to the other
model. For a given regular expression E, we will call Hg
the HMSC generating the same set of scenarios, and for
a given HMSC H, we will call Ex the equivalent regular
expression on bMSCs. For details about this well-known re-
lation between automata and regular expressions, interested
readers may consult [8], chapter 2.

Similarly to what is done for HMSCs, we can associate
a context to an expression F = X ... X}, just by comput-
ing the potential match of a pointcut P in X; o --- e X.
For any sub-expression E' = X;...X; of E, we can al-
so compute a future match Future(E') similarly to what
have already been proposed for HMSCs: Future(E') =
FMp g x; 1e.%,-

Let p = t1.t2....t; be an unbreakable generator, connec-
ted to a set of disjoint unbreakable cycles C' = {c1,ca,...ci}.
We can associate to p an expression

Ep = Xi1.. -X1k1 (YH .. .qul)*.Xm .. -X2k2-(Y21 .. .Y2q2)*
o (Y Yog) Xt - Xon,

where all X;; and Yj;’s are atoms, and that generates
the same set of behaviors as A(t1) @ --- @ A(t;1) ® A(c1)” o
Atir41)e---oX(ck) @ A(t;i)®---®A(ty), where for all i;,j €
1.k, Ay (ti;) = A=(cj)- Note that this expression is never of
the form E1 + E2.

Consider for instance the HMSC H3 and the pointcut P3
in Figure 11. The path p = (¢x,, X1, qx,)(@x,, X2, qx,) 1s
an unbreakable generator since the cycle ¢ = (gx,, Y1,qx,)
is connected to p and it does not contain a node with empty
future. Each bMSC of H3 is an atom. So, we can associate
to p the expression E, = X;.(Y1)". X>.

The idea behind the following algorithms is to rewrite
these expressions up to permutation of independent atoms
so that cycles become splittable or null-match. The new ex-
pressions can then be used to compute a new HMSC without
problematic paths. Consider again the HMSC H3 and the
pointcut P3 in Figure 11. The expression E, = X1.(Y1)".X»
is equivalent to the expression E, = (Y1)*.X;.X, for which
the path p = (qxo, X1,4x,)(@x1, X2,4x,) is no longer un-
breakable.

We will use several types of permutations:
Let E = X;.X>...X); be a regular expression on a set
of bMSCs. A simple permutation is to exchange the re-
spective order of two bMSCs when possible, i.e. FE can
be rewritten into an equivalent regular expression E' =
X1.Xo... Xip1.Xi ... X whenever X;4; and X; are inde-
pendent. Indeed, when two bMSCs M and N are indepen-
dent, then M e N = N e M, and this property extends to any
sequence of bMSCs. In the same way, if E contains loops, a
loop can be moved upward (or forward) in a string if all the
bMSCs it contains are independent from all atoms that are
overtaken. Finally, two loops can be permuted if they are
independent.

When two regular expressions E and E’ are equivalent
we will note E ~ E’. For a given expression E on a set of
atoms X 4¢, we will denote by [E] its equivalence class, i.e.
the least set of expression on X,; containing E such that
Ve € [E],Ve' ~e,e’ € [E]. In addition to the permutations,
we can use a classical property of regular expressions such
as a(ba)“bc = (ab)*abc = ab(ab)*c to find the equivalence
class of an expression E. Finally, When two expressions are
equivalent, then their iterations are also equivalent. Let note
that for any expression E, since the definition of equivalence
never unfolds any starred expression, [E] is finite and can
be effectively computed.

DEFINITION 8. Let Ev, E> be two reqular expressions over
an alphabet ¥ of bMSCs, generating words in two languages
Ly CX" and Ly C X*. The left quotient of E1 by E» is the
reqular expression E1/E> that generates words of Li/Ls =
{w e X" |Fv € Ly ANw.v € L1 }.

The right quotient of Ei by Es is the reqular expression
E1\E> that generates words of L1\L> = {w € ¥*|3v € L2 A
vaw € L1},

The complement of an ezpression E is an expression E
that generates words of ¥* — L.

These definitions of quotients and complements are useful
for the definition of the replacement of a sub-expression by
another, which is central in the weaving process.

DEFINITION 9. Let H = (N, T, qo, Qend, M) be a HMSC,
E be a regular expression over M*, and E' be an equiva-
lent regular erpression over ¥ = M U At(M). The HMSC
obtained by replacement of E by E' in H will be denoted
Hg g, and is the HMSC Hgnew associated with the reqular
expression

Enew = (Ex /(E.M")).E'.(Ex\(M".E))U(ExgNM*.E.M~)

This definition of replacement can be used to replace an
unsplittable expression E by a splittable expression E' ev-
erywhere in the semantics of H. We can also use this de-
finition to replace one specific occurrence of an expression
E, corresponding to an unbreakable generator p. To do so,
it is sufficient to label differently the bMSC associated with
each transition (i.e ensure that V¢, ¢’ € T, A(t) # A(t') even
if the bMSCs are isomorphic). With this convention, the
replacement of an expression E), rewrites only a single path
of Hy with all its connected unsplittable loops.

Note that for all generators p of a HMSC Hy, since all
expressions e in [E,] generate the same scenarios, all HMSCs
obtained by replacing an expression e € [E,] by another
expression e’ € [E,] are equivalent.

For a behavioral aspect A = (P, Ad), and a HMSC Hy
augmented with potential and future matches computed from
a HMSC H and the pointcut P, we compute the set Py, (Hy)
of unbreakable generators of Hy, and the set Pexp of the
associated expressions. Then, if for all E, € Pezp, there
is an expression e € [E,] in which all starred subexpressions
of e are either splittable or null-match, then there exists a
HMSC Hipmp equivalent to Hy that does not contain infinite
path passing infinitely often through non-empty futures. If
not, the weaving cannot be performed. Finally, when Hiy,p
can be computed, each expression E, related to a unbreak-
able generator p is replaced by the splittable or null-match
expression found. The replacement of unbreakable genera-
tors is implemented by Algorithm 4.

Algorithm 4 Permutations(Hx,UCw,,)

input: a HMSC Hy with contexts and futures

UCH, , set of unbreakable cycles

output: a HMSC Hy,, without unbreakable genera-
tors

1: Compute P, (Hx), set of unbreakable generators

2: Pexp={E,|p € Pu(Hx)}

3: Compute Ep, regular expression associated to H
4: for all E, € Pexp do

5: Compute [E}].

6: if Pe € [E,] such that Ve connected to e, ¢ is splittable

or null-match then

T Weaving cannot be performed ; STOP

8: else

9: Choose e with splittable or null-match cycles
10: Rep = RepU {(Ep,e)}
11: end if
12: end for

13: for all (E,,e) € Rep do
14: /* replace E, with e in Eg */
(Eu/(Ep.M")).e.(Eu\(M".Ey))

15: Ey =
17+ (Bu N M- E,. M)
16: end for
17: Hiypmp = Hpg, /* compute the HMSC equivalent to

the expression Ep*/
18: return(Hemp)

Note that some generators do not have equivalent ex-
pressions with splittable or null-match cycles. Consider the
HMSC H and the pointcut P in Figure 12. The path p =
(@x0, X1,@x1)(@x1, Y, @x2)(@x2, X2,qx,) is clearly an un-
breakable generator. The bMSCs X; and X are atoms and
the bMSC Y can be split into two atoms Y, and Y}, where Y,
is a bMSC with a single local event ’a’ on instance I1 and Y
is a bMSC with a single local event ’b’ on instance 3. An ex-
pression associated to path pis Ep = X1.Y,.Y;.(Y,.Y3)". Xo.
The equivalence class of E, contains neither a splittable nor
a null-match cycle. The only way to obtain an empty future
is to consider the expression E, = (¥3)".X1.X».(Y,)". How-
ever, B, ¢ [E,], and even if it is equivalent to Ep, Ej, is not
a regular expression anymore. So, the HMSC of Figure 12
cannot be transformed into an equivalent HMSC to avoid
unbreakable generators.

45 H,., and woven HM SC

So far, if algorithms 2, 3 and 4 have succeeded, we have
obtained a HMSC Hyy,p, such that all loops pass through a
node labeled with an empty future. The goal of Algorithm
5 is to build a finite set P,, of paths of Hgpp such that
Vp € P, the pointcut P matches exactly k times A(p). Prm.
contains all join points that may appear in the semantics
of Himp. Hence, the weaving only consists of a rewriting of
paths in P,.

More specifically, Py, is the set of paths of a HMSC Hipp
such that for each path p of Pp,:

i) p starts from a node with future match equal to M.,

ii) p terminates on a node with future match equal to M,

iii) All other nodes of p are labeled by future matches dif-
ferent from M.

Pointcut : bMSC P

Figure 12: Impossible weaving

iv) 3k € N such that P matches the bMSC A(p) associated
to p k times.

We know that after algorithm 4, all loops participating
in a match pass through at least one node labeled with an
empty future. So, for a HMSC Hy,,, obtained using Algo-
rithms 2, 3 and 4, each path of P,, is acyclic, and P,, is
finite. The construction of P,, is performed by algorithm 5.

Now that we have detailed how to transform a base HMSC
H into a new equivalent HMSC Hy,,, and identified all join
points in a finite set Py, of paths of Hiy,p, the only remaining
work is to replace all parts matched by the pointcut with the
advice. As for permutations, this can be performed through
a rewriting of a regular expression. Algorithm 6 below de-
scribes the overall weaving process.

5. LIMITATIONS

The algorithms described in section 4 have some inherent
limitations. Semantic weaving is not always a tractable pro-
blem: for some HMSCs and some pointcuts, there might be
no way to build a HMSC generating the woven semantics.
Hence, the algorithms described in section 4 do not always
work. This section identifies sufficient conditions on point-
cuts and HMSCs so that our algorithms terminate with a
correct result.

The first limitation of our approach is a termination pro-
blem for Algorithm 2. From a HMSC H, Algorithm 2 builds
a HMSC H, where the nodes of H are transformed into
nodes containing a context (a potential match). Since the
number of nodes of the HMSC H is finite, the algorithm
terminates if and only if the number of potential matches is
finite.

Applying algorithm 2 on the HMSC of Figure 5-b genera-
tes a new HMSC that exhibits only two different contexts:
M. and PM. Consider now HMSC H4 and pointcut P4
in Figure 13. For this case, the size of contexts can grow
infinitely, and it is impossible to build a finite HMSC with
a finite set of contexts. From node (qo, M), the potential
match obtained in M. & G contains a single local event ’a’

Algorithm 5 BuildP(P,Hp)
input: pointcut P,
HMSC Hiymp = (MmpyTtmpy 0t mp s QETLdtmp?'thp)'

output: P, set of matched paths.

I P = {(ax,M,q%) € Timp | Flgx) = F(gk) = Mc A
3k €N, Po* M}

2: Path = {(qx, M,q%) € Temp | Flgx) = Mc A F(gy) #
M.}

3: while Path # () do

4: FuturePath =0

5: for all p = ty.t2...t, € Path do

6: for all (g, M,q,) € Tump such that g, = A ()

do

7 if F(q,) = M. then

8: Pm =Pm U (p.t)

9: else

10: FuturePath = FuturePath U (p.t)

11: end if

12: end for

13: end for

14: Path = FuturePath
15: end while
16: return P,

Algorithm 6 Weave(H,A)

input: a HMSC H-(N, T, g0, Qcna, M),
a behavioral aspect A = (P, Ad)
output: a woven HMSC H’.

1: H+ = Context(P, H)

2: Hy = Future(P,H)

3: compute UCx,

4: if Ve, € UCq, , c and ¢’ are disjoint then
5: Hymp = Permutations(Hy ,UCH)

6: Pm = BuildP(P, Himp)

7. for all p € P, do

8: Compute E,

9: Find the minimal factorization x1ePezxy---e Pexy

of E,

10: E,:=zi0Adex; e Ad ez
11: Htmp = Hth{E‘p\E"p}
12: end for
13: Return Hipmp
14: else

15: Weaving cannot be performed ; STOP
16: end if

(bMSC A1l). From the node (go, A1), the potential match
relating to Al e G contains two local events ’a’ (bMSC A2),
and from the node (qo, An), (An contains n local events ’a’)
the potential match relating to An e G contains n + 1 local
events 'a’ (bMSC An+1). From a node and a context, there
is always a way to find an extension to transform a potential
match into a complete match, but this extension creates a
new and bigger potential match than previously.

Note that the problem is not due to the algorithms, and is
really intractable: for HMSC H4, and aspect A = (P4, Ad4)
the semantics of weaving is a set of behaviors containing
scenarios of the kind Ad4™.A1",n € N. This expression
is not a regular expression on a set of bMSCs, and hence
cannot be represented by a HMSC.

Pointcut :
bMSC P4

Advice :
bMSC Ad4

11 12

bMSC A3

TUU

Figure 13: An example where algo. 2 does not ter-
minate.

To avoid the problem of infinite number of contexts, we
will only use connected bMSCs as pointcuts, for which the
possible number of bMSC potential match is finite. A bMSC
M is connected if and only if there does not exist two bMSCs
M1 and M2 (different from M.) such that M = M1 e M2
and M1||M2. For example, in Figure 2, the bMSCs P1 and
Al are connected, whereas in Figure 13, the bMSC P4 is
not connected (P4 = Pa e Pb with Pa a bMSC with only a
local event ’a’ and Pb a bMSC with only a local event 'b’,
and Pal|Pb).

An interesting property is that for a HMSC H and an
aspect A = (P, Ad), if the pointcut P is connected, then
the number of potential matches generated by H is bound-
ed. We do not give here a complete formal proof that of
this property but only the main idea of the demonstration.
Consider Figure 14 where a pointcut P is depicted (the same
pointcut as in Figure 6). It is clear that for this pointcut and
for any H, there exist only three possible potential match-
es noted PMy, PM> and PMs. Let us call potential part
a beginning of match into a potential match. For instan-
ce, the potential match PM; contains two potential parts:

one, noted PP; in Figure 14, with the two first messages 1
and 2; the other, noted PP», with the last message 1. The
main idea is to show that, in the general case, the size of
a potential part PP, is always strictly smaller than a po-
tential part PP;. In your example, the potential part PP
contains only one message whereas PP; contains two mes-
sages. Since the size of potential parts in a potential match
is strictly decreasing, when the pointcut is connected, the
number of potential matches is bounded.

Another limitation is that the treatment of unbreakable
generators is restricted to situations where unbreakable cy-
cles are disjoint. With this situation, loops have the same
properties as atoms in an expression, and the permutation
are more or less permutations over finite words. The per-
mutation algorithm could be extended as long as the equiv-
alence class for an expression remains a finite set of expres-
sions.

Pointcut : bMSC P

Lo J e J0ws Jw |
ml

Potential match : PM

|n||12||13|

T PP,
*’ PP,

.
Potential match : PM , Potential match : PM 3

‘|”||u||[3| 0
‘_m‘; o ml

Figure 14: A bounded number of potential matches.

6. RELATED WORK

Clarke [2] uses UML templates to define aspects. The
question addressed by her work is more the specification of
aspects than the weaving process into non-aspectual models,
but our semantic-based weaver can be easily adapted to this
work to keep the advantages of the two approaches.

Similarly to our approach, Whittle and Araujo ([17] and
[1]) represent behavioral aspects with scenarios. Aspectual
scenarios are modeled as interaction pattern specifications
(IPSs introduced in [5]) and are composed with specification
scenarios. The weaving process defined in [17] composes
scenarios with instantiation and ad-hoc composition oper-
ators. The weaving process proposed by [1] is performed
into two steps. The first step is to generate state machines
from the aspects and from the specification. The weaving
process is then a composition of these state machines. How-
ever, in these two approaches, the detection of join points is
not automated: users have to specify them with a binding
relation between an aspect and a specification. Moreover,
they do not address specification scenarios defining infinite
behavior. Another difference is that none of these scenario-
based weaving address the weaving at the semantic level as
we propose here.

More generally, in [3] and [4], Douence et al. are interested
in event pattern matching, which is close to our approach.
A significant difference is that they use a monitor to perform
event pattern matching at runtime on a program execution,

whereas our weaving is made statically at a modeling level.

The aspect model and in particular the mechanism to
identify join points (the pointcut definition language) plays
a critical role in the applicability of the aspect-oriented me-
thodology. According to Kiczales [11], the pointcuts defi-
nition language probably has the most relevant role in the
success of the aspect-oriented technology but most of the
solutions proposed so far are too tied to the syntax of the
programs manipulated.

Ostermann et al. [15] try to address this problem by
proposing a static joint point model that exploits informa-
tion from different models of program semantics. They show
that this model of joint points increases the abstraction level
and the modularity of pointcuts.

Note however that the semantics matching is not only
a problem studied in the aspect community, but has also
met considerable interest in the community of concurrency
and verification. Muscholl and Al ([12],[13]) have studied
the problem of matching for Message Sequence Charts, and
shown some limits to the matching problem. For example,
they have shows in [13], that it is undecidable whether the
behavior of a HMSC H is included within the behavior of
a HMSC H'. This result means that a behavioral weaving
using the full HMSC language as a definition of pointcut is
not possible. This is why we had to limit the expressiveness
of our pointcut language as explained in Section 5.

7. CONCLUSIONS

This paper has proposed a definition of behavioral aspect
weaving. Behaviors and aspects are defined using Message
Sequence Charts and the weaving is performed at the seman-
tic level. More precisely, an aspect defines a part of behavior
that should be replaced by another one every time it appears
in the semantics of the base specification. This approach suf-
fers from several limitations: the matching process can only
be performed if each join point appears inside a bounded
fragment of a behavior. We have shown that this is always
the case when pointcuts are defined with connected bMSCs.
Another limitation is that the base HMSC should not ex-
hibit two non-disjoint cycles where the pointcut matches.
This second property is not a structural property of the
base HMSC, and can only be checked during the weaving
process. When it holds, we have a procedure to rewrite the
base HMSC H into an equivalent HMSC H' using unfolding
and commutations. The HMSC H' obtained is such that
the semantics weaving H ® A simply consists of a syntac-
tic weaving in transitions of H'. Note that the property on
loops is only a sufficient condition to apply the proposed
algorithm. It does not mean that weaving is impossible for
specifications that do not fulfill the loop condition. This has
to be considered for further research. Another extension of
this work is an improvement of the aspect description to
deal with more abstract scenarios, or with different defini-
tion of matching (using for example the definition of [13]).
Finally, we are currently implementing our matching and
weaving algorithm within the UMLAUT model transforma-
tion framework.

8. REFERENCES
[1] J. Araujo, J. Whittle, and Kim. Modeling and
composing scenario-based requirements with aspects.
In Proceedings of RE 2004, Kyoto, Japan, September
2004.

[2] S. Clarke. Composition of Object-Oriented Software
Design Models. PhD thesis, Dublin City University,
2001.

[3] R. Douence, P. Fradet, and M. Siidholt. A framework
for the detection and resolution of aspect interactions.
In Proceedings of GPCE’02, LNCS. Springer, 2002.

[4] R. Douence, O. Motelet, and M. Siidholt. A formal
definition of crosscuts. In Reflection’01, pages 170-186,
2001.

[5] R. B. France, D.-K. Kim, S. Ghosh, and E. Song. A
uml-based pattern specification technique. IEEE
Transaction on Software Engineering, vol.30(8),
193-206, March 2004, 2004.

[6] O. Haugen. Comparing uml 2.0 interactions and
msc-2000. In Proceedings of SAM 2004, pages 69-84.
LNCS 3319, 2004.

[7] L. Hélouét and P. Le Maigat. Decomposition of
Message Sequence Charts. In Proceedings of
SAM2000, Grenoble, Juin 2000.

[8] J. Hopcroft and J. Ullman. Introduction to Automata
Theory, Languages, and Computation.
Addison-Wesley, Reading, Massachusetts, 1979.

[9] ITU-TS. ITU-TS Recommendation Z.120: Message
Sequence Chart (MSC). ITU-TS, Geneva, September
1999.

[10] I. Jacobson and P.-W. Ng. Aspect-Oriented Software
Development with Use Cases. Addison-Wesley, 2004.

[11] G. Kiczales. The fun has just begun. Keynote of
AOSD’03, 2003.

[12] A. Muscholl. Matching specifications for Message
Sequence Charts. In Proceedings of FoSSaCS’99,
LNCS 1578, pages 273-287, 1999.

[13] A. Muscholl, D. Peled, and Z. Su. Deciding properties
for message sequence charts. In Proceedings of
FOSSACS’98, pages 226-242. Springer-Verlag, 1998.

[14] OMG. Uml superstructure specification, v2.0. OMG
Document number formal/05-07-04, 2005.

[15] K. Ostermann, M. Mezini, and C. Bockisch.
Expressive pointcuts for increased modularity. In
Proceedings of ECOOP’05. Springer LNCS, 2005.

[16] A. Rashid, A. M. D. Moreira, and J. Araijo.
Modularisation and composition of aspectual
requirements. In proceedings of AOSD’03, pages
11-20, 2003.

[17] J. Whittle and J. Araijo. Scenario modelling with
aspects. IEE Proceedings - Software, 151(4):157-172,
2004.

