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Abstract. Where object-oriented languages deal with objects as de-
scribed by classes, model-driven development uses models, as graphs of
interconnected objects, described by metamodels. A number of new lan-
guages have been and continue to be developed for this model-based
paradigm, both for model transformation and for general programming
using models. Many of these use single-object approaches to typing, de-
rived from solutions found in object-oriented systems, while others use
metamodels as model types, but without a clear notion of polymorphism.
Both of these approaches lead to brittle and overly restrictive reuse char-
acteristics. In this paper we propose a simple extension to object-oriented
typing to better cater for a model-oriented context, including a simple
strategy for typing models as a collection of interconnected objects. Us-
ing a simple example we show how this extended approach permits more
flexible reuse, while preserving type safety.

1 Introduction

From the perspective of the data structures involved, model-driven computing
can be seen as a progression from object-oriented computing. Models are, in
essence, composed of objects linked together using first-class bidirectional rela-
tionships, where the structure of the objects and the relationships between them
are typically defined by a MOF, or MOF-like, metamodel. The presence of these
relationships has the effect that model structures are much more tightly coupled
than object structures.

For this reason, it is hardly surprising that the majority of approaches to
developing languages for manipulating models have adopted formalisms based
on those found in object-oriented programming languages.

The study of languages for manipulating these model structures is active.
In 2001, the OMG issued an RFP soliciting languages for defining model trans-
formations, as mappings between models. In response, many languages have
been developed, using variously logic-based[10], pattern-based [13], and graph-
transformation [14] approaches. Concurrently, a number of efforts are being un-
dertaken to develop or extend programming languages to better deal with models
as data structures [2,17].



The vast majority of these efforts have chosen to use type systems developed
for use within object-oriented development. However, as discussed in [8] and
mentioned in [16], the use of such type systems in a model-oriented context
renders programs somewhat brittle with respect to changes in the metamodel.

Most importantly, however, is that these systems do not truly allow the user
to specify their transformations or programs in terms of models and types of
models, but rather in terms of objects within models. This is counter-intuitive
to the user.

To resolve this, we discuss necessary extensions to object-oriented typing to
deal with the relationships defined in MOF metamodels. Using this extended
notion of object typing, we propose a definition of a model type, including a
definition of substitutability of model types and a discussion of reflection and
inference of model types.

In section 2, we provide a background on typing and models and the role of
typing in model-driven engineering, including a motivating example. Following
this, in section 3 we present a definition of model types with a rule for model type
substitutability, including an illustration using the example. Section 4 discusses
the implication of this definition for the related issues of model type reflection
and model type inference. Section 5 discusses a number of related works from
the domains of both MDE and type systems.

2 Background

Generally speaking, a type can be understood as a set of values on which a
related set of operations can be performed successfully. Once types have been
defined, it is possible to use them in operation specifications of the form: if
some input of type X is given, then the output will have type Y. Type safety
is the guarantee that no run-time error will result from the application of the
operation to the wrong object or value. A type system is a set of rules for
checking type safety (a process usually called type checking since it is often
required that enough information about the typing assumptions has been given
explicitly by the designer or programmer, so that type checking becomes mostly
a large bookkeeping process).

Type checking is said to be static when it is performed without program exe-
cution (typically at compile-time or bind-time). It aims at ensuring once and for
all that there is no possibility of interaction errors (of the kind addressed by the
type system). Not all errors can be addressed by type systems, especially since
one usually requires that type checking is easy; e.g., with static type checking it
is difficult to rule out in advance all risks of division-by-zero errors.

Type systems allow checking substitutability when services are combined: by
comparing the data types in a service interface, and the data types desired by its
caller, one can predict whether an interaction error is possible (e.g. producing
a run-time error such as "Method not understood"). Conformance is generally
defined as the weakest (i.e., least restrictive) substitutability relation that guar-
antees type safety. Necessary conditions (applying recursively) are that a caller



must not invoke any operation not supported by the service, and the service
must not return any exception not handled by the caller. Conformance has a
property called contravariance: the types of the input parameters of a service
must conform in opposite to the types of its result parameters.

2.1 Example

We consider as a motivating example a simple model transformation that takes
as input a state machine and produces a lookup table showing the correspon-
dence between the current state, an arriving event, and the resultant state. The
input metamodel for this transformation is presented in figure 1. The output
metamodel, not shown, can be assumed to be a simple database language, but
in any case we will focus on the conformance of the input type.
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Fig. 1. Simple State Machine Metamodel

The choice of which language is used to implement the transformation, and
even of which paradigm of language to use, is immaterial. Also immaterial is the
choice as to whether the input and output types of the transformation are derived
(inferred) or explicitly declared. (This choice is discussed further in section 4).

Having given this metamodel as the nominal input for the transformation, we
consider that there are a number of variants of state machines whose instances
might also be interesting as potential inputs to the transformation.

Initially, we might consider changing to the multiplicity of the “initial” refer-
ence from 0..1 to 0..*, for state machines with multiple start states (Figure 2), or
from 0..1 to 1..1, mandating that each state machine have exactly one start state
(Figure 3). Alternatively, we might apply the composite pattern by adding an
inheritance of State by StateMachine, for composite state machines (Figure 4).
Finally, we might consider the addition of a FinalState class as a new subclass
of State (Figure 5).
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Fig. 2. State Machine Metamodel with multiple start states
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Fig. 3. State Machine Metamodel with mandatory start states
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The question is, then, does the initial transformation written for models
conforming to Figure 1 still work with models conforming to these variant meta-
models?
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Fig. 5. With Final States

2.2 Objects, And Their Types

Although research is ongoing into the fine details, the basic notions of objects
and the type systems that describe them are by now reasonably well-understood
[1]. As mentioned briefly above, the main difference between the objects seen
in classical object-oriented systems and the objects used within models is the
presence of (potentially) bidirectional relationships.

In MOF 1.x, these were defined as binary associations, which in turn con-
tained association ends, which defined characteristics such as the upper and
lower bounds, uniqueness and orderedness of the association in a given direc-
tion. Navigabilities were specified by the addition of references.

In MOF 2.0, relationships are defined as a pair of references, each of which
defines the details formerly kept by association ends. These references may link to
another reference, thus forming a bidirectional relationship. This change entails a
subtle change of expressivity but, in effect, yields the same type of relationships.

2.3 Models And Metamodels

The MOF specifications, unlike those of UML, have never included a formal
definition of either a model or a metamodel. By convention, and intuitively, the
latter has usually been used as a synonym for a MOF package. In many MOF
1.x implementations, a model was defined as a “package instance”, a term not
defined in the specifications, but an intuitive concept that could contain objects
instantiated from any class within a given MOF package. While intuitive, these



definitions were somewhat limiting for situations where cross-"model” references
were common.

MOF 2.0 has introduced the notion of an extent, and made explicit the fact
that extents may contain objects instantiated from classes from different pack-
ages. This recognises the increasing abundance of models which reference other
models; these are intuitively, and may now be considered as, single models. How-
ever, this leaves us without a firm idea of a metamodel, since we can no longer
be guaranteed that all objects within an extent will possess a type contained by
a single package.

Beyond these conventions, there are two general approaches to defining a
concept of a model. The first, that taken by UML, is to designate some class as
being a root node for the model, whereby the model thus consists of instances of
that class and all objects contained by (or perhaps reachable from) that object.
However, this does not work in the case of models which lack a single root
element, as is common in cases such as models containing tags or models of, for
example, collaborative processes[12]. The alternative and more general approach,
the one evident as Extent in MOF 2.0, is to define a model as just a set of objects.

Taking this second definition, the obvious choice for the type of a model is
the set of the object types of all the contained objects. The details of such a
definition are given in the next section.

2.4 Typing in Model-Driven Engineering

The application of typing in model-driven engineering is seen at a number of
levels.

At a fine-grained level, languages that manipulate and explore models need
to be able to reason about the types of the objects and properties that they
are regarding within the models. For this level of granularity, an object-based
approach to typing is probably more natural and appropriate.

From a broader perspective, there is also a need to reason about the types
of artifacts handled by the transformations, programs, repositories and other
model-related services. It is at this level that an appropriate type system should
allow us to reason about the construction of coherent systems from the services
available to us. While it is possible to define the models handled by these services
in terms of the types of the objects that they accept, we argue that this is not
a natural approach, since these services intuitively accept models as input, and
not objects.

Having established that services might accept and produce models, it follows
that they should specify a type for these models. Furthermore, having established
these type declarations, it is also useful to find a semantic for substitutability
that allows the maximum possible flexibility and reuse, while still assuring that
the services do not receive models whose elements they do not understand.

For example, the sample transformation described in section 2.1 can be said
to accept state machines as input, and should accept as many of the noted
variants as possible, provided that at no point the transformation attempts an
action on the model that is not possible.



3 Model Types and Model Type Substitutability

In this section we provide a simple structure for the type of a model and dis-
cuss the conditions under which one model type may be substituted for another.
This includes an analysis of the dependence of model typing upon object typ-
ing, and the extensions necessary for object typing to function correctly in this
new context. We demonstrate the application of model types using the example
presented earlier.

3.1 Model Types

The previous section defines a model type as the set of object types for all the
objects contained in a model. However, this is a definition based on reflection,
and the aim of model types is rather targeted at transformation or model-based
programming languages, where reflection will not be the dominant manner of
determining types. Therefore, we need to redefine our model type more basically.

So what structures do we have? Normal MOF reflection upon an object
yields a MOF class. While literature on type systems, such as [11], suggests that
a type is not the same thing as a class, MOF is something of a special case. Since
MOF is a signature language, i.e. unable to specify behaviour, a MOF class is
in fact more analogous to a type than to a class in type system terminology. We
therefore content ourselves to define a model type as a set of MOF classes (and,
of course, the references that they contain).

In the example presented in section 2.1, the model type required for our
transformation is in essence the metamodel shown in figure 1. In fact, the only
significant difference between model types and metamodels is the structuring
provided by packages and relationships between packages.

3.2 Model-Type Checking

Under what conditions may one model type, i.e. set of object types, be considered
conformant, or substitutable, for another? Quite simply, each object type in the
required set must be “understood” by the candidate set. Clearly, this returns to
a situation of object type conformance.

Object-Type Conformance The presence of relationships, in whichever form,
defined between classes has little effect on the overall approach on the typing
of objects. The structure of an object type remains the same. Indeed, if one
considers a relationship as a mutually dependent pair of references, they do
not differ fundamentallly from the properties seen commonly in object-oriented
systems. There is, of course, a stronger prevalence of cyclic dependencies between
the conformance of classes. For example, consider a class C1 in a relationship
A1, consisting of two references R1 and R2, with another class C2. For a class
C1’ to be considered a subtype of C1, it must participate in a relationship A1’



with a class C2’ that is a subtype of C2, which fact depends on the original
comparison of C1’ and C1.

As has been already presented in [15], there are many possible approaches
to the type conformance of object types in a model-based context, ranging from
the currently-predominant approach based on subclass-based conformance, as
in Java, to structural conformance. As is also presented in [15], these must be
extended to ensure that the covariance (for operation return types and prop-
erty types) and contravariance (for parameter types) rules take into account the
structural differences such as multiplicities on associations (using subsumption
and inverse subsumption respectively).

However, to use these approaches when typing a model as a collection of ob-
jects, there are additional requirements that must be met which do not appear
when evaluating object type conformance in isolation. Specifically, there are cer-
tain rules pertaining to the preservation of the identity of classes when assessing
conformance of relationships. These rules are most evident in resultant axioms
such as:

1. A reflexive relationship may not be satisfied by a non-reflexive relationship.

2. Similarly, a non-reflexive relationship may not be satisfied by a reflexive
relationship.

Having added this constraint, the choice remains open as to which algorithm
one uses when assessing object type conformance. So as to avoid confusing our
examples by using metamodel extension techniques, we will proceed using the
structural conformance proposed in [15], with appropriate extensions for the
above constraint.

Model-Type Conformance Using our object type conformance rule, the ques-
tion of whether a required model type may be satisfied by a provided model type
is determined by checking whether for each required object type, there exists a
conformant object type in the provided type.

It is very important to note here the reason for avoiding a reflective definition
of model type. In particular, in requiring that each object type exist in the
provided model type, we do not mandate that there exist an instance of each
object type. Put more simply, there is a difference between the absence of an
object of a given type in a model and the absence of the object’s type in the
model’s model type. The model type of a state machine without transitions
would still contain the Transition class.

This difference poses no problems if we remain within the domain of trans-
formations or programs with manifest typing, but may become problematic for
dynamically determining the type of a model using reflection, or for a language
that determines its input or output model types using inference. These problems
are discussed in section 4.

3.3 Details and Demonstration

The approach for testing model type conformance discussed above may be sum-
marised by the following steps:



— For each class (object type) in the required model type, find all conformant
object types in the provided model type. Using structural conformance from
[15], this means that

e Each operation on the required class must be satisfied by a conformant
operation according to covariance on return type, contravariance on pa-
rameter types and appropriate subsumptions of multiplicities

e Each property on the required class must be satisfied by a conformant
property according to covariance on type, subsumption on multiplicity,
etc

— Eliminate conformant provided types which violate the identity rules de-
scribed above

— Ensure that for each class in the required model type, there remains at least
one conformant type in the provided model type.

More formally, conformance of a provided model type MT,, to a required model
type MT, may be defined as follows.

First, we establish the object type conformance relation image(MT,..types —
MT, types), such that:

VCp : Class € MT,, YC, : Class € MT,,
C, € image(C, )<=
YO, : Operation € C,.allOperations(),
30,, : Operation €Cp.allOperations() |
Op.name = O,.name, and
Oy type < O,.type (return type covariance), and
Op.multiplicity C O,.multipicity (return type multiplicity subsumption),
and
VPa, : Parameter € O,.ownedParameter,
3Pay, : Parameter € O,.ownedParameter |
Pa, type < Pa,.type (parameter type contravariance), and
Pa, .multiplicity C Pay,.multipicity (parameter multiplicity subsump-
tion (inverse))
VPr, : Property € Cy.all Properties(),
3Pry : Property € Cp.allProperties() |
Pr,.type < Pr,.type (property type covariance), and
Pr,.multiplicity C Pr,.multipicity (property multiplicity subsumption),
and
Pr,.isReadOnly = false = Pry.isReadOnly = false

Having established this relation image(MT,.types — MT,.types), check the
identity constraints described above, by ensuring that:

VC, € MT,, image(C,) #  (each required class has a conformant)
VC,. € MT,. VP, € C..all Properties(),
P, .type = C, = image(P,.type) = image(C,), (reflexive properties are sat-
isfied by reflexive properties) and



P,.type # C,. = image(P,.type) Nimage(C,) = () (non-reflexive properties are
satisfied by non-reflexive properties)

Applying these steps to the example metamodels provided in section 2.1, we
obtain the model type conformance relation shown in Table 1.

| r conforms to — |Simp1e|Mu1t—St|Mand—St|Comp|Final|
Simple (Figure 1) YES | YES NO NO |YES
Multiple-Start (Figure 2) | NO | YES NO NO | NO
Mandatory-Start (Figure 3) | YES | YES YES | NO |YES
Composite (Figure 4) YES | YES NO |YES |YES
With-Final-States (Figure 5)| YES | YES NO NO |YES
Table 1. Model Type Conformance Relation for State Machine Variants

In this relation we can see that the addition of new classes (FinalState)
and the broadening of multiplicity constraints have not broken the subtyping
relationship, but that tightening of multiplicities has. It is notable also that
composite state charts are found to be subtypes of simple state charts, although
the reverse might have been more intuitive. The effect of using structural con-
formance is seen by the conformance of simple state charts to those with final
states.

4 Further Considerations

Having considered the general idea of types for models and presented an ap-
proach for verifying the conformance of model types, we now proceed to discuss
two related issues, those of model type reflection and model type inference.

4.1 Model Type Reflection

Reflection is one of the key features of model-driven engineering. The ability to
ask an object about what features it provides allows for the creation of generic
tools that work regardless of the metamodel from which the object was instan-
tiated. Many services such as XML and textual serialization and deserialization,
model repositories, and code generators, already make extensive use of object
reflection.

Having added an idea of a model type, it is clearly necessary to consider the
problem of model type reflection. That is, if a user provides a model to a service,
it should be possible to determine the type of the model by looking at the types
of the objects that it contains.

As discussed, the main difficulty with model reflection is the difference be-
tween the presence of an object of a given type within a model and the presence
of the object type in the model’s type. This problem makes it impossible to



simply determine (using object reflection) the object type of each member of the
model and return that as the type of the model.

Intuitively, the problem requires finding all classes that may be associated
with the objects already present in the model. As a general problem, this re-
quires a form of existential quantification, which is something not available in
current MDE tools. In lieu of this, an alternative is to use bounded existential
quantification, such as searching for all referring object types within a given
set of packages, e.g. those already containing object types obtained from object
reflection. This is, however, a partial solution that requires further consideration.

4.2 Model Type Inference

A closely related issue to model type reflection is that of model type inference.

In the example transformation presented earlier, we deliberately did not dis-
cuss how the input model type was determined, in order to remain independent
of the choice of language used for implementing the transformation language.
There are two alternatives for determining this type. In manifest typing, as is
commonly seen in languages such as Java and C#, for example, types are defined
by the user. By contrast, in languages such as ML, types are inferred from the
code written by the user.

One can imagine that a similar approach could be used by a model trans-
formation language. A transformation or program whose definition constructs
models from a limited set of classes might be able to determine its output model
type from the statements creating the objects. Obviously, this has a lot in com-
mon with the reflection problem discussed above, and one would imagine that,
having determined the classes used in the definition, similar techniques might
be used to determine more accurately the complete model type.

While model typing and model type reflection are problems that can be con-
sidered largely independent of the choice of model transformation or program-
ming language, model type inference is clearly not. Inference on transformations
defined using a rule/pattern-based language such as XMorph[7] will require a
different solution to inference on programs defined using a more imperative lan-
guage such as MTL[17].

5 Related Work

The problem of organising models, transformations, programs and other devel-
opment artifacts to form coherent model-driven systems is a field just beginning
to attract attention. In [5], the authors discuss a model bus, for describing model
services and mediating access to them including automation of coercion of models
to ensure compatibility. In [3], the idea is presented of a megamodel, a system or
registry of models and the relations that exist between them, most significantly
those of conformance and representation.

The study of type systems for object systems is a well-researched field. More
recently, a number of works have begun to extend this field towards type systems
for more tightly coupled systems of objects.



In [4], the authors present an extension to Java to provide for first-class
relationships between classes, including a formal definition for the resultant type
system. Their proposal includes a notion of relationship subtyping based on set
membership, which bears a resemblance to the idea of association subsetting
presented in the UML 2.0 Infrastructure.

In [8], the authors present a system for checking the type compatibility of
constraints on object models expressed in Alloy, a language similar in purpose
to OCL. They propose an algorithm using bounding types and base types to
determine whether an expression has meaning with respect to a given object
model. Since this approach is based on the UML class diagram metamodel, which
bears significant structural similarity to that of MOF, this algorithm would apply
straight-forwardly to MOF metamodels.

Both of these works discuss, albeit from different perspectives, the problem
of checking the types of objects defined in the context of an object model that is
more tightly coupled than those traditionally used in object systems. However,
in each case, they consider only the typing of objects, and not of models as a
whole. By contrast, the extension presented here attempts, as much as possible,
to make orthogonal the question of typing the objects within a system, and to
address rather the problem of typing the model as a set of objects. Indeed, our
approach depends upon the existence of an object-typing algorithm that is able
to handle the presence of first-class relationships, and thus these works can be
seen as complementary.

There is also a body of work within the type system community on the
grouping of object types. In [9] and [6], the authors propose respectively “family
polymorphism” and “type groups”. However, although the type structures are
similar to those used in our approach, the problem under study in these works is
one of object typing, particularly of binary and reflective functions, which, due
to the simple type systems currently predominant in model-driven development,
does not pertain to our domain. Furthermore, their approach is, once again,
designed to aid in the typing of single objects (albeit objects whose types are
dependent on other types in a group), and not for typing models as sets of
objects. In light of this, these works might also be seen as complementary, if
MOF models in fact required the sophisticated checks that they provide.

6 Conclusion

The lack of proper mechanisms for typing operations on models such as model
transformations leads to brittle and overly restrictive reuse characteristics. In
this paper we have proposed a simple extension to object-oriented typing to
better cater for a model-oriented context, including a simple strategy for typ-
ing models as a collection of interconnected objects. Using a simple example we
have shown how this extended approach permits more flexible reuse of model
transformations accross various meta-models, while preserving type safety. We
have proposed a simple algorithm for checking the conformance of model types,
independently of any given transformation language. A prototype implementa-



tion of this algorithm is being implemented on the Eclipse/EMF platform, with
the goal of testing its usefulness in several contexts, such as Model-Bus tool
interoperability or Q/V/T transformations.
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