
Model Composition - A Signature based approach

Raghu Reddy, Robert France, Sudipto
Ghosh

Colorado State University
601 S. Howes St.

Fort Collins, CO 80523, USA

{raghu,france,ghosh}@cs.colostate.edu

Franck Fleuery, Benoit Baudry
IRISA

Campus Universitaire de Beaulieu
35042 Rennes Cedex, France

ffleuery@gmail.com,bbaudry@irisa.fr

ABSTRACT
The aspect oriented modeling (AOM) approach provides
mechanisms for separating crosscutting functionality from
other functionality. The AOM models crosscutting function-
ality as aspects and the business functionality as primary
model. The overall system view is obtained by composing
the primary and aspect models. In this paper, we present
a model composition technique that relies syntactic pattern
matching. A model is said to match with another if their
signatures match. A signature consists of some or all prop-
erties of an element as defined in the UML metamodel. The
technique proposed in this paper can be used to detect con-
flicts that arise during composition.

Keywords
Aspect oriented modeling, composition, conflicts, signature,
UML

1. INTRODUCTION
Modern software systems are complex. One of major fac-

tors of software complexity is the need for system developers
to address multiple crosscutting features (e.g., access con-
trol, availability, and error recovery). If the functionality
that addresses these design features is spread across and in-
tertwined with design elements that address other business
features, then the features are said to be crosscutting. The
Aspect-oriented modeling (AOM) approach provides mech-
anisms for separation of such crosscutting functionality from
business functionality.

In the AOM approach, features that crosscut the mod-
ules of a primary (business) model are described separately
in aspect models. The aspect and primary models are de-
scribed using the Unified Modeling Language (UML)[16].
Composition of aspect models and a primary model yields
an integrated design model [5, 13] that reflects the overall
system view. Composition is necessary to identify conflicts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

that may arise as a result of interactions among aspect and
primary model elements.

The composition procedure used in AOM is name based.
For example, if two elements are of the same name, they will
be merged. This may give rise to conflicts. One example of
such conflict is when the two elements have the same name
but may not be of the same element type. Another con-
flict may be when the elements have the same name but the
meta-class of the element may not be the same. Such con-
flicts can be detected by using a signature-based composition
approach instead of a name based approach. Composition
directives [15] can be used to resolve some of these conflicts
involving undesirable emergent behavior. Please see [15] for
more details on composition directives. In this paper, we
provide a signature based technique that uses signatures,
rather than names, to determine matching model elements.

The composition approach provided in this paper is dif-
ferent from our previous work [5, 12, 14] in the following:
(1) we introduce a more general form of model element
matching that is based on the notion of model element sig-
natures, (2) we propose a composition metamodel that de-
scribes static and behavioral properties of composable model
elements. The composition metamodel includes elements
from the UML metamodel, but unlike the UML metamodel,
the composition metamodel contains descriptions of behav-
ior. The metamodel is intended to guide the development
of model composition tools. (3) we provide a brief outline
of the algorithm being implemented for model composition
using kermeta [?].

The rest of the paper is organized as follows. Section
provides a brief overview of our aspect oriented modeling
approach. Section 3 describes the composition meta-model
based on signatures. Section 4 outlines the algorithm for
signature-based model composition. Section 5 illustrates the
composition approach using a simple example. Section 6
presents some related work and section 7 presents the con-
clusions and future work.

2. BACKGROUND

2.1 Aspect Oriented Modeling
In the AOM approach, aspect models are generic (pa-

rameterized) descriptions of a crosscutting feature. The
aspects models consist of structural and behavioral UML
template diagrams [5]. The template notation is adapted
from our pattern specification language called Role-Based
Metamodeling language (RBML)[4]. An aspect model must

be instantiated before it can be composed with a primary
model. The instantiated forms of aspect models are referred
to as context-specific aspects. The instantiation of an aspect
model is determined by bindings, where a binding associates
a value representing an application-specific concept with a
template parameter. Composition directives[?]. Composing
context-specific aspects and a primary model produces an
integrated view of the design.

2.2 Essential Meta-Object Faclitites
Essential Meta-Object Facilities (EMOF) 2.0 has been

proposed by the Object Management Group [10]. EMOF
is a minimal meta-modeling language designed to specify
meta-models. It provides the set of elements required to
model object oriented systems. The minimal set of EMOF
constructs required for the composition algorithm, that are
provided by EMOF are specified in figure 1.

Class

isAbstract:Boolean

TypedElement

NamedElement

name:String

DataType
Property

isComposite:Boolean

Object

container(): Object
equals(Element):Boolean
get(Property):Element
getMetaClass():Class
set(Property, Element)

MultuplicityElement

upper:unlimitedNatural
lower:Integer

Element

owningClass

Type
type

0..1

*

0..1

ownedAttribute

Figure 1: EMOF classes required for composition

All Objects have a class which describe its properties and
operations. An Object extends an Element. The getMeta-
Class() method returns the Class that describes this Ob-
ject. The container() method returns the contianing parent
object. It returns null if there is no parent object. The
equals(Element) determines if the element is equal to this
object instance. The set(Property, Element) sets the value
of the Property to the Element. The get(Property) returns
a List or a single value depending on the multiplicity.

The isComposite attribute under class Property returns
true if the object is contained by the parent object. Cyclic
containment is not possible, i.e. an object can be con-
tained by only one other object. The getAllProperties()
method of the Class returns all the the properties of in-
stances of this Class along with the inherited properties.
The attribute upper and lower of class MultiplicityElement
represents the mulplicities of the associations at the meta-
model level.For example, “0..1” represents lower bound “0”
and upper bound “1”. If the upper bound is greater than
“1” then the property value is null or a single object other-
wise its a collection of objects.

2.3 KerMeta
Kermeta[1] is an open source meta-modeling language de-

veloped by the Triskell team at IRISA. It has been designed
as an extension to the EMOF 2.0[10]. Kermeta extends
EMOF with an action language that allows specifying se-
mantics and behavior of meta-models. The action language

is imperative and object-oriented. It is used to provide an
implementation of operations defined in meta-models. A
more detailed description of the language is presented in [9].

The Kermeta action language has been specially designed
to process models. It includes both OO features and model
specific features. Kermeta includes traditional OO static
typing, multiple inheritance and behavior redefinition/selection
with a late binding semantics. To make Kermeta suitable
for model processing more specific concepts such as opposite
properties (i.e. associations) and handling of object contain-
ment have been included. In addition to this, convenient
constructions of the Object Constraint Language (OCL)
such as closures (e.g. each, collect, select) are also avail-
able in Kermeta.

To implement the composition algorithm we have chosen
to use Kermeta for several reasons. Firstly, the language
allows implementing composition by adding the algorithm
in the body of the operations defined in the composition
metamodel. Secondly, it can be adapted to model processing
and can include the reflection capabilities on meta-models
that are required to implement the algorithm. Lastly, the
Kermeta tools are compatible with the Eclipse Modeling
Framework (EMF) which allows us to use Eclipse tools to
edit, store and visualize models.

3. SIGNATURE BASED COMPOSITION
The composition procedure involves merging correspond-

ing UML diagrams of context-specific aspect and primary
models to produce a composed model using a name based
approach. Conflicts and undesirable emergent behavior can
arise as a result of composing the aspect and primary mod-
els. This can be identified during composition or during
analysis of the composed model. For example, it may be
the case that two classes with the same name may not rep-
resent the same concept or have conflicting properties. The
use of an application domain namespace can help reduce the
occurrences of some naming conflicts, but this is not enough.
Signature-based composition technique helps in identifying
conflicts explicitly during composition.

In signature-based composition, information in model ele-
ments with matching signatures are merged to form a single
model element in the composed model. The signature of a
model element is a set of property values, where the prop-
erties are a subset of properties (attributes and association
ends) associated with the class of the model element in the
UML metamodel. The set of properties used to determine a
signature is called a signature type. For example, the signa-
ture type for an operation can be defined as a set consisting
of the operation name and its sequence of parameters.

Signature Type: {operation (name, {parameter
(name, type)})}
Using the signature type given, the signature for two update
operations with different sets of parameters is written as:
Signature: {update, {(x, int) (y, int)}}
Signature: {update, {(s, String)}}
The properties that define that signature type can vary from
being just the name of the elements to all the constituent
properties associated with the element. In the example given
above, curly braces represent that there may be a set of pa-
rameters. Parentheses represents that the properties are
optional. If there are more properties associated with the
signature type, the number of elements with matching signa-
tures will likely be lesser. For example, the above signatures

would have been a match if the signature type was just the
name of the operation. It will not be a match if the signa-
ture type is defined as operation name and its sequence of
parameters.

Model 2Model 1

name:String
address:String

Customer

...
updateAcct()

name:String

Customer

Account ...

(a) (b)

Figure 2: A simple merge example

Consider the simple example shown in figure 2 in which
a model, contains a class named Customer with attributes
name and, address, (see Fig. 2(a)) and another model, con-
tains a class named Customer with an attribute name and a
reference to an Account object (see Fig. 2(b)). If the signa-
ture type for class is defined as consisting of the properties
name, attributes and association ends, then the two classes
do not match and thus are not merged. Note that, under
the assumption that the signature accurately determines the
classes that represent the same concept, this merge produces
a faulty model: Two classes in a namespace have the same
name but represent different concepts.

If the signature type consists only of the class name prop-
erty then the two classes match and their contents are merged
to form a single class. If a model element property is not
included in a signature then it is subject to its own matching
rules during the merge. So, care should be taken to spec-
ify the signatuare types for all model elements that need to
be composed. In general, the following rules determine how
properties in matching model elements are merged:

• If properties represented by model elements (e.g., class
attributes) have matching signatures then they appear
only once in the containing merged element.

• If a property in one matching element is not in the
other, then it appears in the composed model element.

Using the above rules and signatures for attribute and as-
sociation ends that require exact matches (i.e., each signa-
ture type contains all properties of the element type), merg-
ing of the two Customer classes in Fig. 2(a) and (b) pro-
duces a model with two classes Customer and Account. The
Customer class will have two attributes name and address,
an operation updateAcct() and a reference to the Account
class.

4. COMPOSITION METAMODEL
The composition metamodel describes how signature based

composition can be accomplished. The metamodel shown in
figure describes the static and behavioral properties needed
to support model composition in AOM. In this paper, we de-
scribe the behavioral properties in terms of class operations
and narrative descriptions of the operations. Alternatively,
sequence and activity diagrams can be used to describe the
interactions and activities that take place during composi-
tion.

The core concepts of the composition metamodel shown in
figure 3 can be used to compose any two models. In AOM,

the composition always starts with the primary model being
the initial model. The aspect model are merged with the
primary model. At any given time only one aspect model
is composed with the primary model and the ordering is
determined using the order of composition. The order of
composition can specified using composition directives.

The core concepts shown are described below:

• Element: Element is an extension of the UML meta-
class Element. It is extended by adding the operational
features getMatchingElements(e[]: Element). Other
methods container(), get(property), set(property,element),
getMetaClass() of the EMOF Object class shown in
figure 1 are used by the Element.

• getMatchingElements: This operation takes in a
set of elements and returns an element or set of el-
ements that have the same syntactic type and signa-
ture as the element that invokes it. The syntactic type
check is performed by invoking the getMetaClass() and
the getAllPropeties() method of EMOF Object class.

• Mergeable: This is an abstract class. Instances of
mergeable class are elements that are mergeable. Ex-
amples of mergeable elements shown in the figure are
Classifiers, Operations, and Models.

• merge: This operation merges the element with an-
other mergeable element.

• sigEquals: This operation checks if the element’s sig-
nature is equal to the signature of another element.

• getSignature: This operation gets the signature of
the element based on the signature type.

• Signature: This class is used to obtain the signature
of the mergeable elements. This class is linked to every
mergeable element.

The composition meta-model is primarily used for the de-
velopment of model composition tool. We have implemented
the model composition tool using kermeta. The composition
metamodel classes were added to the kermeta metamodel
and the operational features assoicated with it were imple-
mented using kermeta.

5. COMPOSITION ALGORITHM
The composition algorithm takes in two models and out-

puts the resultant model. In AOM, primary model and as-
pect model as the two models. Composition yields a com-
posed model that in turn will become the primary model
for adding other aspects. The algorithm presented describes
how two models can be composed based on signatures.

The algorithm assumes that the model elements are rep-
resented as objects (instances of EMOF::Object class). This
is necessary becuase the algorithm is written independent of
the model elements. The algorithm uses reflection to obtain
structures of objects. For example, given the figure2a the
algorithm takes a metamodel instance for all the elements
specified. The metamodel instance diagram is shown in fig-
ure 5.

The models are merged only when the elements are of the
same syntactic type and have same signature. The sigE-
quals() is shown as a pre-condition in figure 4. Each type of
model element defines its own procedure for checking equal-
ity of signatures, that is, specializations of Mergeable can
override the inherited sigEquals(). The models are merged
by invoking the merge method. The merge method returns

merge(m:Mergeable)
sigEquals(m: Mergeable)
getSignature()

Mergeable

Signature

getMatchingElements(e[]:Element)

Element

1 *

sigEquals(m: Mergeable)

Operation

sigEquals(m: Mergeable)

Classifier

sigEquals(m: Mergeable)

Model...

main()

Composer

PrimaryModel AspectModel

ComposedModel

Figure 3: Composition metamodel

r1aCustomer:Class

isAbstract = “false”
name = “Customer”

r1aUpParString:Type

name = “String”

r1aUpdate:Operation

name = “update”

r1aUpParName:Parameter

name = “name”

r1aaddAmount:Operation

name = “addAmount”

r1aPropName:Property

name = “name”

r1aPropCust:Property

name = “custID”

ref1aParInt:Type

name = “int”

ref1aUpdate:Operation

name = “update”

ref1UpParName:Parameter

name = “custID”

r1aPropString:Type

name = “String”

ref1aUpParInt:Type

name = “int”

Figure 5: Metamodel Instance for the figure 2a

a new element that is the merge of mergeable element m and
the element on which the merge is called.

The merge method in the algorithm proceeds as follows
for all properties of the objects to merge:

• If the property holds simple types then the property
values should be the same, otherwise a conflict is de-
tected. The conflict needs to be handled explicitly.

• If the property is a composite then the merge method
is invoked recursively on all property values that have
the same signature. The recursive merge call differs
based on the upper bound of the property.

– If the upper bound is equal to 1 the properties
are merged depending on the signature. If the
the signature does not match then a conflict is
detected.

– If the upper bound is greater than 1, then and
each of the collection of object properties will be
checked for matching element properties. If the

property values do not have the same signature
they are added individually to the merged model
element

5.1 Illustrative example

Model 1

Model 1
Model 1

update(name:String)

name:String

Customer

accesses accID: int

Account

Customer

name: String
custID: int

addAmount()
update(name:String)
update(custID: int)

ActAcc CustAcc

(a)

(b)

addAmount
update(name:String)
update(custID:int)

name:String

Customer

accID: int

Account

accesses

ActAcc CustAcc

Model 1

addAmount
update(name:String)
update(custID:int, name:String)

name:String

Customer

accID: int

Account

accesses

ActAcc CustAcc

(c) Signature type is defined as the operation name and its parameter

(d) Signature type is defined as the operation name

Figure 6: A simple example illustrating composition
variants

Consider the simple example shown in figure 6 [] in which

**

Operation sigEquals determines if two model elements should be merged

e1.sigEquals(e2 : ModelElement)

**

// Compare syntactic type and signature

return e1.getMetaClass == e2.getMetaClass and e1.getSignature == e2.getSignature

// e1 and e2 are the model elements that need to be merged

e1.merge(e2 : ModelElement)

precondition : e1.sigEquals(e2) returns true

// create the merged instance in the context of e1

result := e1.getMetaClass.new

// Iterate on all properties of the objects to be merge

// e1 and e2 have same meta-class. So they have same set of properties

foreach Property p in e1.getMetaClass.allProperties

if type of p is primitive

// Primitive type is the basic datatypes like string, int, etc,.

// If an object does not have a value for a property then

// the value val is taken from the other object and vice versa. This is not a conflict

// If neither objects have values then val is null in the merged object.

if e1.get(p) is null or e2.get(p) is null then

result.set(p, val)

else

// if the values are the same then it is ok otherwise a conflict has been detected

if e1.get(p) = e2.get(p) then

result.set(p, e1.get(p))

else

A conflict has been detected

else

// Type of p is not primitive.

// If the property refers to a single object

if the property upper bound is 1

if e1.get(p) is null or e2.get(p) is null then

result.set(p, val) // val is the same as above

else

if sigEquals(e1.get(p), e2.get(p)) then

// If the object e1.get(p) is contained by e1 and same for e2

// (p.isComposite=true) then the objects should be merged, otherwise,

// one is choosen.

// Either one can be chosen because they both have the same signature

if p.isComposite is true then

result.set(p, merge(e1.get(p), e2.get(p)))

else

result.set(p, e1.get(p).clone())

else

A conflict has been detected

else

// The property refers to a collection of objects.

// The merged object should contain property values that are only

// in e1 or only in e2, and the merged version of objects that are in both e1 and e2.

for each value v1 in e1.get(p)

for each matching element v2 in e2.get(p)

if p.isComposite then

result.get(p).add(merge(v1, v2))

else

result.get(p).add(v1.clone())

if no element found

result.get(p).add(v1.clone())

for each value v2 in e2.get(p)

if NO matching element found in e1.get(p)

result.get(p).add(v2.clone())

Figure 4: The merge part of composition algorithm

there are two packages with a model each. The first package
contains Model 1 which contains a class named Customer
with attributes name and, cusID, operations addAmount,
update with a string parameter and, update with an integer
parameter (see Fig. 6(a)). The second package contains a
model, Model 1, which has a class named Customer and a
class name Account. Customer class contains an attribute
name, a reference to an Account object named CustAcc,
and an operation named update with a string parameter.
Account class contains an attribute accID and a reference
to a Customer object named ActAcc (see Fig. 6(b)).

If the model composition algorithm is applied on the pack-
ages, the algorithm will compose the packages based on the
signature type. If the signature type has been defined as
model name, class name, operation name and, parameter
name and type the algorithm will produce the composed
model shown in Fig. 6(c). On the other hand if the sig-
nature type is defined as the model name, class name, op-
eration name without the parameter name and type, the
composition will produce the model shown in Fig. 6(d).
There will be an explicit warning before such a merge is
performed because the parameters do not match. The con-
flict can be resolved by continuing with the default merge
which appends the parameters or by the developer in his or
her own way.

The example given above is fairly intuitive and can be
done manually. In cases where there are a large number of
classes and associations, this becomes extremely complex.
The tool can resolve the problem by composing the models
automatically. The developer can input the signature type
and the composition can be varied based on the signature
type. Since the conflicts are detected during the composition
itself, they can be handled the developer desires.

We have used to tool to compose fairly complex models.
We have applied the tool on a partial banking application
and composed it with a context-specific authorization aspect
to obtain the composed model.

6. RELATED WORK
Grundy[7] proposes an Aspect Oriented Component En-

gineering (AOCE) approach that focuses on capturing con-
cerns that crosscut many components. The approach is
aimed at design and deployment level. The approach uses a
set of UML meta-model extensions to make the aspect in-
formation explicit. The integrated view is a just a view that
has the model elements referring to each other. Composi-
tion in AOCE occurs at run-time. Composition semantics
are specific to the AOCE implementation platform.

The Aspect Modeling Language (AML) [6] is a UML based
notation and is limited to AspectJ language constructs and
the design notation described in UML For Aspects (UFA)[8].
Aspects are specified as packages of the <<aspect>> stereo-
type. Composition semantics follow the AspectJ implemen-
tation of AOP. Since, the AspectJ composition is limited in
scope, the composition semantics for the approach are also
limited.

In the approach proposed by Clarke et al., [2, 3] a design,
called a subject or theme, is created for each system require-
ment. A comprehensive design is created by composing all
subjects; there is no notion of a primary design model sep-
arate from aspect models. Subjects are expressed as UML
model views, and composition merges these views. Com-
position includes adding and overriding named elements in

a model. Conflict resolution mechanisms consist of defin-
ing precedence and override relationships between conflict-
ing elements. Our composition procedure is more advanced
in that we use signatures rather than names and also our
the conflicts during composition can be explicitly handled.

As part of the early aspects initiative, Rashid et al. have
targeted multi-dimensional separation throughout the soft-
ware cycle [11]. Their work supports modularization of
broadly scoped properties at the requirements level to estab-
lish early trade-offs, provide decision support and promote
traceability to artifacts at later development stages. Our
AOM approach complements their approach at the design
level by providing mechanisms for composition and detect-
ing conflicts.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented a composition technique for

composing aspect and primary models that uses signature
based mechanisms rather than name based mechanism. Com-
position of aspect models and a primary model may produce
conflicts and undesirable emergent behavior and this can be
explicit detected by the composition technique. The devel-
oper may choose the composition variants as desired.

We have developed a tool using kermeta to support the
signature based composition technique. The inputs to the
tool are aspect model and a primary model. The output
is a composed model that can be used a primary model
to compose with another aspect. We are currently in the
process of adding composition directives that constrain how
model elements are composed. The result of the signature-
based composition is an integrated model that can be altered
based on the set of composition directives.

We are also developing a prototype integrated toolset that
supports the AOM approach. To date, our work on tool
development has produced the following: (1) A prototype
editor for creating aspect model class diagram templates,
(2) A tool, built on top of Rational Rose, that generates
instantiations from template forms of UML class diagrams
(generic aspects) and (3) A model composer for composing
the primary and context-specific aspect class diagrams.

8. REFERENCES
[1] The KerMeta Project Home Page. URL

http://www.kermeta.org.

[2] S. Clarke and R. J. Walker. Composition patterns: An
approach to designing reusable aspects. In The 23rd
International Conference on Software Engineering
(ICSE), Toronto, Canada, 2001.

[3] S. Clarke and R. J. Walker. Towards a standard
design language for AOSD. In The 1st International
Conference on Aspect-Oriented Software Development,
Enschede, The Netherlands, April 2002.

[4] R. B. France, D. Kim, S. Ghosh, and E. Song. A
UML-Based Pattern Specification Technique. IEEE
Trans. on Software Eng., 30(3):193–206, March 2004.

[5] R. B. France, I. Ray, G. Georg, and S. Ghosh. An
aspect-oriented approach to design modeling. IEE
Proceedings - Software, Special Issue on Early Aspects:
Aspect-Oriented Requirements Engineering and
Architecture Design, 151(4):173–185, August 2004.

[6] I. Groher and S. Schulze. Generating aspect code from
uml models. In Workshop on Aspect Oriented

Modelling with UML, San Francisco, CA, October
2003.

[7] J. C. Grundy. Multi-perspective specification, design
and implementation of software components using
aspects. International Journal of Software Engineering
and Knowledge Engineering, 20(6), December 2000.

[8] S. Herrmann. Composable designs with ufa. In
Workshop on Aspect Oriented Modelling with UML
(held with AOSD 2002), Enshede, Netherlands, 2002.

[9] P. Muller, F. Fleuery, and J. Jézéquel. Weaving
executability into object-oriented meta-languages. In
Proceedings of MODELS/UML 2005 - to appear,
Montego Bay, Jamaica, October 2005.

[10] OMG Adopted Specification ptc/03-10-04. The Meta
Object Facility (MOF) Core Specification. Version 2.0,
OMG, http://www.omg.org.

[11] A. Rashid, P. Sawyer, A. Moreira, and J. Araujo.
Early aspects: A model for aspect-oriented
requirements engineering. In IEEE Joint Intl.
Conference on Requirements Engineering, pages
199–202, Essen, Germany, September 2002.

[12] R. Reddy, R. B. France, and G. Georg. Aspect
oriented modeling approach to analyzing
dependability features. In Aspect Oriented Modeling
workshop held with Aspect Oriented Software
Development conference, Chicago, March 2005.

[13] Y. R. Reddy, R. B. France, and G. Georg. An
aspect-based approach to modeling and analyzing
dependability features. Technical Report CS04 - 109,
Colorado State University, November 2004.

[14] E. Song, R. Reddy, R. France, I. Ray, G. Georg, and
R. Alexander. Verifiable composition of access control
features and applications. In Proceedings of the 10th
ACM Symposium on Access Control Models and
Technologies (SACMAT 2005), Scandic Hasselbacken,
Stockholm, June 2005.

[15] G. Straw, G. Georg, E. Song, S. Ghosh, R. B. France,
and J. Bieman. Model composition directives. In
Seventh Intl. Conference on the UML Modeling
Languages and Applications, Lisbon, Portugal,
October. Springer.

[16] The Object Management Group. Unified Modeling
Language: Superstructure. Version 2.0, OMG,
ptc/03-07-06, 2003.

