

Consignes Hermes – update 2004

Chapter x

Real Time Components & Contracts

1. Introduction

In domains such as automotive or avionics, real-time and embedded systems are
getting ever more software intensive. The software cannot any longer be produced
as a single chunk, and engineers are contemplating the possibility of componentizing
it. Various definitions exist for the notion of software component. We focus here on
Szyperski’s one [SZY 02]: “a software component is a unit of composition with
contractually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by third-
party”. In this vision, any composite application is viewed as a particular
configuration of components, selected at build-time and configured or re-configured
at run-time. A software component only exhibits its provided or required interfaces.
This defines basic contracts between components allowing one to properly wire
them.

In real-time and embedded systems however, we have to take into account many
extra-functional aspects, such as timeliness, memory consumption, power
dissipation, reliability, performances, and generally speaking Quality of Service
(QoS). These aspects can also be seen as contracts between the system, its
environment and its users. These contracts must obviously be propagated down to
the component level. One of the key desiderata in component-based development for
embedded systems is thus the ability to capture both functional and extra-functional

Chapter written by Jean-Marc Jézéquel, Univ. Rennes 1 & INRIA, Triskell Team @ IRISA
with contributions by N. Plouzeau and O. Defour. This work has been partially supported by
the Artist2 Network of Excellence.

properties in component contracts, and to verify and predict corresponding system
properties [REU 03].

A contract is in practice taken to be a constraint on a given aspect of the
interaction between a component that supplies a service, and a component that
consumes this service [MEY 92]. Component contracts differ from object contracts
in the sense that to supply a service, a component often explicitly requires some
other service, with its own contract, from another component. So the expression of a
contract on a component-provided interface might depend on another contract from
one of the component-required interfaces. For instance, the throughput of a
component A doing some kind of computation on a data stream provided by
component B clearly depends on the throughput of B.

It is then natural that people resort to modelling to try to master this complexity.
According to Jeff Rothenberg, “Modeling, in the broadest sense, is the cost-effective
use of something in place of something else for some cognitive purpose. It allows us
to use something that is simpler, safer or cheaper than reality instead of reality for
some purpose. A model represents reality for the given purpose; the model is an
abstraction of reality in the sense that it cannot represent all aspects of reality. This
allows us to deal with the world in a simplified manner, avoiding the complexity,
danger and irreversibility of reality.” Usually in science, a model has a different
nature that the thing it models. Only in software and in linguistics a model has the
same nature as the thing it models. In software at least, this opens the possibility to
automatically derive software from its model. This property is well known from any
compiler writer (and others), but it was recently be made quite popular with an
OMG initiative called the Model Driven Architecture (MDA).

The aim of this chapter is to show how MDA can be used in relation with real-
time and embedded component based software engineering. Building on Model
Driven Engineering techniques, we show how the very same contracts expressed in
a UML [OMG 03] model can be exploited for (1) validation of individual
components, by automatically weaving contract monitoring code into the
components; and (2) validation of a component assembly, including getting end-to-
end QoS information inferred from individual component contracts, by automatic
translation to a Constraint Logic Programming language.

The rest of the chapter is organized as follows. Section 2 details the notion of
contract along the four levels defined in [BEU 99] and illustrates it on the example
of a GPS (Global Positioning System) software component. Section 3 discusses the
problem of validating individual components against their contracts, and proposes a
solution based on automatically weaving reusable contract monitoring code into the
components. Section 4 discusses the problem of validating a component assembly,
including getting end-to-end QoS information inferred from individual component

contracts by automatic translation to a Constraint Logic Programming. This is
applied to the GPS system example, and experimental results are presented.

2. Contract Aware Components: The four levels of Contracts

The term contract can very generally be taken to mean “component
specification” in any form. This specification should tells us what the component
does without entering into the details of how. A contract is in practice taken to be a
constraint on a given aspect of the interaction between a component that supplies a
service, and a component that consumes this service. In real life, contracts exist at
different levels, from Jean-Jacques Rousseau’s social contract to negotiable
contracts. A now widely accepted classification of different kinds of contracts has
been proposed in [BEU 99], where a contract hierarchy is defined consisting of four
levels.

• Level 1: Syntactic interface, or signature (i.e. types, fields, methods,
signals, ports etc., which constitute the interface).

• Level 2: Constraints on values of parameters and of persistent state
variables, expressed, e.g., by pre- and post-conditions and invariants.

• Level 3: Synchronization between different services and method calls
(e.g., expressed as constraints on their temporal ordering).

• Level 4: Extra-functional properties (in particular real-time attributes,
performance, QoS (i.e. constraints on response times, throughput, etc.).

Before detailing these levels, let’s introduce a running example for this Chapter
in the form of a simple GPS receiver. A GPS device computes its current location
from satellite signals. Each signal contains data which specifies the identity of the
emitting satellite, the time of its emission, the orbital position of the satellite and so
on. In the illustrating example, each satellite emits a new data stream every fifteen
seconds.

In order to compute its current location, the GPS device needs at least three
signals from three different satellites. The number of received signals is unknown a
priori, because obstacles might block the signal propagation. Our GPS device is
modeled as a component which provides a getLocation() service, and requires a
getSignal() service from Satellites components. The GPS component is made up of
four components:

• The decoder which contains twelve satellite receivers (only three are shown
on Figure 1.). This element receives the satellite streams and demutiplexes
it in order to extract the data for each satellite. The number of effective data
obtained via the getData() service depends not only on the number of

powered receivers, but also on the number of received signals. Indeed, this
number may change at any time.

• The computer which computes the current location (getLocation()) from the
data (getData()) and the current time (getTime()).

• The battery which provides the power (getPower()) to the computer and the
decoder.

• The clock component which provides the current time (getTime()).

computer decoder

receiver satellite

GPS

receiver satellite

receiver satellite

getSignal()
getData()getLocation()

battery

getPower()

clock

getTime()

Figure 1. The GPS component-based model

2.1. Level 1 - Syntactic Interfaces

The syntactic interface of a component is a list of operations or ports, including
their signatures (the types of allowed inputs and outputs), by means of which
communication with this component is performed.

Generally speaking, a type can be understood as a set of values on which a
related set of operations can be performed successfully. Once types have been
defined, it is possible to use them in specifications of the form: if some input of type
X is given, then the output will have type Y. Type safety is the guarantee that no
run-time error will result from the application of some operation to the wrong object
or value. A type system is a set of rules for checking type safety (a process usually
called type checking since it is often required that enough information about the
typing assumptions has been given explicitly by the designer or programmer, so that
type checking becomes mostly a large bookkeeping process).

+SetChannel(in Channel : int)
+GetData() : Data
+DataReady() : bool

Receiver

+ListenTo(in Channel : int)
+Activate(in value : bool)
+GetData() : Data
+DataReady() : bool

-SatTTime : Data
-SatPosition : 3DPoint
-SatDistance : double
-DistancePrecision : double
-IsActive : bool

Decoder

11

+SetEstimatePosition(in point : 3DPoint)
+ConfigureDecoders()
+GetPosition() : 3DPoint

-Position : 3DPoint
-EDE : double
-/ Speed : double
-/ Heading : double
-Precision:{BestEffort, BestTrack, PowerSave }

LocationComputer

+UpdateOrbit()

-Channel : int
-Number : int
-OrbitalCoordinates : Orbit

Satellite

1

12

1

32

+GetLevel() : int
+IsOnMainSupply() : bool

-BatteryLevel : int
-MainSupply : bool

PowerManagement

11

+GetTime() : Date
+SetTime(in date : Date)

Clock

1
1

3DPoint

1
{ordered}

*

Figure 2. Level 1 contracts in the form of a UML Static Diagram

Static type checking is performed at compile- (or bind-) time and ensures once
and for all that there is no possibility of interaction errors (of the kind addressed by
the type system). Not all errors can be addressed by type systems, especially since
one usually requires that type checking is easy; e.g., with static type checking it is
difficult to rule out in advance all risks of division-by-zero errors.

Type systems allow checking substitutability when components are combined:
by comparing the data types in a component’s interface, and the data types desired
by its environment client, one can predict whether an interaction error is possible
(e.g. producing a run-time error such as “Method not understood”).

Conformance is generally defined as the weakest (i.e., least restrictive)
substitutability relation that guarantees type safety. Necessary conditions (applying
recursively) are that a caller must not invoke any operation not supported by the
service, and the service must not return any exception not handled by the caller.
Conformance has a property called contravariance: the types of the input parameters
of a service must conform in opposite to the types of its result parameters.

At first, the contravariant rule seems theoretically appealing. However, it is less
natural than covariance (where parameter types conform in the same direction),
often encountered in realworld modeling (animals eat food, herbivores are subtypes
of animals, but they eat grass which is a subtype of food, not a supertype!), and is
indeed the source of many problems. The most surprising one appears with
operations combining two arguments, such as comparisons. If the contravariant rule
is used, the type associated with equal for Child instances is not a subtype of the one
of equal for Parent instances. As soon as this kind of feature is considered (and they
are common), the contravariant rule prevents a subtyping relation between Child and
Parent (see [CAS 95] for more details and solutions).

The conclusion is that as soon as one wants a minimum of flexibility for defining
type conformance between a provided interface and a required interface, static type
checking is no longer a simple bookkeeping process. So level 1 contracts do not
have a very different nature that contracts of other levels. In some cases, they can be
defined with restrictive rules to allow simple tools to process them, in other cases
one could be interested in having more flexibility at the price of more complex tools
for static checking, or even rely on runtime monitoring. A concern in component-
based design of embedded systems is that runtime monitoring of interface types may
be desirable for building reliable systems, and because one cannot completely trust
component implementations. If components are deployed at run-time, the check for
substitutability must be performed with available computing resources.

2.2. Level 2 - Functional Properties

Functional properties are used to achieve more than just interoperability. Level 2
contracts are about the actual values of data that are passed between components
through the interfaces, whose syntax is specified at Level 1 (the preceding section).
Typical properties of interest are constraints on their ranges, or on the relation
between the parameters of a method call and its return value. Formalisms at level 2,
for instance the OCL (Object Constraint Language dedicated to UML [WAR 98]),
provide means for describing partial functions or relations by means of invariants,
pre- and postconditions. It is also customary to include at level 2 properties of a
persistent state of a component. In level 2 contracts, method executions are
considered as atomic, which means they are appropriate for components with
sequential or totally independent interactions.

There exist a number of tools using constraints for run-time monitoring which
generate exceptions in case of violation of interfaces at run-time. This is the case for
example in Eiffel, for JML annotations of Java and for several tools for .NET. Run-
time monitoring assumes that level 2 contracts are executable, and might incurs a

nontrivial cost. Many frameworks use assertions in a test phase, often using a
constraint language.

Some research tools already exist for the static checking of level 2 contracts,
based for instance on the use of theorem provers. Such tools can be useful for
applications requiring a high level of trust. Component producers might want to use
them to provide highly dependable component implementations conforming to
contracts.

The main problem of level 2 specifications is their applicability to distributed
systems, due to the absence of means to express interactions as non atomic or to
express explicit concurrency. This can be improved by considering additional level 3
specifications. In practice, level 2 specifications can be used mainly for a single
level of components and when non-interference between transactions can be
guaranteed by construction (in general by sequentializing access to components).

2.3. Level 3 - Synchronization Properties

Level 3 contracts are about the actual ordering between different interactions at
the component interfaces. Level 3 specifications provide the following facilities:

• Description of transactions (input/output behaviors) not necessarily as
atomic steps.

• Explicit composition operators avoid the obligation to provide an
explicit input/output relation taking into account all potential internal
interactions. This has the further advantage that a restricted use of a
component does indeed allow to derive stronger properties (only the
actually occurring interactions need to be taken into account, not all
hypothetical ones).

• Many level 3 formalisms (see [MCH 94] for a survey) allow one to
express explicit control information, which makes the expression of
complex, history dependent input/output relations much easier;

Indeed, formalisms at level 3 need explicit composition and communication
primitives. Most useful in this context are UML hierarchical state machines
(StateCharts) and Sequence Diagrams. The expression of interfaces of complex
components is made possible due to explicit composition. In this case, the
verification of component properties and of system properties is of the same nature.
However, system verification can easily become intractable for systems consisting
of many complex components (cf. the state explosion problem).

 : LocationComputer : Decoder : Receiver

DataReady

GetData

return Data

DataReady:=DataReady()

Figure 3. Level 3 contracts in the form of a UML Sequence Diagram specifying an ordering
of events

2.4. Level 4 - Quality of Service

A quality of a system can in general be considered as a function mapping a given
system instance with its full behavior onto some scale. The scale may be qualitative,
in particular it may be partially or totally ordered, or the scale can be quantitative, in
which case the quality is a measure. The problem of realizing systems that have
certain guaranteed qualities, also known as their quality of service (QoS), involves
the representation of such qualities in design models or languages and techniques to
implement and analyze them as properties of implemented system instances [AAG
01].

While some definitions of QoS include concepts such as security, where the
scale is not a measure, we here focus on quantitative measures, especially on those
related to time. In this area, there is a common further classification of system
requirements, distinguishing between hard real-time requirements, where the quality
of any implemented system instance must lie in a certain interval, and soft real-time
requirements.

For instance, the GPS application contains several time out constraints: The
provided getLocation() service must ensure that it is completed in a delay less than
30s, whereas the getData() service must be completed in less than 25 s for example.

However, it is obvious that the time spent to acquire data from the decoder,
denoted TethaD, has a direct impact on the global cost in time of the getLocation()
service, denoted ThetaC. Not only ThetaC depends on ThetaD, but also on the

number of active receivers, denoted Nbr, because of the interpolation algorithm
implemented by the Computer component. ThetaD and Nbr are two extra-functional
properties associated to the getData() service provided by the Decoder component.
The relation that binds these three quantities is:

ThetaC = ThetaD + Nbr * log (Nbr) . (1)

Each receiver demultiplexes a signal, in order to extract the data. This operation
has a fixed time cost: nearly 2 seconds. In addition, the demultiplexed signals must
be transformed into a single data vector. This operation takes 3 s. If ThetaR (resp.
ThetaS) denotes the time spent by the receiver to complete the getDatal() service
(resp. the satellite to complete its getSignal() service), then we have the two
following formulae:

ThetaR = ThetaS + 2 ,

ThetaD = max (ThetaR) + 3 .

(2)

(3)

Embedded systems designers are usually facing many challenges if they strive
for systems with predictable QoS. One key issue is that encapsulation of QoS
properties inside a component is very difficult. In order to be useful in component
based systems, contract languages must include facilities for expressing properties
typical of components, that is, their context dependencies. A component provides a
service under a given contract only if the surrounding environment offers services
with adequate contracts. Such dependencies are much more complex than the
traditional pre/postcondition contract scheme of object oriented programming. In
the most general case, a component may bind together its provided contracts with its
required contracts as an explicit set of equations (meaning that offered QoS is equal
to required QoS). Therefore, a component oriented contract language should
include constructs for:

• expression of QoS spaces (dimensions, units);

• primitives bindings between these spaces and the execution model
(bindings to observable events, conversion from discrete event traces to
continuous flows, definition of measures);

• constraint languages on the QoS spaces (defining the operations that can be
used in the equations, form of these equations).

An example of such a language is the QoSCL [DEF 04] that extends the UML2.0
components metamodel with the following notions:

• Dimension: is a QoS property. This metaclass inherits the operation
metaclass. According to our point of view, a QoS property is a valuable
quantity and has to be concretely measured. Therefore we have chosen to
specify a means of measurement rather than an abstract concept. Its
parameters are used to specified the (optional) others dimensions on which
it depends. The type of a Dimension is a totally ordered set, and it denotes
its unit. The pre and post-conditions are used to specify constraints on the
dimension itself, or its parameters.

• ContractType: specializes Interface. It is a set of dimensions defining the
contract supported by an operation. Like an interface, a ContractType is
just a specification without implementation of its dimensions.

• Contract: is a concrete implementation of a ContractType. The dimensions
specified in the ContractType are implemented inside the component using
the aspect weaving techniques (see section 3). An isValid() operation
checks if the contract is realized or not.

• QoSComponent extends Component, and it has the same meaning.
However, its ports provides not only required and provided interfaces
which exhibit its functional behaviour, but also ContractTypes dedicated to
its contractual behaviour.

Component

Interface

Operation

Constraint

QoSComponent

TypeParameter

provided required

ownedOperation

typeformalParameter

body, pre, post

ContractType

Dimension

provided required

UML2.0 QoSCL

contract

service ownedOperation

Contract
«implements»

1

*

Figure 4. The QoSCL metamodel

With the QoSCL metamodel, it is possible to specify contracts, such as the TimeOut
contract useful for our GPS, as an Interface in any UML case tool:

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« operation »
delay

+return:double

+dimension

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« operation »
delay

+return:double

+dimension

Figure 5. The TimeOut contract with QoSCL

The QoSCL metamodel handles three specific aspects of contracts: dependency,
composition, and adaptative behaviour. The dependency is the core of this work, and
our main contribution to enhance existing extra-functional contracts specification
languages, such as QML. QoSCL makes it also possible to model a composite
contract via generalization association. At last, like any abstract functional model, it
is possible to implement different behaviors for the same Operation, such as a
Dimension. Thus, the renegotiation of a contract can be implemented according to
its environment. This behavior can be specified thanks the UML2.0 sequence
diagrams, activity diagrams or state machine for instance.

3 Implementing contract-aware components

QoSCL allows the expression of functional and extra-functional properties in a
software component. The declared properties are useful to the software designer
because this gives predictability to a component's behaviour. However, this
predictability is valid only if the component implementation really has the behaviour
declared by the component. This implementation validity is classical software
validation problem, whatever the kind of contracts used [MEU 98].

These problems are usually addressed by two families of techniques. A first
family is based on testing: the system under test is run in an environment that
behaves as described in a test case. An oracle observes the behaviour of the system
under test and then decides whether the behaviour is allowed by the specification. A
second family of techniques relies on formal proof and reasoning on the composition
of elementary operations.

Standard software validation techniques deal with pre/post-condition contract
types [MEY 92]. Protocol validation extends this to the synchronization contract
types [MCH 94]. The rest of this section discusses issues of testing extra-functional
property conformance.

3.1 Testing extra functional behaviour

Level 3 contracts (i.e. contracts that include protocols) are more difficult to test
because of non-deterministic behaviours of parallel and distributed implementations.
One of the most difficult problems is the consistent capture of data on the behaviour
of the system's elements. Level 4 contracts (i.e. extra-functional properties) are also
difficult to test for quite similar reasons. Our approach for testing level 4 contracts
relies on the following features:

• existence of probes and extra-functional data collection mechanisms
(monitors);

• test cases;

• oracles on extra-functional properties.

In order to be testable, a component must provide probe points where basic
extra-functional data must be available. There are several techniques to implement
such probe points and make performance data available to the test environment.

1. The component runtime may include facilities to record performance data
on various kinds of resources or events (e.g. disk operations, RPC calls,
etc). Modern operating systems and component frameworks now provide
performance counters that can be "tuned" to monitor runtime activity and
therefore deduce performance data on the component's service.

2. The implementation of the component may perform extra computation to
monitor its own performance. This kind of “self monitoring” is often found
in components that are designed as level 4 component from scratch (e.g.
components providing multimedia services).

3. A component can be augmented with monitoring facilities by weaving a
specific monitor piece of model or of code. Aspect-oriented design (AOD)
or aspect-oriented programming can help in automating this extension [HO
02].

3.2 Aspect Weaving

From a software design process point of view, we consider that designing
monitors is a specialist's task. Monitors rely on low level mechanisms and/or on
mechanisms that are highly platform dependant. By using aspect-oriented design
(AOD), we separate the component implementation model into two main models:
the service part that provides the component's functional services under extra-
functional contracts, and the monitor part that supervises performance issues. A
designer in charge of the “service design model” does not need to master monitor
design. A specific tool (a model transformer called MTL [VOJ 04]) is used to merge
the monitor part of the component with its service part (see the result in Figure 6).

A contract monitor designer provides component designers with a reusable
implementation of a monitor. This implementation contains two items: a monitor
design model and a script for the model transformer tool (a weaver). The goal of this
aspect weaver is to modify a platform specific component model by integrating new
QoSCL classes and modifying existing class and their relationships.

Figure 6. TheTimeOut contract model for .Net

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
ContractType

+isValid():bool

« interface »
ContractType

+isValid():bool

TimeOut
System

Timer

ComponentModel

TimerTimer

ElapsedEventArgsElapsedEventArgs

ComponentComponent

Contract

« delegate »
MyDelegate

+myDelegate():bool

« delegate »
MyDelegate

+myDelegate():bool

« operation »
delay

+return:double

ContractType

ContractQoSCL

Dimension

3.3 Limitations of extra-functional property testing

The QoSCL notation and the monitor integration technique help the component
designer to define and check extra-functional properties. However, application
designers rely on component assemblies to build applications. These designers need
to estimate at design time the overall extra-functional properties of a given
assembly. Using the techniques presented above, they can perform a kind of
integration testing. The tests aim at validating the extra-functional behavior of the
assembly with respect to the global specification of the application. However, the
application designers often have trouble to select and configure the components,
make the assembly and match the global application behavior. Conversely, some
applications are built with preconfigured components and the application designer
needs to build a reasonable specification of the overall extra-functional behavior of
the application.

4 Predicting extra-functional properties of an assembly

4.1 Modeling a QoS-aware component with QoSCL

QoSCL is a metamodel extension dedicated to specify contracts whose extra-
functional properties have explicit dependencies. Models can be used by aspect
weavers in order to integrate the contractual evaluation and renegotiation into the
components. However, at design time, it is possible to predict the global quality of
the composite software.

.

The dependencies defined in QoSCL, which bind the properties, are generally
expressed either as formulae or as rules. The quality of a service is defined as the
extra-functional property’s membership of a specific validity domain. Predicting the
global quality of a composite is equivalent to the propagation of the extra-functional
validity domains through the dependencies.

For instance, we have defined in section §2.4 a set of extra-functional properties
that qualifies different services in our GPS component-based model. In addition, we
have specified the dependencies between the extra-functional properties as formulae.
This knowledge can be specified in QoSCL. Figure 7 below represents the computer
component (Figure 1.) refined with contractual properties and their dependencies:

« QoSComponent »
Computer

getLocation()

thetaC(thetaD, nbr, P)
eps(thetaD, nbr, P)

getPower() P()

getData()

thetaD()
nbr()

required

required

qualities

service

required required

provided

provided

service qualities

qualities

service

: Interface : ContractType : Port

Figure 7. Quality attributes and dependencies specification of a component

The rules that govern the connection between two (functional) ports are also
valid for ports with required or provided ContractTypes. Thus, a port that requires a
service with its specific QoS properties can only be connected to another Port that
provides this service with the same quality attributes.

Specifying the QoS properties of required and provided services of a component
is not enough to predict the quality of an assembly at design time. Additional
information must be supplied:

• constraints on the value of the QoS properties are needed to get the
parties to negotiate and to agree; they explain the level of quality required
or provided for a service by a component;

• the dependency between these values is an important kind of
relationship; it can be described either as with a function (for instance:
ThetaC = ThetaD + Nbr * log(Nbr) (1)) or with a rule (if Nbr = 3 and
Eps = medium then ThetaC ≤ 25).

In other words, these constraints can be stated as OCL [WAR 98] pre and post-
conditions on the Dimensions. For instance:

context Computer::thetaC(thetaD : real, nbr : int,
P : real) : real

pre: thetaD >= 0 and P >= 0
post: result = thetaD + nbr * log(nbr) and P =
3*nbr

At design time, the global set of pre and post-conditions of all specified

Dimensions of a component builds a system of non-linear constraints that must be
satisfied. The Constraint Logic Programming is the general framework to solve such

systems. Dedicated solvers will determine if a system is satisfied, and in this case
the admissible interval of values for each dimension stressed.

4.2 Prediction of the GPS quality of service

In this section we present the set of constraints for the GPS component-based

model (Figure 1.). A first subset of constraints defines possible or impossible values
for a QoS property. These admissible value sets come on the one hand from
implementation or technological constraints and on the other hand from designers
and users’ requirements about a service. The fact that the Nbr value is 3, 5 or 12 (2),
or ThetaC and ThetaD values must be real positive values (3-4) belongs to the first
category of constraints. Conversely, the facts that Eps is at least medium (5) and P is
less or equal than 15mW (6) are designers or users requirements.

Nbr ∈ {3, 5, 12},

ThetaC ≥ 0,
ThetaD ≥ 0,

Eps ∈ {medium, high},
P ≤ 15.

(2)
(3)
(4)
(5)
(6)

Secondly, constraints can also explain the dependency relationships that bind the

QoS properties of a component. For instance, the active power level P is linearly
dependent on the Nbr number of receivers according to the formula:

P = 3 * Nbr. (7)

Moreover, the time spent by the getLocation() service (ThetaC) depends on the

time spend by the getData() service (ThetaD) and the number of data received
(Nbr), according the equation (1). Lastly, a rule binds the precision Eps, the time
spent to compute the current position ThetaC and the number of received data (Nbr).
The following diagram (Figure 8. The) presents this rule:

nbr

θC
20 5025 30 35 40 45

3

5

12

lowmedium

lowmedium

medium lowhigh

high

3224

Figure 8. The rule that binds the Eps, Nbr and ThetaC dimensions

All these constraints, expressed in OCL syntax, can be translated into a specific

CLP-compliant language, using a Model Transfomation [24]. For instance, we
present below the result of a such transformation applied to the computer
QoSComponent (Figure 7.) and its OCL conditions (using the Eclipse™ syntax):

01- computer([ThetaC, Eps, P, ThetaD, Nbr]) :-
02- ThetaC $>= 0, Eps = high, P $>= 0,
03- ThetaD $>= 0, member(Nbr, [3,5,12]),
04- ThetaC $>= 0, ThetaD $>= 0,
05- ThetaC $= ThetaD + Nbr * log(Nbr),
06- P $= Nbr * 3,
07- rule(Eps, ThetaC, Nbr).
08-
09- rule(medium, ThetaC, 3) :- ThetaC $=< 25.
10- rule(low, ThetaC, 3) :- ThetaC $> 25.
11- rule(high, ThetaC, 5) :- ThetaC $=< 24.
12- rule(medium, ThetaC, 5) :- ThetaC $>24,
13- ThetaC $=< 30.
14- rule(low, ThetaC, 5) :- ThetaC $> 30.
15- rule(high, ThetaC, 12) :- ThetaC $=< 32.
16- rule(medium, ThetaC, 12) :- ThetaC $> 32,
17- ThetaC $=<45.
18- rule(low, ThetaC, 12) :- ThetaC $> 45.

The first line (01) indicates the QoS properties bound by the component. The
two following lines (02, 03) are the constraints on the admissible values for these
QoS properties, and lines 05 to 07 are the dependency relationships (1-7 and
Figure 8. The) that bind them.

For each component, it is necessary to check its system of constraints, in order to
compute its availability. The result of such request is the whole of admissible values

for the QoS properties of the component. Thus, for the computer component, the
solutions for the admissible QoS properties values are enumerated below:

ThetaC ThetaD Eps P Nbr

[3.49 .. 24.0] [0.0 .. 20.51] high 15 5
[12.95 .. 32.0] [0.0 .. 19.05] high 36 12

The requirement about the estimated position (Eps = high) implies that:

• the number of data channels must be either 5 or 12,

• consequently, the active power is either 15 or 36mW,

• and the response times of the getLocation() ands getData() services are
respectively in the [3.49; 32.0] and [0.0; 20.51] real intervals.

At this time, the designer knows the qualitative behavior of all of its components.
It is also possible to know the qualitative behavior of an assembly, by conjunction of
the constraints systems and unification of their QoS properties.

The following constraint program shows the example of the GPS component:

19- satellite([ThetaS]) :-
20- ThetaS $>= 15, ThetaS $=< 30.
21-
22- battery([P]) :-
23- P $>= 0,
24- P $=< 15.
25-
26- receiver([ThetaR, ThetaS]) :-
27- ThetaR $>= 0, ThetaS $>= 0,
28- ThetaR $= ThetaS + 2.
29-
30- decoder([ThetaD, ThetaS, Nbr]) :-
31- ThetaD $>= 0, ThetaS $>= 0,
32- member(Nbr, [3,5,12]),
33- receiver([ThetaR, ThetaS]),
34- ThetaD $= ThetaR + 3.
35-
36- gps([ThetaC, Eps, ThetaS]) :-
37- ThetaC $>= 0, Eps = high, ThetaS $>= 0,
38- computer([ThetaC, Eps, P, ThetaD, Nbr]),
39- decoder([ThetaD, ThetaS, Nbr]),
40- battery([P]).

Similarly, the propagation of numerical constraints over the admissible sets of
values implies the following qualitative prediction behavior of the GPS assembly:

ThetaC ThetaS Eps
[23.49 .. 24.0] [15.0 .. 15.50] high

The strong requirement on the precision of the computed location implies that

the satellite signals have to be received by the GPS component with a delay less than
15.5 s. In this case, the location will be computed in less than 24 s.

5. Conclusion

In the Component-Based Software Engineering community, the concept of
predictability is getting more and more attention, and is now underlined as a real
need, as exemplified with the Software Engineering Institute (SEI) promotion of its
Predictable Assembly from Certifiable Components (PACC) initiative [WAL 03]:
how component technology can be extended to achieve predictable assembly,
enabling runtime behavior to be predicted from the properties of components. In
mission-critical component based systems, it is indeed particularly important to be
able to explicitly relate the QoS contracts attached to provided interfaces of
components with the QoS contracts obtained from their required interfaces. In this
chapter we have introduced a notation called QoSCL (defined as an add-on to the
UML2.0 component model) to let the designer explicitly describe and manipulate
these higher level contracts and their dependencies. We have shown how the very
same QoSCL contracts can then be exploited for:

1. validation of individual components, by automatically weaving contract
monitoring code into the components;

2. validation of a component assembly, including getting end-to-end QoS
information inferred from individual component contracts, by automatic
translation to a Constraint Logic Programming language.

Both validation activities build on the model transformation framework
developed at INRIA (cf. http://modelware.inria.fr). Preliminary implementations of
these ideas have been prototyped in the context of the QCCS project (cf.
http://www.qccs.org) for the weaving of contract monitoring code into components
part, and on the Artist project (http://www.systemes-critiques.org/ARTIST) for the
validation of a component assembly part.

References

[AAG 01] AAGEDAL J.O.: "Quality of service support in development of distributed systems".
Ph.D thesis report, University of Oslo, Dept. Informatics, March 2001.

[BEU 99] BEUGNARD A., JÉZÉQUEL J.M., PLOUZEAU N. AND WATKINS D.: "Making
components contract aware" in Computer, pp. 38-45, IEEE Computer Society, July 1999.

[CAS 95] CASTAGNA G.: “Covariance and Contravariance: Conflict without a Cause”. ACM
Transactions on Programming Languages and Systems, 17(3), pp. 431-447, May 1995.

[DEF 04] DEFOUR O., JÉZÉQUEL J.M., PLOUZEAU N. "Extra-functional contract support in
components". in Proc. of International Symposium on Component-based Software
Engineering (CBSE7), May 2004.

[HO 02] HO WM, JÉZÉQUEL J.-M., PENNANEAC'H F., Plouzeau N. "A toolkit for weaving
aspect oriented UML designs" in Proceedings of 1st ACM International Conference on
Aspect Oriented Software Development, AOSD 2002, Enschede, The Netherlands, April
2002.

[MCH 94] McHALE C.: "Synchronization in concurrent object-oriented languages: expressive
power, genericity and inheritance". Doctoral dissertation, Trinity College, Dept. of computer
science, Dublin, 1994.

[MEU 98] MEUDEC C.: "Automatic generation of software test cases from formal
specifications". PhD thesis, Queen's University of Belfast, 1998.

[MEY 92] MEYER B.: "Applying design by contract" in IEEE Computer vol. 25 (10), pp. 40-51,
1992.

[OMG 03] OBJECT MANAGEMENT GROUP: "UML Superstructure 2.0", OMG, August
2003.

[REU 03] REUSNERR R.H., SCHMIDT H.W., POERNOMO I.H.: "Reliability prediction for
component-based software architecture" in the Journal of Systems and Software, vol. 66, pp.
241-252, 2003.

[SZY 02] SZYPERSKI, C.: “Component software, beyond object-oriented
programming”, 2nd ed., Addison-Wesley, 2002
[VOJ 04] VOJTISEK D., JÉZÉQUEL J.-M. "MTL and Umlaut NG - engine and
framework for model transformation" ERCIM News 58, 58, July 2004.
[WAL 03] WALLNAU K.: “Volume III: A technology for predictable assembly
from certifiable component”s. SEI report n° CMU/SEI-2003-TR-009.
[WAR 98] WARMER J., KLEPPE A. “The Object Constraint Language: Precise
Modeling with UML”, Addison-Wesley, 1998.

