
J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 32 – 38, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Report on the 2nd Workshop on Model Development and
Validation – MoDeVa

Benoit Baudry1, Christophe Gaston2, and Sudipto Ghosh3

1 INRIA, France
benoit.baudry@irisa.fr

2 CEA/LIST, France
christophe.gaston@cea.fr

3 Colorado State University, USA
ghosh@cs.colostate.edu

1 Introduction

Rigorous design and validation methods appear to be more and more necessary in an
industrial context. Software systems are becoming increasingly large and complex,
and run the risk of serious failures from unpredictable behaviors resulting from
interactions between sub-systems. Without proper standardization of modeling
notations and approaches, human beings find it difficult to understand the systems.

Object-oriented and component-oriented design approaches in general, and the
Model Driven Architecture (MDA) approach in particular attempt to overcome this
problem. Formal methods have been intensively applied to evaluate the reliability of
systems. These methods generally require adequate specification and structuring
languages to describe the parts of the system under validation.

A major problem encountered when trying to combine design and validation
features is that structuring languages suitable for one feature are generally not suitable
for the other. For example, the object-oriented paradigm is suitable for large scale
system design, since it allows anthropomorphic design based on service exchanges of
basic entities. However, this paradigm is not suitable (without restriction) for
validation activities, since any enrichment of a system is likely to cause loss of global
properties. In the opposite way, the modular paradigm ensures properties preservation
but the price to pay is a higher level of design difficulty.

The Model Design and Validation (MoDeVa) workshop aimed at being a forum for
researchers and practitioners with varying backgrounds to discuss new ideas
concerning links between model-based design and model-based validation. Topics of
interest included design processes that support complex system modeling and formal
or semi-formal refinement mechanisms. Model-based testing, languages to describe
models (e.g., UML), approaches such as model-driven engineering, model driven
architecture, algebraic languages, automata-based language, first order language, and
propositional languages were considered. The first edition of MoDeVa took place in
Rennes in France in 2004. MoDeVa was a satellite workshop of the ISSRE
conference. This year MoDeVa was a satellite workshop of MoDELS. This paper is a
report on this second edition.

The workshop had two parts – presentation of position papers followed by focused
discussion by two separate groups. Section 2 presents summaries of the 9 papers
selected for presentations. Section 3 summarizes the conclusions of the workshop.

 Report on the 2nd Workshop on Model Development and Validation – MoDeVa 33

2 Paper Summaries

The workshop selected 9 papers out of 17 submissions. One of the main selection
criteria was that the papers clearly demonstrate a step forwards using formal
approaches within a software development methodology. The use of formal
approaches may incorporate the use of formal tools (proving tools, model checkers,
formal testing tool) and include formal definition of semantics to deal with structuring
or refinement mechanisms.

• [1] proposes a formal testing methodology dedicated to the Common
Criteria ISO standard.

• [2] describes a taxonomy of faults that occur in UML design.
• [3] proposes a model based testing approach for UML specifications.
• [4] presents a rigorous and automated based approach for the behavioral

validation of control software systems.
• [5] describes an approach towards increasing the robustness of the UML

refinement machinery.
• [6] suggests a systematic modeling method for embedded systems.
• [7] explores the problem of ensuring correctness of model

transformations.
• [8] describes a round trip engineering process that supports the

specification of UML models and focuses on the analysis of specified
natural language properties.

• [9] proposes an interaction-based approach for use case integration.

[1] Test Generation Methodology Based on Symbolic Execution for the Common
Criteria Higher Levels – Alain Faivre, Christophe Gaston
In the field of security software, the Common Criteria (CC) constitutes an ISO
standard for the evaluation of products and systems from Information
Technologies. The international recognition of the Common Criteria justifies the
investment undertaken by the manufacturers to obtain the certification of their
products. The evaluation criteria are defined according to the Evaluation
Assurance Level (EAL). There are seven EALs: EAL1 to EAL7, in an increasing
order of security demand. For the upper levels of evaluation, the use of formal
methods is mandatory. In that case, supplies intended to realize evaluation
activities must contain components associated to modeling, proof and test. This
contribution proposes a methodology and a tool (AGATHA) which allows
covering the requirements associated to test generation for the upper levels of the
Common Criteria. In that case, the criterion used to stop the test generation activity
is defined by the standard for EAL7 as follows: the generated test case set covers
all functions of the reference model. Each function must be covered “complete”
way (although the term complete remains ambiguous in CC definitions). The
strategy presented in the paper provides a formal meaning to this criterion and
associated test generation techniques.

34 B. Baudry, C. Gaston, and S. Ghosh

[2] A Taxonomy of Faults for UML Designs – Trung Dinh-Trong, Sudipto
Ghosh, Robert France, Benoit Baudry, Franck Fleurey
As researchers and practitioners start adopting model-based software development
techniques, the need to rigorously evaluate design models is becoming apparent.
Evaluation techniques typically use design metrics or verification and validation
approaches that target specific types of faults in the models. Fault models and
taxonomies may be used to develop design techniques that reduce the occurrence of
such faults as well as techniques that can detect these faults. Fault models can also be
used to evaluate the effectiveness of verification and validation approaches. A
taxonomy of faults that occur in UML designs was presented along with a set of
mutation operators for UML class diagrams.

[3] Generating Test Data to test UML Design Models – Trung Dinh-Trong,
Sudipto Ghosh, Robert France, Anneliese Andrews
This paper presents an approach to generating inputs that can be used to test UML
design models. A symbolic execution based approach is used to derive test input
constraints from a Variable Assignment Graph (VAG), which presents an integrated
view of UML class and sequence diagrams. The constraints are solved using Alloy, a
configuration constraint solver, to obtain the test inputs.

[4] Using Process Algebra to Validate Behavioral Aspects of Object-Oriented
Models – Alban Rasse, Jean-Marc Perronne, Pierre-Alain Muller, Bernard
Thirion
This paper presents a rigorous and automated based approach for the behavioral
validation of control software systems. This approach relies on meta-modeling,
model-transformations and process algebra and combines semiformal object-oriented
models with formal validation. Validation of behavioral aspects of object-oriented
models is performed by using a projection into a well-defined formal technical space
(Finite State Process algebra) where model-checkers are available (e.g., LTSA; a
model checker for Labeled Transition Systems). The approach also targets an
implementation platform which conforms to the semantics of the formal technical
space; in turn, this ensures conformance of the final application to the validated
specification.

[5] On the Definition of UML Refinement Patterns – Claudia Pons
This paper describes an approach towards increasing the robustness of the UML
refinement machinery. The aim of this work is not to formalize the UML notation
itself, but to substantiate a number of intuitions about the nature of possible
refinement relations in UML, and even to discover particular refinement structures
that designers do not perceive as refinements in UML.

[6] A Modeling Method for Embedded Systems – Ed Brinksma, Angelika Mader,
Jelena Marincic, Roel Wieringa
This paper suggests a systematic modeling method for embedded systems. The goal is
to derive models (1) that share the relevant properties with the original system, (2)
that are suitable for computer aided analysis, and (3) where the modeling process
itself is transparent and efficient, which is necessary to detect modeling errors early
and to produce model versions (e.g. for product families). The aim is to find

 Report on the 2nd Workshop on Model Development and Validation – MoDeVa 35

techniques to enhance the quality of the model and of the informal argument that it
accurately represents the system. The approach is to use joint decomposition of the
system model and the correctness property, guided by the structure of the physical
environment, following, e.g., engineering blueprints. The approach combines
Jackson’s problem frame approach with a stepwise refinement method to arrive at
provably correct designs of embedded systems.

[7] Model Transformations Should Be More Than Just Model Generators – Jon
Whittle and Borislav Gajanovic
Model transformations are an increasingly important tool in model-driven development
(MDD). However, model transformations are currently only viewed as a technique for
generating models (and, in many cases, only code). Little is said about guaranteeing
the correctness of the generated models. Transformations are software artifacts and, as
such, can contain bugs that testing will not find. This paper proposes that, in fact,
model transformations should do more than just generate models. In addition, they
should generate evidence that the generated models are actually correct. This evidence
can take the form of precise documentation, detailed test cases, invariants that should
hold true of the generated models, and, in the extreme case, proofs that those invariants
do actually hold. The hypothesis is that there is enough information in the definition of
a transformation to provide evidence that certain properties of the generated model are
true. Such information is usually left implicit. By making that information explicit and
annotating the generated model, a consumer of the model increases his/her confidence
that the model does what it is supposed to do.

[8] Automated Analysis of Natural Language Properties for UML Models –
Sascha Konrad, Betty H.C. Cheng
It is well known that errors introduced early in the development process are
commonly the most expensive to correct. The increasingly popular model-driven
architecture (MDA) exacerbates this problem by propagating these errors
automatically to design and code. This paper describes a round trip engineering
process that supports the specification of a UML model using CASE tools, the
analysis of specified natural language properties, and the subsequent model
refinement to eliminate errors uncovered during the analysis. This process has been
implemented in SPIDER, a tool suite that enables developers to specify and analyze a
UML model with respect to behavioral properties specified in terms of natural
language.

[9] Interaction-Based Scenario Integration – Rabeb Mizouni, Aziz Salah,
Rachida Dssouli
This paper proposes an interaction-based approach for use case integration. It consists
of composing use cases automatically with respect to interactions specified among
them. A state-based pattern is defined for each of these interactions. A use case
interaction graph is synthesized, which serves the detection of not only unspecified,
but also implied use case invocations. Additional constraints are added to the system
in order to remove such illicit interactions, called interferences.

36 B. Baudry, C. Gaston, and S. Ghosh

3 Group Discussions

The audience of the workshop was completely representative of the topics of the
workshop. There were people working in the research field of design and people
working in the research field of formal methods. The discussion session aimed at
helping to bridge the gap between those two communities. Therefore, the attendees
formed two groups. One group had to discuss and provide hints to designers about the
challenges in the scope of formal treatment for the UML. The second group had to
isolate particular aspects of the UML language, for which a formal treatment would
useful: this group chose to discuss issues related to the defining, building, using UML
profiles and capturing their semantics.

3.1 Formal Treatment of UML Models

The UML is used in various ways by software developers. Some use it informally,
mainly for the purpose of sketching and communicating system requirements and
design. Their main requirement is flexibility to enable the representation of mental
model of the system to be implemented. They generally do not intend to use these
models for any form of rigorous analysis and hence, formal treatments do not apply to
them.

Formal methods will be useful for development environments that focus on critical
systems. Currently a number of companies use existing methodologies, languages,
and tools such as B, SCADE, and SDL. They would like to use a uniform notation
that would enable them to distribute models to different groups for implementation.
They have considered the UML, which gives them a rich syntax for model
development. However, the development of critical systems requires formal
approaches for analyzing model properties. The lack of completely formal semantics
in the UML prevents them from using it as it stands. For this reason, researchers have
developed mappings from UML to various formal notations which are input
languages for existing analysis tools. This leads to: 1) lack of uniformity in the
expression of semantics; 2) use of similar models with different and hidden semantics.
We need to define a formal UML semantics independent of any particular tool.

The UML is huge and deals with a lot of industrial aspects. Some of these aspects
clearly go beyond software development. If we want to deal with critical system
design, we should be able to restrict the UML to views that are relevant to this
purpose. This restriction must be as small as possible. Indeed, the more a language
introduces keywords and views, the more providing it with a formal semantics may
lead to inconsistencies. Once the relevant parts of the UML are identified, an
interesting approach would be to develop denotational semantics for them. We
propose to follow a denotational approach because the UML is complex. We believe
that providing the UML with only an operational semantics would again raise the
problem of inconsistency between views. This is due to the fact that the UML allows
the management of several views of the same problem. Links between those views
need to be clearly stated. Thus, in order to provide a consistent semantics to the UML,
we believe that a rigorous framework, such as set theory or category theory, is
mandatory. Moreover the use of a denotational semantics limits the risk of
interpretation errors when using formal tools to treat UML specifications. Indeed,

 Report on the 2nd Workshop on Model Development and Validation – MoDeVa 37

having a denotational semantics for (a part of) the UML and a denotational semantics
for the entry language of a formal tool implies to define the bridge between the two
semantics by means of relation and mathematical proofs. Contrarily to such an
approach, in an operational semantics approach, the bridge between two semantics is
generally made by means of a translation and possibly with no hints about the
correctness of the translation. Thus, a denotational approach should provide a good
framework to define semantics independently of any tool.

3.2 UML Profiles

Profiles tailor the UML to specific areas - some for business modeling; others for
particular technologies. For example, the Object Management Group has standard
profiles for CORBA, EDOC, and patterns.

Discussions underlined the importance to have a well defined methodology to
build profile in order to better understand its objective, role, use and semantics. Such
methodology is already used by some users, namely for defining the OMG standard
profiles, but has to be widespread in the whole community. According to the UML2
standard and the current practices, the main points are the following:

a) Profiles are based on the domain meta-model, so first:
• Build the model of the concepts required by the domain (i.e.: the domain

meta-model) with the modeling formalism you want. UML is very often used
to create this domain meta-model that could facilitate the next step of
mapping the domain model to UML meta-model.

• Describe the semantics of the meta-model (either with informal text or any
formalism that seems useful)

b) Profiles are implemented in UML through two steps:
• Identify the mapping between the profile domain meta-model and the UML

meta-models;. Mappings target to identify already existing concepts in the
UML meta-model and the standard UML profiles that fit with the domain
concepts or that could be extended, specialized to fit with the domain
concepts.

• Implement the profile by formalizing the mapping through definitions of
stereotypes, tagged values, constraints, notations, semantic variation points
choices, etc. Provide its UML implementation in XMI (as a UML model of
the profile implementation).

A profile may contain new standard elements, such as stereotypes and tagged
values, and common model elements from the UML library of predefined elements.
OCL constraints define notations and can be used to understand the semantics of the
new standard elements.

The semantics of a profile must be compliant with the semantics of the meta-model
of UML 2.0. Additional well-form ness rules or constraints can never violate these
existing in UML 2.0.

Question of which kind of formal semantics is provided by these profiles
definitions has conclude that it is centered on static semantics and not covers the
dynamic semantics.

38 B. Baudry, C. Gaston, and S. Ghosh

The discussion group agreed that the semantics provided by these profile
definitions are not sufficient from a formal point of view to capture all that is needed
to allow connection to validation tools and automatic code generation.

Profiles may be combined in different manners depending on the granularity and
scope. Approaches need to be developed to check the levels of abstractions of the
profiles, automatically perform profile combination, and check the consistency of the
combination. We need to define development processes that incorporate the use of
profiles. Developers need systematic ways to determine which profile must be used
on which parts of the model. Appropriate tool support can then be developed.

In addition to ongoing works on defining a profile for embedded systems
(MARTE), two subjects have been identified as not sufficiently covered by the
existing standard profiles:

1. Reliability: more particularly concerning dynamic behavior (e.g., transition of
scenarios)

2. Traceability: general subject, partially treated by SysML for requirement
traceability, but not supported for any elements, model evolutions as required in
Model Driven Development.

Finally, the main open issue in the context of defining and using profiles seems to
be the definition of their dynamic semantics. Several approaches can be used to define
the semantics from totally informal to totally formal. They are the following:

1. Develop the semantics in natural language (this one remains mandatory, even if
more formal information is given).

2. Use correspondence style rules with examples.

4 Conclusion

The content of discussions led us to draw the following conclusions. First of all, the
usage of formal tools to treat UML specifications is really meaningful when dealing
with critical system specifications. This is due to the fact that potential users in the
field of critical system design require having a simple, totally formally grounded
semantics to a subpart of the UML. Using formal tools in a different context makes
less sense. Secondly, in order to be compliant with the norm, defining a subpart of the
UML to be mathematically grounded could be done using a profile approach. But
profile themselves should be provided with a semantics. In the next edition of
MoDeVa we propose to concentrate on these issues: What subpart of the UML should
be considered in the field of formal treatment? Are there several subparts (possibly
overlapping) of the UML to be considered depending on the system design domains
considered? How this subpart(s) should be described? How to provide and describe a
formal semantics in a way which would be acceptable for the OMG?

	Introduction
	Paper Summaries
	Group Discussions
	Formal Treatment of UML Models
	UML Profiles

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

