
DTD 5 ARTICLE IN PRESS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57
58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83
ROOF

Measuring design testability of a UML class diagram

Benoit Baudry, Yves Le Traon*

IRISA, Campus Universitaire de Beaulieu, 35042 Rennes cedex, France

Received 12 November 2003; revised 19 January 2005; accepted 20 January 2005

Abstract

Design-for-testability is a very important issue in software engineering. It becomes crucial in the case of OO designs where control flows

are generally not hierarchical, but are diffuse and distributed over the whole architecture. In this paper, we concentrate on detecting,

pinpointing and suppressing potential testability weaknesses of a UML class diagram. The attribute significant from design testability is

called ‘class interaction’ and is generalized in the notion of testability anti-pattern: it appears when potentially concurrent client/supplier

relationships between classes exist in the system. These interactions point out parts of the design that need to be improved, driving structural

modifications or constraints specifications, to reduce the final testing effort. In this paper, the testability measurement we propose counts the

number and the complexity of interactions that must be covered during testing. The approach is illustrated on application examples.

q 2005 Published by Elsevier B.V.

Keywords: Object-oriented software measurement; UML; Object-oriented testing; Software design quality; Testability; Anti-patterns
T

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106
CORREC

1. Introduction

Software testing is often a very costly part of its life

cycle. Any technique that improves a software design at an

early stage can have highly beneficial impact on the final

testing cost and efficiency. This paper is concerned with the

issue of testability of object-oriented (OO) static designs

based on the UML (Unified Modeling Language) class

diagrams. It aims at pinpointing the parts of the software

architecture where complex interactions may appear and

lead to difficulties for testing. Testability, informally defined

as the easiness to test a piece of software, is a strongly

desired feature of software. It tends to make the validation

phase more efficient in exposing faults during testing, and

consequently to increase quality of the end-product for

clients’ satisfaction. Furthermore, testability is a criterion of

crucial importance to software developers since the sooner

it can be estimated, the better the software architecture will

be organized to improve subsequent implementation

and maintenance. This question of testability [1] has been

revived with the object-orientation [2].
UN
0950-5849/$ - see front matter q 2005 Published by Elsevier B.V.

doi:10.1016/j.infsof.2005.01.006

* Corresponding author.

E-mail addresses: benoit.baudry@irisa.fr (B. Baudry), yves.le_traon@

irisa.fr (Y.L. Traon).

INFSOF 4543—10/2/2005—20:41—RAJA—134962—XML MODEL 5 – pp. 1–21

107

108

109

110
ED PTo guide the testing task, the main OO static design view,

namely the class diagram, appears as a good basis to detect

and master the widespread implicit control dependencies,

due to inheritance and dynamic binding. However, a class

diagram is often ambiguous, incomplete, and may lead to

several false interpretations, consequently possibly false

implementations and, dramatically, useless tests. Comp-

lementary views of the UML, such as object diagrams or

collaboration diagrams and sequence ones could help.

Indeed, collaboration diagrams may serve as expected

traces that a test case must exhibit [3], while sequence

diagrams offer a basis for specifying nominal and excep-

tional test purposes. If statechart diagrams represent

exhaustively a given dynamic behavior, collaboration and

sequence diagrams may help understanding interactions but

cannot detail each one nor restrict their possible number. In

the same way, object diagrams only represent a particular

system configuration of class instances and do not catch all

potential ones. In conclusion, we consider that the main

views on which testability must be analyzed are class

diagrams and statecharts, while the other views only display

snapshots of some possible behaviors. This work focuses on

the testability weaknesses of UML class diagrams.

Like for any classical software, the difficulty for testing is

due to the existence of client/supplier relationships in
Information and Software Technology xx (xxxx) 1–21
www.elsevier.com/locate/infsof
111

112

http://www.elsevier.com/locate/infsof

T

O

IN

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–212

DTD 5 ARTICLE IN PRESS

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212
RREC

the system. Indeed, if there were no client in the software

there would be no defined set of executions and thus nothing

to test. Thus, after unit testing, failures should only occur

because of a misuse due to wrong interactions between

objects: these interactions go throughout the architecture

and are made more complex if the client/supplier depen-

dencies traverse inheritance trees. Polymorphic dependen-

cies multiply the number of potential object types that may

interact with various—and possibly false—implemen-

tations. This paper introduces a testing criterion that

requires the coverage of these object interactions. To be

realistically applied, the number of test cases must be

reasonable and the paper proposes an estimate of the testing

effort, measured by approximating the number of object

interactions from the UML class diagram.

The number of object interactions is estimated by the

number of ‘class interactions’: a class interaction is a

topological configuration that occurs if a class is supplier

from another through various possible paths of dependencies.

Moreover, this work proposes a complexitymeasurement for

class interactions based on the complexity of inheritance

hierarchies that are present along in the paths of dependencies

involved in the interaction. The number of class interactions

being an estimate of object interactions (it is actually the

maximumnumberofpossibleobject interactions), it is also an

estimate of the number of test cases that will have to be

exhibited to test thesystem.Moreover, thecomplexityofclass

interactions is an estimate of the complexity of producing the

test cases. The number and complexity of class interactions is

thus an estimate of the difficulty of testing a system, and it is

the testability measurement proposed in this paper.

The proposed testability measurement is computed from

the class diagram and thus offers a worst-case estimate of the

testability of the implementation (the case where each class

interaction is actually implemented), which can be different

from the actual testability. However, we believe this is still

useful from a methodological point view, since the class

interactions are still specific points the designer should be

aware of in terms of testability (it is thus useful to identify

them automatically). Moreover, associating a complexity

measure to these interactions enables the designer to focus on

the most complex to improve the design.

Based on the proposed testing criterion, the objectives of

the paper are:
213

214
–
FSO

215

Oto provide a model to capture class interactions and

pinpoint classes that cause the interactions,
216
–
217

218
Cto identify hard-to test interactions and measure their

number and complexity due to polymorphic uses,

considered here as our estimate of design testability,
219
–
220

221

222
UNto suggest improvements on the design to reduce the

number and complexity of class interactions: these

improvements at design level are realistic since static

verifications on the code ensure their implementation,
223
–
224
in fine to provide a way of accepting or rejecting a design

based on testability analysis. The design is rejected when
F 4543—10/2/2005—20:41—RAJA—134962—XML MODEL 5 – pp. 1–21
OF

no improvement can be added to limit the object

interactions.

The measure of testability we propose is a counting

measure: it counts the number and the complexity of class

interactions to be covered by test cases. It is thus a global test

cost measure for OO systems designed with a class diagram.

Section 2 opens with a general presentation of the

testability measurement, and what particular points should

be studied in an object-oriented context. It also introduces a

methodology to design testable OO systems. Section 3

analyses the notion of testability anti-pattern, and proposes

precise definitions in terms of elements of a UML class

diagram. Then, it defines a testing criterion and illustrates

the test generation on a small example. Section 4 defines a

graph model that can be derived from a class diagram and

from which all anti-patterns can be detected. We also

propose a measure for the complexity of anti-patterns, that

can be automatically computed from the graph model.

Section 5 gives clues for refinements that can drive the

design closer to the implementation and thus make the

measurement on the design closer to actual testability

problems. Section 6 gives two application examples, and

Section 7 summarizes related work.
ED P
R2. Testability of OO design: definitions and methodology

This section introduces the context for this work. It starts

with definitions about software testability and what type of

information the measure must capture. Then, we describe

specific testing problems that appear in many OO

architectures. This leads to a proposal for a methodology

for testability of OO software. At last, we present an

example that is used through the paper for illustration.
2.1. Software testability

In this paper, testability serves two goals: a technical one,

and a more managerial one. Testability is a tool for the

software designer who wishes to identify hard-to-test

systems while still at the design stage. For the project

manager, they provide a means to decide whether a trade-off

in terms of cost is worth searching for between solutions

based on different designs and different testing methods.

For example, whatever the quality factor under scrutiny

is, the type of situations that a designer might hope to

identify include:
–
 stress points where there is a bad degree of this factor,

and thus a need to improve the design,
–
 inadequate refinement leading to a sharp and undesired

variation in this factor.

Our general definition for testability is the following.

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–21 3

DTD 5 ARTICLE IN PRESS

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287
Definition. Testability. We define the quality factor

testability as the ease of testing a piece of software design.

This easiness is both an intrinsic property of the design (thus a

proper characteristic of the product) and a property correlated

to the testing strategy which is used to reach a chosen test

criterion (thus, a joint characteristic of the product and the

process). Testability is influenced by three parameters:

288

289
–
INF

290
Global test cost: the overall test cost to reach a (a joint

product-process property),
291
–
292
Controllability: the overall easiness of generating test data

(an intrinsic software property),
293
–
T

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326
ORREC

Observability: the overall easiness of checking the

validity of the execution results (another intrinsic soft-

ware property).

In this paper, we focus on a global test cost measure of

testability.

Definition. Global test cost. This factor concerns the testing

effort needed to reach a given testing criterion. It relates to

the size of the test set, the difficulty of generating the test

data to reach a given test adequacy criterion and the

difficulty of deciding on the validity of the run results.

The test objective is not only to cover or execute each part

of the model but also to reveal hidden faults. From this

viewpoint, the notions of controllability and observability of

a software component, introduced by Freedman [4] are

complementary to the global test cost. For instance,

controllability is related to the effective coverage of the

declared output domain from the input domain. However, his

approach fails at considering the inherent difficulty to execute

and infect a component and propagate the faulty state to the

outputs. This drawback has been well analyzed by Voas’

pragmatic approach [1,5], at code level. At design stage,

several measurements have been proposed to estimate an

information loss, such as Voas’ Domain/Range Ratio (Drr)

[6] for imperative programs or the controllability/observa-

bility measurements stated in [7,8] for data flow designs.

Weide et al. [9] have characterized observability and

controllability on abstract data types from an understand-

ability viewpoint for software reuse. Up to now, the question

of measuring the controllability/observability in the OO

context at design stage has not found any satisfying answer.

We do not address this issue in this paper. Concerning the

‘global test cost’ category of measures, Bieman and Schultz
UNC
OO Design

Testability
analysis

2. Improve the design

3. Reject the design

4. Accept and
the des

5.

1. Model the design

Fig. 1. Improving testabil

SOF 4543—10/2/2005—20:41—RAJA—134962—XML MODEL 5 – pp. 1–21
ED P
ROOF

[10] have examined the number of test cases that are needed

to satisfy the all-du-paths criterion [11], and in catalogues of

measures such as [12], testability is indirectly estimated,

based on the general assumption that testability is likely to

degrade with a more highly coupled system of objects.

To obtain a relevant testability measure, specific OO

issues must be taken into account: the control distributed all

over the architecture and the numerous and complex

interactions among objects (due to dynamic binding and

polymorphism). The literature insists on the difficulty to

elaborate valid measurements [13–16], and we can easily

find catalogues of measures, typically counting every

attributes that can be found in an object-oriented system

(number of methods, depth of inheritance trees, etc.). The

measures are obtained neither from the observation of case

studies nor by a clear intuitive relation between the factor

under measurement and the measured attributes of the

software. In this paper, since the measured factor, the

testability, first appear as quite abstract and unclear, we

choose to have a pragmatic approach. Conversely to our

previous research based on axiomatization [8,17], the

measurement philosophy is thus different from classical

‘top down’ approaches. We also renounce to cover all the

spectrum of what may be measured and related ‘a posteriori’

to testability. Our methodology is ‘bottom-up’, in the sense

we first studied concrete applications carefully, in order to

identify the attributes that impact the testability, in a precise

testing context. To do that, we need to define precisely the

testing task (testing criterion that has to be satisfied) and

then be able to evaluate the effort to test a piece of software

according to this criterion (evaluate all the interactions that

have to be covered as well as their complexity). The concept

we identify as relevant of a ‘testability weakness’ is called a

testability anti-pattern and the measured attribute a class

interaction or self-usage interaction. The global test cost

measure we define is equal to the number of detected

testability anti-patterns. It will be defined precisely in the

following after the study of an application example.

2.2. Designing for testability: a methodology

Fig. 1 summarizes a methodology that helps improve a

design’s testability. The main specification for the testabi-

lity analysis is the class diagram. The first step of

the proposed method consists in running a testability

analysis on the class diagram. This analysis detects points
Constraints
verification on the
 implementation

 implement
ign

 Modify the implementation

Implementation
Testing

ity of OO designs.

327

328

329

330

331

332

333

334

335

336

T

BookEvent

+execute(In b:Book)

Borrow

Reserve

InLibraryBorrowed

Reserved

Ordered Fix

context

BookState

+borrow()

1currentState

Book

getCurrent_state()

manageEvent()

setCurrent_state()

setDamaged()

*
1

AvailableBeingFixed

GiveBack

SetDamagedDeliver

SetRepaired

commands

Fig. 2. UML class diagram for book manager sub-system.

IN

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–214

DTD 5 ARTICLE IN PRESS

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428
in the design that have to be improved for testability. As we

will see in Section 2.3 these points correspond to particular

configurations in the diagram that can lead to hard-to-test

implementations. To run this analysis automatically on a

class diagram, we need a model that can be derived from the

diagram and from which it is possible to detect hard points

for testability in an unambiguous way.

As a result, the testability analysis lists all the points that

need to be improved in the design. As we will see in Section

4, it also associates a complexity measure to these points.

Once the analysis has been run, it possible to improve the

design at those specific points, or to reject as too difficult to

test, or to accept this design as testable and implement it.

The design can be improved, either by reducing coupling in

the architecture [18], or by expressing constraints that will

help the developer avoid implementing error-prone object

interactions. Our suggestion (Section 5) is to use dedicated
UNCORREC

Reserved

Available

[#re

[#

/reserve

/reserve

[

ordered

[#reservations > 0]/deliver

[#reservations = 0]/deliver

/reserve

/b
/borrow

Fig. 3. UML statechart for

FSOF 4543—10/2/2005—20:41—RAJA—134962—XML MODEL 5 – pp. 1–21
OFstereotypes on association and dependencies specifying

more clearly the type of usage that must be implemented

(creation, reading.). So, when the design is implemented,

the constraints are checked, and the implementation may

need to be modified if the constraints are not verified.
ED P
RO

2.3. Example

We introduce here a UML class diagram that serves as an

illustration example all along this paper. This diagram

corresponds to a sub-system in charge of managing books in

a larger library system (Fig. 2). All the classes are given but

we show only the methods that are used to illustrate

particular points in the following sections. This class

diagram is the design for a system implementing the UML

statechart presented Fig. 3. The statechart describes the

dynamic behavior of a book object. An object is created
InLibrary

BeingFixed

[damaged]/fix

[damaged]/fix

servations > 0]/deliver

reservations = 0]/deliver

/reserve

#reservations > 0]/give_back

[#reservations = 0]/give_back

orrow Borrowed

/reserve

book management.

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–21 5

DTD 5 ARTICLE IN PRESS

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518
when a book has been ordered (initial state). Once the book

is ordered, it can be reserved at any time. When it comes in

the library, it is either available or reserved, and it can then

be borrowed. If the book is damaged and is in the library, it

can be fixed. The design proposed to implement this

statechart (Fig. 2) is based on two design patterns [19]: the

state pattern that reifies each state of the statechart in one

class and the command pattern that reifies events.

Now that the general context for this work has been

presented, Section 3 details the particular interactions we

focus on, as testability weaknesses in a class diagram. Then,

we propose a testing adequacy criterion to cover these

interactions and illustrate this criterion by writing test cases

for the book manager sub-system.
T

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560
UNCORREC

3. Test criterion and testability anti-patterns

for OO systems

A testing criterion is needed to detect object misuses due

to erroneous interactions. Here we propose a criterion based

on the UML as a reference specification, that aims at

covering all object-to-object dependencies that should be

tested. The class diagram is the main specification used to

define precisely what must be tested. To apply the criterion,

we show that the design must be precise enough and as close

as possible to the actual implementation. Once the

testability problems have been highlighted, a design can

be either improved or rejected as not testable.

This section starts with an informal analysis of testability

problems of the book manager design (Fig. 2). These

problems actually correspond to particular configurations

that can be found in a class diagram and lead to hard-to-test

implementations. These configurations are called testability

anti-patterns, as they describe patterns that should be

avoided for a testable design. We also explain how

inheritance can increase the complexity of anti-patterns.

After that, those anti-patterns are defined more precisely

in terms of elements in a UML class diagram. Based on

these definitions, we are able to express a testing criterion to

cover those interactions. The section ends with the

generation of test cases for the book manager that verify

the testing criterion.

3.1. Informal analysis of testability anti-patterns

This section aims at pointing, in an informal way,

interactions in a class diagram that can lead to problems for

testing the corresponding implementation. We look at the

class diagram given in Fig. 2 as an example. This

architecture is a typical object-oriented design. It uses

basic constructs of object-orientation: inheritance, abstract

classes, associations, aggregation and usage dependency

relationships between classes in the system. A first look at

this architecture reveals that many classes have strongly

inter-dependent processes. For instance, all the children
INFSOF 4543—10/2/2005—20:41—RAJA—134962—XML MODEL 5 – pp. 1–21
classes are strongly linked to their parent classes, and BOOK

and BOOKSTATE are interdependent. This type of architecture

has a considerable potential for faulty behavior. For

example, BOOKEVENT may depend on BOOK via several

paths. If such usage is undesired, it has to be either tested

for, or avoided by constrained construction. These potential

problems have to be identified in order to estimate the

verification and validation effort. The two potential sources

of problems are the following:
†
 When a method m1 in class BOOK uses a method m of class

BOOKSTATE, the class BOOKSTATE may use BOOK to

process m. That means that the class BOOK might use

itself when it uses BOOKSTATE to process part of its work.
†

ED P
ROOF

When a class of BOOKEVENT uses BOOK, it might do so in

two different ways: directly by declaring an instance of

class BOOK, or through a use of BOOKSTATE which uses

BOOK.

The exact number of potential misuses as well as their

complexity is difficult to determine with a simple obser-

vation of the design. Thus, we need a model to capture all

these interactions with the inheritance complexity.

This informal analysis emphasizes two weaknesses for

testability: interactions from one class to another we call

class interactions, and a configuration we call self-usage

that corresponds to a class that uses itself by transitive usage

dependencies. We call these weaknesses testability anti-

patterns. An anti-pattern describes a solution to a recurrent

problem that generates negative consequences to a project

[20]. As design patterns, anti-patterns can be described with

the following general format: the main causes of its

occurrence, the symptoms describing ways to recognize

its presence, the consequences that may results from this bad

solution, and what should be done to transform it into a

better solution.

Testability anti-pattern. A testability anti-pattern is a

design solution that presents a configuration in the class

diagram which increases the testing effort.

In this paper the testing effort is estimated by the number

of test cases as well as the complexity to produce the test

cases needed to verify a given test criterion. An anti-pattern

is thus a design decision that increases the number and/or

the complexity of test cases. Two specific configurations in

a class diagram have been identified as such design

decisions: class interactions and self-usage. Both designs

present hard points for testing because in both cases, test

cases must be generated to cover paths that go through

several classes. In most cases if the path is actually

coverable, the test data is very specific and thus difficult to

generate. Moreover, if several paths are involved in class

interactions or self-usages, test cases must check the

combinations of those different paths, which also increases

the necessary effort to produce the test cases. For these

reasons class interactions and self-usages that are identified

on the class diagram are testability anti-patterns.

T

A

A1 A2

A21 A22D

C

Fig. 4. Concurrent usage through an inheritance hierarchy.

BookBookEvent
« uses »« »

BookBookState
context

1

Fig. 5. Association or dependency between classes.

Book

setCurrent_state()

BookState

borrow()

BookEvent

Borrow

Ordered

book

0..1
« uses »

« uses »

« »

Fig. 6. Transitive relationship between BookEvent and Book through

BookState.

IN

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–216

DTD 5 ARTICLE IN PRESS

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672
UNCORREC

The complexity of both anti-patterns worsen when usage

dependencies go through an inheritance tree because of

polymorphism. Section 3.2 illustrates this point.

3.2. Inheritance complexity

The complexity due to inheritance appears when transi-

tive dependencies go through one or several inheritance

hierarchies. This section aims at giving the intuition of the

complexity of polymorphic relationships, based on the class

diagram of Fig. 4. The figure presents a class interaction from

C to D. The interaction is complex because if C uses an

instance of class A or A2 or A21, anyway those three classes

have relationships between each other. In that case, the

interaction with each of the three potential usages by C (A or

A2 orA21) have to be tested, and for each of those,we have to

test the relationships between the classes in the inheritance

hierarchy. However, by constraining the design (and make it

more precise), we can reduce the complexity of the

interaction. Indeed, if classes A and A2 are interface classes,

we can ensure that C can only use A21 or A22: the area of the

interaction with class D is thus reduced to class A21. The

model must also capture the complexity of the interaction.

The testing model has thus to discriminate between up

and down dependencies into an inheritance tree. Moreover,

the testing model must not count brother classes as

dependent, since they are always independent from a testing

point of view.

3.3. Test criterion for UML class diagrams

In this section, we come back on the anti-patterns that

have been identified in Section 3.1 and define them precisely

in terms of elements in a UML class diagram. Then, we

define a test criterion that requires the coverage of those

anti-patterns when testing the implementation. This testing

criterion concentrates on the hard-to-detect errors that can

appear when side effects may occur, i.e. when one or several

objects may modify the state of an object using independent

paths of dependencies. Such combinations of dependencies

can lead to inconsistent states for the handled objects.

In an OO system, classes depend on each other’s for their

processing. A class A is said to use a class B if methods in
FSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
ED P
ROOF

A call methods from B, either through an attribute or a local

variable of type B. The UML allows the designer to

illustrate this relationship on a class diagram drawing either

an association between the classes or a dependency

stereotyped «uses». This relationship is called a direct

usage relationship between classes.

Direct usage relationship. There is a direct usage

relationship from class A to class B on a UML class

diagram, if there exists an association or a «uses»

dependency from A to B. In case of non-directed

associations, dependencies exist from A to B and from B

to A. The set of direct usage relationships for a class

diagram is denoted SDU. Fig. 5 illustrates the two types of

UML dependencies: an association between BOOKSTATE and

BOOK classes and dependency BOOKEVENT and BOOK classes.

The direct usage relationship can be extended to the

transitive usage relationship. Yet, a relationship may exist

between two classes A and B even if there is neither an

association nor a dependency between them; this is due to

transitive relationships.

Transitive usage relationship. Direct usage relationships

are considered transitive. This means that, if there is a direct

usage relationship exist from class A to class B and from B

to C then, there is a transitive usage relationship from A to C

called A R C.

There may be several transitive usage relationships from

A to C, in that case the ith transitive usage relationship from

A to C is denoted A Ri B. If the final code allows the

instantiation of a transitive usage relationship from an

object o1 of class A to an object o2 of class B, we say there is

a real transitive relationship from A to B.

For example, Fig. 6 illustrates two relationships between

classes BOOKEVENT and BOOK. A «uses» dependency

T

oState:OrderedbCmd:Borrow b:Book

borrow

setCurrent_state

Fig. 7. Sequence diagram illustrating a real indirect relationship between

BookEvent and Book.

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–21 7

DTD 5 ARTICLE IN PRESS

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769
EC

between the two classes specifies a direct usage relationship.

The second relationship is an transitive one through the

BOOKSTATE class. The BOOKEVENT class depends on the

BOOKSTATE class which depends on BOOK. Thus BOOKEVENT

may depend transitevily on BOOK when calling services

from BOOKSTATE. This relationship is a real relationship if

methods of BOOKSTATE, called by BOOKEVENT objects, use

services from BOOK. The sequence diagram from Fig. 7

illustrates a real transitive relationship between BOOKEVENT

and BOOK. When a BORROW object (of type BOOKEVENT)

calls the borrow()method of class ORDERED, this method

calls the setCurrent_state()method of BOOK. Thus,

a BORROW object actually depends on a BOOK object through

a BOOKSTATE object.

Let us define now the notions of class interaction and

self-usage interaction. These interactions are potential

interactions since they are detected from the class diagram

which is only an abstract view of the software. Indeed, the

interactions detected at the design level can disappear or can

be worsen when the design evolves and is implemented. We

thus also define object interactions, which are real

interactions since relationships between running objects

are involved. Some of them can be detected at the design

level from UML sequence diagrams, but, since those

diagrams can offer only a partial view of the system, and

are likely to change, they cannot be used to detect every real

interaction in the system. Those two notions are made more

formal in the following definitions.

Class interaction (potential interaction). A class inter-

action occurs from class A to class B iff:
 R 770

771
INF
di and j, isj, such as A Ri B and A Rj B,

772
773

774

775

776

777

778

779

780

781

UNCORA self-usage interaction occurs around class A iff: A Ri A

Fig. 6 illustrates a class interaction between Bookevent

and Book. This interaction involves two dependencies

between those two classes. More generally, a class

interaction may involve more than two transitive usage

relationships.

Object Interaction (real interaction). There exists an

object interaction from an object o1 of class A to o2 of class

B iff:

782

783
–
 di and j, isj, such as A Ri B and A Rj B, or A Ri A
784
–
 Ri and Rj are real transitive relationships for o1 and o2.
SOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
ED P
ROOF

For example, if the sequence diagram of Fig. 7 is

associated to the class diagram of Fig. 6, the class

interaction between the BOOKEVENT and BOOK classes is

also an object interaction.

Property. The number of class interactions and self-

usage interactions is an upper bound for the number of

object interactions.

The property is obvious under the assumption that the

code is derived (possibly automatically using an appropriate

CASE tool) from the design.

Now that we have defined the class and object

interactions, we can give our testing criterion.

Test criterion. For each class interaction, either a test

case is produced that exhibits a corresponding object

interaction, either a report is produced that shows this

interaction is not feasible.

The task of producing test cases/reports is impossible if

the number of class interactions is high. The main purpose of

the paper concerns the limitation of these interactions by

improving the design. Indeed, the design must be as close as

possible to the code. Hopefully, we have not to deal with the

determination of real interactions: even with code, the real

dependencies cannot be statically deduced, since OO

languages are not statically typed. Since the number of

class interactions is an upper bound of the number of object

interactions, we recommend to put additional information on

the design that would reduce the number of class interactions.

These additional pieces of information are design constraints

for the programmer (e.g. expressed using UML stereotypes):

one can statically verify that the implementation fits the

constraints. This means that using static verification at the

code level reduces the testing effort. As an example, being

given a «instantiate» stereotype on a dependency from A to

B, the code of class A should invoke only the creation

methods of B. This can be verified statically.
3.4. Example for test generation

This section introduces an example for test generation

process using the adequacy criterion defined in Section 3.3.

The example is based on the class diagram of Fig. 3. First,

testability anti-patterns are identified in the diagram, then

test cases are produced when interactions are implemented

as actual object interactions.

Two self-usage interactions and one class interaction

appear on the class diagram of Fig. 3:
†
 SU1 from BOOK to itself through BOOKSTATE
†
 SU2 from BOOK through BOOKEVENT
†
 CI between BOOKEVENT and BOOK through two different

paths (a direct one and a path going through BOOKSTATE).

The testing criterion states that a test case has to be

produced for each class or self-usage interactions to exhibit

an actual object interaction. For potential interactions that

IN

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–218

DTD 5 ARTICLE IN PRESS

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857
are not implemented as object interactions, a report stating

this absence of actual interaction has to be produced.

The entry point to test this set of classes is the BOOK class.

Thus, a test case consists in creating a BOOK instance and

calling methods on this object. If the reader wants to check

the source code of the example, it is available at the

following URL: http://www.irisa.fr/triskell/results/BOOK/.

3.4.1. SU1 interaction

Our first test objective is the self-usage interaction going

from BOOK to itself through the BOOKEVENT class (SU1). To

cover this interaction, the test case has to call a method in

BOOK that uses the commands set, and this method has to

call a method in the BOOKEVENT class that uses the BOOK. In

the BOOK class, only the manageEvent() method uses

commands. In all the concrete event classes, the methods

are of the following form:

858

859
860

861

862

863
execute(Book b){.}

Thus, a test case that calls the manageEvent()-
method in BOOK, covers the interaction. Here is an example

of such a test case (TC1):
864

865
FSO

866

867
public void testManageEvent(){
Book bZnew Book();
b.manageEvent(“setDamaged”);
F 4
868
TE

b:Book bCmd:Borrow aState:Available

bState:Borrowed

execute

getCurrent_state

aState

borrow

CreateAction

setCurrent_state

Fig. 8. Sequence diagram for test case no3.

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896
UNCORREC

}

3.4.2. SU2 interaction

The second test objective is the interaction going from

BOOK to itself through the BOOKSTATE class (SU2). A test

case covering this interaction should call a method that uses

the currentState attribute in BOOK. Actually, there is

no such method in the Book class, this attribute is only read

by the getState() method. The self-usage interaction

we are trying to test has thus not been transformed in an

object interaction in the implementation. Since there is no

actual self-usage interaction in the implementation, no test

case needs to be defined to cover SU2.

This example illustrates the fact that class interactions

are a worst-case estimation of the testing effort for the

implementation corresponding to a class diagram. Indeed,

some interactions detected on the class diagram (and thus

identified as hard-points for testing on the design) are not

implemented as interactions between objects and are not

taken into account for testing the implementation (and are

not taken into account in the testing effort).

3.4.3. CI interaction

The third objective is to exhibit an object interaction

between BOOKEVENT and Book through two different paths

(CI). Since the BOOK class is the entry point for testing, the

test case has to call a method that uses the commands set.

When writing a test case for the first test objective, we have

seen that a call to the manageEvent() method covers
543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
the relationship from BOOK to BOOKEVENT, and also the one

from BOOKEVENT to BOOK. Thus the direct path from

BOOKEVENT to BOOK is covered by test case calling

manageEvent() in the BOOK class. To cover the second

path from BOOKEVENT to BOOK (through BOOKSTATE), the

call to manageEvent() has to cover the relationship

between BOOKEVENT and BOOKSTATE. This can be done by

calling an event which processing depends on the actual

state of the BOOK instance. In that case the execute()
method in the concrete events has the following form:

execute(Book b){b.getState();.}
Then, if a transition in the statechart is triggered by the

called event, then the relationship between BOOKSTATE and

BOOK is covered, since in that case the method in the

concrete state calls a method on the context attribute. For

example, the borrow() method in the AVAILABLE class

has to change the state of the context to which it is

associated, since the borrow event in the AVAILABLE state

triggers a transition from Available to the BORROWED state.

Here is the corresponding code:
OF
class Available{

public void borrow(){context.chan-
geState(new Borrowed());}
PRO}

To summarize this third test objective, the following test

case covers the interaction between BOOKEVENT and BOOK

through two different paths and Fig. 8 gives the sequence

diagram for this test case (TC2).
Dpublic void testManageEvent(){
Book bZnew Book(); //the book is in the
ordered state
b.manageEvent(‘deliver’); //puts the
book in the available state
b.manageEvent(‘borrow’);
}

The Table 1 summarizes the results for testing an

implementation of the book manager system (Fig. 2)

according to the test criterion of Section 3.4. This table

http://www.irisa.fr/triskell/results/Book/

Table 1

Test report for the book manager sub-system

SU1 SU2 CI

Status Infeasible

TC1 X

TC2 X

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–21 9

DTD 5 ARTICLE IN PRESS

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976
presents the status for each anti-patterns detected in the

system (feasible or not), then, for each test case, which anti-

pattern is covered. Actually, there are much more than three

interactions that should be tested due to the fact that

BOOKSTATE and BOOKEVENT have many sub-classes. Section

4.3, details a way to compute the complexity of these

interactions. This complexity corresponds to the maximum

number of interactions that can appear in presence of

inheritance, and that have to be tested.

We have developed a tool that can help generating test

cases that satisfy the test criterion. This tool is called

JTracor and is available at http://franck.fleurey.free.fr/

JTracor/index.htm. It produces execution traces for java

programs. This tool enables to know which objects have

actually interacted, and which methods have been called by

those objects. The traces obtained when running TC1 and

TC2 are given in Appendix B.
T

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993
EC

4. Modeling testability anti-patterns

In this section, we describe rules for building a graph to

capture testing interactions from an object-oriented system

described with the UML. Definitions are needed about this

graph, called Class Dependency Graph. Then, topological

rules on the graph are given that formally determine

potential interactions. It serves as a basis for applying

classical graph algorithms to detect interactions and

measure their complexity.

4.1. Graph construction from a UML model

This section provides several definitions about the class

dependency graph model. The graph is an oriented labeled
UNCORR
(b)

« interface »
a

a1

a

I-Child

a1

(d)(c)

(a)

ac

ac

ac

ac
U(M(a))

ac

Fig. 9. Basic transformations from a

INFSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
ED P
ROOF

graph, the following thus defines the various labels that can

be found in the graph. Moreover, the definitions provide

information on the way the graph is derived from a UML

class diagram.

In the following definitions, we call C the set of all

classes of a system, and M(c) the set of methods of a class

c2C.

Definition. Class dependency graph (CDG). A class

dependency graph is a pair CDGZ(X,G), where
X is the set of vertices, each vertex representing a class of

an object-oriented system. A class is represented by only

one vertex.

G is a set of pairs (x,y)2X2, called set of directed edges

((x,y)s(y,x)). An edge between two vertices, x and y,

represents a dependency between two classes. An edge is

labeled by the type of dependency that exists between the

classes, namely usage dependencies and inheritance.

Remark. Since there is a vertex for each class and each

vertex represents one and only one class, in the following

definitions, the vertex corresponding to a class c is simply

called c.

Definition. Edge labels. Every edge in a CDG represents a

dependency between two classes of an object-oriented

system. Let c2C, d2C, the edge between vertices c and d

is labeled by the type of dependency that exists between c

and d. Dependencies can be of two types: usage(labeled U)

if c uses d, or inheritance(labeled I) if csd and c inherits

from d. Both labels, carry extra information.

Definition. Label U. We associate a set of methods to the

label U which corresponds to the set of methods in M(d)

used by class c. For this set of method, the default value is

M(d) (as long as we do not know the sub-set ofM(d) used by

c). This transformation is illustrated Fig. 9 (a).

Remark. In the case of Usage dependency named

«instantiate» or «create» between classes C and D, the set

of methods associated to the label U would be (createD())

indicating that C only calls the creation method of class D

through this usage relationship.
a

a1

a

I-Child

a1

I-parent

« interface »
a

a1

a

I-Child

a1

d

d

UML class diagram to a CDG.

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

http://franck.fleurey.free.fr/JTracor/index.htm
http://franck.fleurey.free.fr/JTracor/index.htm

C <<interface>>
B

B1 B2

B21 B22E

1

b

b2b1

c

b22b21

I-Child

U(M(d))

e
U(M(e)) I

I-Child

I-Child
I-Child

U(M(c))

U(M(c))
b

b2b1

c

b22b21e
I-Parent

I-Parent

Fig. 10. CDG example.

IN

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–2110

DTD 5 ARTICLE IN PRESS

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082
Definition. Label I. The inheritance label is specialized in

two labels (Fig. 9(b)). Let c2C, d2CK{c}, if

d2Parent(c):
1083

1084
†
FSO

1085

1086

1087

1088

1089
There is an edge (d,c) labeled I—child. From a testing

point of view, we need a dependency from the parent to

the child, because everywhere the parent class occurs, the

child can occur as well. So, for every parent of the class,

we must test the same statement with an occurrence of

every child.
1090
†
T

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108
REC

There is an edge (c,d) labeled I—parent. From a testing

point of view, this dependency from the child to the

parent is obvious: c uses d when it calls a method

m2MINH(c).

About the definition of label I, it has to be noticed

that, in the case of pure interfaces, there is only one edge

going from the interface to its subclasses. Indeed, the

subclasses do not depend on the super class since this

one is empty (pure interface). However, the edge from

the interface to its subclasses is still meaningful to

indicate the dependence between the interface and the

classes that implement the services it defines (in that

way, the graph reflects that a client of the interface

actually depends on the subclasses that implement the

services, by transitivity).

Example: Fig. 10, shows a class dependency graph

obtained from a small class diagram, by applying trans-

formation rules given in the definitions above.
R

edc
U(M(d)) U(M(e))U(M(c))

ba
U(M(b))

U(M(f))

U(M(c))

f
U(M(f))

Fig. 11. CI on a CDG.

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120
UNCO4.2. Detecting testability anti-patterns from the CDG

In this section, we come back on the anti-patterns

informally described in Section 3.1, and give more precise

definitions of these in terms of the CDG model. First we

recall the definitions of paths and cycles in graphs, then the

class interaction and the self-usage configurations are

defined formally using the graph model.

Definition. Path. A path P in a CDG is a sequence of

vertices PZ[xi1,xi2,xi3,.,xik], such that:
F 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
(xi1, xi2)2G, (xi2, xi3)2G,., (xikK1, xik)2G
xi1 is the origin of the path and is called origin(P)
xik the end and is called end(P)
ED P
ROOFthe xij (2%j%kK1), are the intermediate vertices (we

call the set of intermediate vertices itVertices(P)).

Definition. Cycle. Let P be a path, P is a cycle if and only if

end(P)Zorigin(P).

Definition. Elementary path, cycle. An elementary path is a

sequence of vertices in which there is never twice the same

vertex. An elementary cycle, is an elementary path for

which only the origin vertex is repeated.

On Fig. 10, [c, b, b2, b22] or [c, b, b2, b21, e] are

elementary paths, but [c, b, b2, b21, b2] is not. In the same

way, [b, b1, b] is an elementary cycle, but [b, b2, b21, b2, b]

is not.

Definition. Class interaction (CI). There exists a class

interaction from class c2C to class d2CK{c} (CI(c,d)) if

d at least two elementary paths P1 and P2, P1sP2 such

that:

ðoriginðP1ÞZ originðP2ÞZ cÞo ðendðP1ÞZ endðP2Þ

Z do ðitVerticesðP1ÞsitVerticesðP2ÞÞ:

There is one constraint about paths involved in the class

interaction.Forapathgoing throughan inheritancehierarchy,

it must cross the hierarchy only in one direction, i.e. there

must only edges going from child vertices to parent vertices,

or only edges going from parent vertices to child vertices.

On Fig. 11, a potential CI(d,f) interaction can be detected

because there are two different elementary paths going from

d to f: [d,e,f] and [d,f] which intermediate vertices are

distinct.

edc U(M(d)) U(M(e))

U(M(c))

Fig. 12. SU on a CDG.

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–21 11

DTD 5 ARTICLE IN PRESS

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203
This definition of the CI interaction, takes into account

only unitary interactions: on CDG of Fig. 11, only two

potential interactions are detected: CI(a,c) and CI(d,f), a

bigger interaction which could be CI(a,f) is not detected. We

assume that detecting only unitary interactions is sufficient,

because if interactions CI(a,c) and CI(d,f) are solved, the

bigger interaction CI(a,f) is also solved.

Definition. Self usage (SU). There exists a self usage on

class c2C (SU(c)), if there exists an elementary cycle

which origin is c.

There is one constraint about the cycle, if it goes through

an inheritance hierarchy, it must cross the hierarchy only in

one direction, i.e. there must be only edges going from child

vertices to parent vertices, or only edges going from parent

vertices to child vertices

Fig. 12 shows a small graph on which a SU (c)

interaction can be detected: there is an elementary cycle

from vertex c to vertex c. As for the CI interaction, the

definition of the SU interaction given above considers only

unitary interactions.
T

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221
RREC

4.3. Measuring the complexity of anti-patterns

The complexity of an anti-pattern can now be formalized

by taking into account polymorphism in the system. This

complexity increases when one or several paths involved

goes through a strongly connected component (SCC) of the

graph corresponding to an inheritance hierarchy. This

increase is due to the fact that the classes in an inheritance

hierarchy interact with their ancestor and children classes.

So when there is a class C, that is part of an inheritance

tree, along a path involved in an anti-pattern, all the classes

in the anti-pattern interact with C and the ancestor and

children of C.

The complexitymeasurewe detail here aims at computing

the exact maximum number of interactions involved in an

anti-pattern, in presence of inheritance trees. As it was stated
UNCO
A

A1 A2

A21 A22

C

a

I

a

I-P

a

c

Fig. 13. Slice in a SCC correspondin

INFSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
ED P
ROOF

in the introduction of this paper, the proposed complexity

measurement is based on the number of paths involved in one

anti-pattern as well as on the complexity due to the

inheritance hierarchy that are crossed by these paths.

This gives a good feedback on the testability of the class

diagram since themore paths are involved themore test cases

have to be written. Moreover, the longer is one path, and the

more inheritance hierarchies it traverses, the more difficult it

is to write a test case. At last, each path in one interaction

(each behavior) should be tested in combination with each

other. Indeed, a test case that covers one path checks the

consistency of the target class for the source class when using

this paths, but the test must also check the consistency of the

target class when the paths are combined. So the complexity

of an interaction is the combination of the complexities of all

paths in the interaction.

Definition. Complexity of interaction. Let P1,.,PnbPaths be

nbPaths different paths corresponding to a class interaction

CI. The complexity of the interaction is linked to the

complexity of the different paths in the following way:

complexityðCIÞ

Z
XnbPaths

iZ1

ðcomplexityðPiÞ
X

jO1

ðcomplexityðPjÞ

The complexity of a path is defined in the following.

Definition. Descendents-path. In an inheritance hierarchy, a

descendents-path is the set of classes crossed by a path

going from the root class of the hierarchy to a leaf class.

As defined earlier, paths involved in an interaction have

can go through an inheritance hierarchy only in one

direction. So, a sub-component can be extracted from a

SCC. This sub-component corresponds to a slice of the

inheritance hierarchy going from a root class to a leaf as

shown Fig. 13. This sub-component is called a descendents-

path in an inheritance hierarchy. If a path involved in an

interaction goes through one or several classes of a sub-

component in the graph, the interaction’s complexity grows

in the following way: if there are n classes in the

descendents-path, which are not pure interfaces, the

complexity of the sub-component is n(nK1), because
1
I-Child

U(M(d))

I-Parent
I-Parent

I-Child

I-ChildI-Child

a descendents-path in
the inheritance SCC

1

arent

1

I-Parent

a21

a

a2

a22

g to an inheritance hierarchy.

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

T

I-Parent

I-Parent

I-ParentI-Parent

U(M(dEvt))U(M(bSt))

I-Child
I-Child

I-Child
I-Child

bEvt

Or IL

RdBFx

bSt

book

Bd

I-Child
I-Parent

Av

I-Parent
I-Child

U(M(book))

U(M(bSt))

F B G

R

D

I-Child

I-Child

I-Child I-Child I-Child

I-Parent I-Parent

I-Parent
I-Parent

I-Parent

U(M(book))

SD

SR

I-Child

I-Child
I-Parent

I-Parent

Fig. 14. CDG for the book manager system.

IN

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–2112

DTD 5 ARTICLE IN PRESS

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344
UNCORREC

every class has a relationship with each of the (nK1) others:

n$(nK1) interactions may occur that must be tested.

The total complexity of a path is the product of the

complexity associated to every hierarchy crossed by the

interaction. Indeed, if two inheritance hierarchies are

crossed, every class of a hierarchy can have a relationship

with every class of the other hierarchy.

Definition. Complexity of a path in a class interaction. Let

P be a path involved in a class interaction, IH1,.,IHnbCrossed

be nbCrossed inheritance hierarchies crossed by P

complexityðPÞZ
YnbCrossed

iZ1

complexityðIHi;PÞ

Several descendents-path, in one inheritance hierarchy,

may increase the complexity of one path. If a path in the

interaction goes through a class that is not a leaf in the

inheritance hierarchy, there may be different descendents-

path including this class. For example, on Fig. 14, the

path [bEvt, bSt, book] goes through the root class of

the BOOKSTATE inheritance hierarchy. Since BOOKSTATE is

not a leaf in the inheritance hierarchy, all the

descendents-paths starting with the node bSt have to be

taken into account for the computation of the complexity

of the path [bEvt, bSt, book]. The descendents-paths

[bSt, Or], [bSt, Bd], [bSt, IL, BFx], [bSt, IL, Av], [bSt,

IL, Rd] are involved in the complexity of the path [bEvt,

bSt, book].

Definition. Complexity of a path going through an

inheritance hierarchy. Let IH be an inheritance hierarchy

and P be a path crossing IH. The complexity of IH for P is

the addition of the complexity of dp1,., dpnbDP, the nbDP

descendents-path in IH influencing P’s complexity.

complexityðIH;PÞZ
XnbDP

iZ1

complexityðdpiÞ
FSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
ED P
ROOF

The complexity of a descendents-path corresponds to the

number of potential interactions between classes in this

path. In the worst case, each class in the class has a

relationship with each other, so, if there are n classes in the

path, there are at most n(nK1) interactions in the path.

Definition. Complexity of a descendents-path. Let dp be a

descendent-path and h be the height of dp, the complexity

for dp is:

complexityðdpÞZ hðhK1Þ

The testability measure is being implemented as an

external component of the industrial CASE tool Objecteer-

ing (www.objecteering.com). It is an object oriented CASE

tool created by the French firm Softeam. Objecteering/UML

modeler covers all UML models and can be used to model

entire applications from analysis to semi-automatic code

generation. Section 4.4 gives an example for the complexity

measurement.
4.4. Measuring the complexity of the book manager system

Fig. 14, gives the class dependency graph for the class

diagram of Fig. 2. We detail here the computation for the

complexity of the class interaction from Bookevent to Book.

The complexity is the product of the complexities of the two

different paths involved in this interaction. The first path P1

is a direct link from bEvt to book, the second path P2 is a

path from bEvt to book going through bSt.

Even if P1 is a single edge between two nodes, it still has

an associated complexity since the BOOKEVENT class is part

of an inheritance hierarchy. This complexity is the addition

of the complexity of each descendents-path involved. Since

BOOKEVENT is the root class for this hierarchy, all

descendents-paths are involved in the computation of the

complexity. Those descendents-path are all of the same size,

and thus the same complexity: 2!(2K1). There are 7

descendents-path, the complexity for the inheritance

http://www.objecteering.com

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–21 13

DTD 5 ARTICLE IN PRESS

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429
hierarchy is thus 7!2!(2K1)Z14. This is also the

complexity for P1.

The path P2 goes through bEvt and bSt that correspond to

two classes that are root classes of inheritance trees. We

have just computed the complexity of the tree under bEvt,

which is 14. The complexity for the second inheritance

tree is computed in the same way, it is the addition of

the complexity of each descendents-path involved. There

are two paths of length 2 and three of length 3, so

the complexity is: 2!(2K1)C2!2K1)C3!(3K1)C
3!(3K1)C3!(3K1)Z22. The complexity of P2 is the

product of the two complexities, this corresponds too the

fact that classes in one inheritance tree can potentially

interact with every class in the other tree. The path P2 has a

complexity of 22!14Z308.

The total complexity for the class interaction is equal to

the product of the complexities of P1 and P2. This is the

maximum number of class-to-class interactions. Of course a

very large number of them is infeasible (e.g. the setdamaged

event never interacts with any state) and interactions

between several classes can be covered by a single test

case (e.g. TC2 in Section 3.4 covers interactions between 4

classes). The complexity of an interaction is thus an upper

bound for the number of relationships that should be

covered, taking into account all the dependencies in the

same way. As wee see in Section 5, defining roles for

the relationships would enable to ignore some edges in the

computation of the complexity, and thus have a value closer

to the actual number of class-to-class interactions.
T

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456
UNCORREC

5. Improving design testability

Improving testability of the software, with respect to our

testing criterion, means either avoiding object interactions

and especially concurrent accesses to shared objects, or

decreasing the number of potential interactions to have a

better idea of the actual testability of the design. As we

suggested in Section 3, a solution may consist in clarifying

the design, so that the code can be as close as possible to

what the designer wants.

When it is possible, a way to improve testability and

break inheritance complexity is to use of interface classes

that are ‘empty’ from an execution point of view. Never-

theless it is not possible in all cases. Besides, the UML

allows a user to define stereotypes to associate a semantic to

UML elements. We thus define several stereotypes that

specify the semantic of links involved in testability anti-

patterns (association, dependency, aggregation, compo-

sition). Thanks to these additional specifications, the

programmer should avoid implementing an object inter-

action. As it will be illustrated in Section 6, a simple set of

refinement actions may be of great help to improve the

design, suppress ambiguity and reduce the testing effort.

The stereotypes introduced here are analogous in some way

to data flow testing criteria for classical software [11], that
INFSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
identify ‘definition’ and ‘use’ of variables in a program.

This classical testing model aims at determining the data

flow, the ‘life line’ of variables at unit level.

Here are the four stereotypes we propose:
-
 «create»: a create stereotype on a link from classA to class

B means that objects of type A calls the creation method

on objects of type B. If no «use» stereotype is attached to

the same link, only the creation method can be called.
-
 «use»: a use stereotype on a link from class A to class B

means that objects of type A can call any method

excluding the create one on objects of type B. It may be

refined in the following stereotypes:

– «use_consult»: is a specialization of «use» stereotype

where the called methods do never modify attributes

of the objects of type B.

– «use_def»: is a specialization of «use» stereotype

where at least one of the called methods may modify

attributes of the objects of type B.
ED P
ROOFThe absence of stereotype on a link is equivalent to a

combination of «use» and «create».

The stereotypes are taken into account by the graph

model by associating another value to U labels. This also

allows a designer to estimate the improvement of the design

after adding stereotypes. It corresponds to step 2 of the

methodology proposed in Section 2.1. The use of stereo-

types modifies the identification of objects interactions w.r.t.

the following properties.

Assertion 1—objects interaction: Let P1 and P2 be two

paths from class C to class D, defining a class interaction

between C and D. Let e1 be the entry edge of end(P1), e2 be

the entry edge of end(P2), an objects interaction exists iff

e1 and e2 have associated stereotypes «use» or

«use_def».

Assertion 2—self-usage object interaction: Let P be a

path from class C to itself, defining a self-usage class

interaction for C. Let e be the entry edge of end(P), a self-

usage object interaction exists iff:
-
 e has either «use» or «use_def» stereotype.

Comment: As a consequence, when encountering an

anti-pattern, if the corresponding assertion is false, due to

the specified stereotype, it will never generate interaction

between objects of the final implementation. A static

analysis may verify that the implementation is consistent

with stereotypes. The testing task will not focus on

exhibiting such interactions nor explaining why such

interactions cannot be tested (w.r.t. the testing criterion).

Fig. 15 illustrates a class interaction. The paths going

from class C to D which end with an edge stereotyped «use»

or «use_def», so they cause a contradictory usage of the

shared provider D by class C.

Automated verifications may check that the code is in

conformance with stereotypes constraints. For example, the

C D

e1 « use_def »

e2 « use »

P1

P2

Fig. 15. A class interaction between C and D.

IN

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–2114

DTD 5 ARTICLE IN PRESS

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522
verification of a «use-consult» from A to B consists in

verifying that:
1523

-

FSO
A only calls query methods of B,

1524
-

1525

1526

1527

1528

1529

1530

1531
B query methods never modify B state (directly and

indirectly through the call of non-query methods).

Section 6 illustrates potential testability problems on two

small architectures, and gives examples of what can be done

to avoid real problems at the code level. Stereotypes are

introduced directly by the designer, who wants to specify

more precisely the software.

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542
6. Application examples

In this section, we apply our testability analysis on two

different designs, and for each of them, we propose rules

that can improve the testability of these designs. First, we

illustrate our approach on the book manager example, then

we study a virtual meeting server. The obtained results are

useful since they underline the hard points of the designs,

where misleading interpretations may occur causing a very
UNCORRECT

Meeting

Close

Open

MtgwManager
Authorization

managedMtg

Registered

UserState

WaitingToSpeak

+connectedPersons

InMeeting

1
-currentState

Speaking

1

User

1*

1

-manager-authorized

Manager

*1

-organizer

1

organization

*

PrivateMtg StandardMtg
*

Fig. 16. The Virtual M

F 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
hard to test implementation. The testability analysis for two

other case studies is presented in Appendix A.
PROOF

6.1. The book manager

The CDG for the book manager sub-system is presented

Fig. 14. In Section 4.4, we computed the complexity for the

class interaction between Bookevent and Book. We

mentioned at this moment that many interactions are

infeasible, and should thus not be taken into account for

the computation of the complexity. In the Section 6 we

presented stereotypes that aim at clarifying the model by

allocating roles to the relationship. In that way, the different

types of relationships could taken into account in different

ways when computing the complexity.

The class interaction CI(bEvt, book) can be removed by

specifying that the «uses» dependency between the classes

BOOKEVENT and BOOK is only for reading. The dependency

can be stereotyped «uses_consult», and there is no class

interaction anymore. The path going from BOOKEVENT to

BOOK through BOOKSTATE is still complex, but could be

simplified by refactoring the BOOKEVENT and BOOKSTATE

classes into interface classes. This would avoid interactions

between those classes and their children, and bring back the

complexity of this path to 56 instead of 308.

In the same way, the complexity of the two self-usages

interactions SU1(book) and SU2(book) can be reduced by

refactoring the BOOKEVENT and BOOKSTATE classes into

interface classes.
ED

Ringable
Closed

MeetingState

Server

Create

Connect

Opened

<<interface>>
Command

Leave

Enter

1

-commands *

Speak

Disconnect

Ask

Planned

1
1

1

-currentState

1

1

-meetings
*

SoftTimer

TimerManager

*

1

-ringableObjects

1

-timers*

11

DemocraticMtg

eeting Server.

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

OOF

US

WTS

IM

R

S

User

PM

MM

SM

Mtg

Serv

DM
P C O

MS

R ST

TM

Cmd

E
Co

O

S

Cr
Cl

L

A

D

I-child

I-child
I-child

I-child

I-parent

I-parent

I-parent

I-parent

U(M(US))

U(M(USer))
U(M(User))

I-parent

I-parentI-child

I-child
I-child

I-parent

I-parent

I-child

I-child

I-parent
I-parent

I-child

I-child

I-child

I-parent

U(M(R))

U(M(ST))

U(M(TM))

U(M(Mtg))

U(M(User))

U(M(User))

I-parent

U(M(Mtg))

U(M(Cmd))

I-child

I-child

I-child

I-childI-child
I-child

I-child
I-child

I-child

U(M(Mtg))

U(M(Mtg))

U(M(Mtg))

U(M(Mtg))

U(M(Mtg))

U(M(Mtg))

U(M(Mtg))

U(M(Mtg))

U(M(User))

U(M(User))

U(M(MS))

U(M(User))

Fig. 17. CDG for the virtual meeting server.

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–21 15

DTD 5 ARTICLE IN PRESS

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656
6.2. Testability of a virtual meeting server

Fig. 16 presents the class diagram for a virtual meeting

server. This server aims at simulating work meetings. When

connected to the server, a client can enter or exit a meeting,

speak, or plan new meetings. Three types of meetings exist:

1657

1658
-
 T

INF

1659

1660
standards meetings where the client who has the floor is

designated by a moderator (nominated by the organizer

of the meeting)

1661
-

1662

1663
Cdemocratic meetings which are standard meetings where

the moderator is a FIFO robot (the first client to ask for

permission to speak is the first to speak)

1664
-
User

MM

Mtg

ServU(M(User)) U(M(Mtg))

U(M(MM))
U(M(User))

U(M(User))

Fig. 18. Configuration of included class interactions.

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680
UNCORREprivate meetings which are standard meetings with

access limited to a defined set of clients.

All the possible commands are reified and inherit of the

COMMAND interface. The possible internal states of a client

and a meeting are managed through the STATE pattern.

The Class Dependency Graph for the Virtual Meeting

Server is given Fig. 17. A lot of class interactions are

detected on this model, and we do not detail all of them, but

just emphasize interesting configurations, and show that

even on a quite simple design (29 classes), a lot of testing

problems appear.

There are two self usage interactions around nodes

User and Mtg. This is due to the use of a State design

pattern [19]. For both of these interactions, it is possible

to refactor the USERSTATE and MEETINGSTATE to make

interfaces instead of abstract classes. This refactoring does
SOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
ED P
Rnot suppress the self-usage interactions, but to reduces

their complexity.

An interesting configuration of nested class interactions

exists between User, Serv, Mtg and MM. There is a class

interaction CI(Serv, User) on one hand, and another CI(Mtg,

User) on the other hand. Note that CI(Serv, User) includes

CI(Mtg, User).

Two remarks can be made on this particular configur-

ation isolated on Fig. 18. First, depending on the way the

nested interaction CI(Mtg, User) will be solved, its

enclosing class interaction CI(Serv, Mtg) is not necessarily

solved. Secondly, even if it is not possible to delete CI(Mtg,

User), CI(Serv, User) can be solved, for example refining

the design with a stereotype «use_consult» on the

association from Server to Meeting. From this configur-

ation, we can deduce that the class interactions can be

combined in different ways; in some cases, not all the class

interactions have to be taken into account (as in Fig. 11), in

others cases, it is necessary to deal with all the class

interactions(as in Fig. 18)

IN

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–2116

DTD 5 ARTICLE IN PRESS

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739
Others class interactions can be detected, from example

from Mtg to User (where Mtg can access to User directly,

through MM or through MM and PM) or from Serv to Mtg.
T

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792
UNCORREC

7. Related work

Testability is at the border of two software research

fields. On one hand it is related to testing problems: it

evaluates the effort needed to test a piece of software. On the

other hand, the testability is a measurement, thus a large part

of this work is related to previous work about object-

oriented metrics.

Traditionally, testing is often divided into several phases,

for example, unit testing, integration testing and system

testing. This separation is not so clear for testing of an OO

system. Due to inheritance and dynamic binding, the control

flow of an OO–system is not rooted anymore in the main

encapsulation unit, the class. Unit testing, which focuses on

classes and methods, cannot capture the interactions

distributed throughout the system. The effectiveness of

unit testing is thus even more limited to local aspects [21,22]

than it is in ‘traditional’ (non–OO) systems. Integration

testing, on the other hand, insists more on the component

interfaces and on the order in which components are

integrated [23–26]. It does not concentrate on testing of

internal component interaction. Hence, it also may miss

some of the interactions among the classes. Finally, at the

system level, testing is usually of the ‘black-box’ nature,

and is often not formalized, and when it is, it requires, to be

really applicable in practice, strong (and possibly unrealis-

tic) assumptions concerning the completeness of behavioral

and dynamic models [27]. In this paper, the work we

propose is complementary to system testing: it aims at

covering object interdependencies with test cases that may

be obtained using system testing techniques [28], e.g.

derived from use cases and sequence/collaboration

diagrams.

Besides, a large number of measures have been proposed

to evaluate the quality of object-oriented designs [12], one

of them is coupling. The coupling measures the strength of

the relationship between two modules. In the case of object-

oriented designs, modules are classes. Since the introduc-

tion of this measure, a large number of coupling measures

have been proposed, which correspond to different types of

relationships between classes [29].

This paper proposes a mapping of a coupling

measurement to precise modeling elements of the UML.

The coupling between object (CBO) measure [29,30]

corresponds to a set of classes that use each other’s. In the

UML class diagram, a class A is said to use another class

B if there exists an association or a dependency between

these classes. The CBO measure is discussed in terms of

testability in [2], and test criteria for this type of

relationship among classes are proposed in [31]. These

work focus on each path independently and aims at
FSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
counting/covering. Here, we concentrate on particular

paths that contribute to interactions in the overall system.

To our knowledge, this precise contribution to the

testability of each dependency participating to coupling

has never been studied, and especially in the case of

software designed using the UML. To summarize, the

goal of the paper is less to limit coupling than to specify

roles of links participating to coupling.
ED P
ROOF

8. Conclusion

In this paper, we have identified two configurations in

a UML class diagram that can lead to code difficult to

test. These configurations are called testability anti-

patterns, and can be of two types, either class interaction

or self-usage interaction. Those anti-patterns between

classes may be implemented as interactions between

objects in which case, the final software may be very

difficult to test. The paper proposes a test criterion that

forces to cover all object interactions. It also defines a

model that can be derived from a class diagram, and from

which it is possible to detect, in an unambiguous way all

the anti-patterns. From this model, it is also possible to

compute the complexity of anti-patterns which is the

maximum number of object interactions that could exist

(and should be tested). The testability measurement

corresponds to the number and complexity of the anti-

patterns.

Since this measurement is done from a class diagram, all

we have are potential interactions that may become real. So

the complexity is really an estimation of the worst case that

could appear, and is often much greater than the actual

complexity of the implementation. A refinement in the

design could consist in précising the role of the relationships

between classes, so that the information available at a

design phase is closer to the implementation. In that case,

the obtained complexity would be closer to the actual

complexity of the software. To do so, we propose a set of

refinement actions based on refactoring and UML

stereotypes.

A further step in that direction would be the study of

design patterns [19] as microarchitectures in which the roles

of associations and dependencies are well-known. The idea

would be to automatically add stereotypes when applying a

design pattern on a class diagram.
Appendix A. A compiler architecture and an ICQ client

Fig. A1 gives an object-oriented architecture for a

compiler taken from [32]. This architecture includes a

Scanner class that produces tokens, a Parser that produces

an abstract syntax tree using a NODE_BUILDER and a

PROGRAM_NODE representing an abstract node in the abstract

syntax tree.

T

F

C_Code_Generator

Bin_Expression

Scanner

Read

Compiler

Parser

Node_Visitor

Stat_Generator

Program_Node

Expression

Integer_ValueVariable_Ref
Conditionnal

*

*

1

1

1

Node_Builder

Statement

Assignment PrintWhile Block

Linked_List
T

1

Fig. A1. A compiler architecture.

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–21 17

DTD 5 ARTICLE IN PRESS

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885
A Class Dependency Graph can be derived from this

architecture (Fig. A2). Two potential class interactions can

be detected from this graph. The first one, CI(Fa,PN), is due

to the two paths [Fa, NB, PN] and [Fa, NV, PN]. The second

potential interaction, CI(NV,PN), is due to the paths [NV,

Fa, NB, PN] and [NV, PN]. Both interactions seem quite

simple as only four classes, linked by simple uses

relationships, are involved. But, their complexity grows

enormously because of the eleven classes in the PROGRAM_-

NODE inheritance hierarchy: 9 descendents-paths of size

three are involved in both interactions. The global complex-

ity of this hierarchy is

X9

iZ1

ð3ð3K1ÞÞZ 54:
UNCORREC
U(M(Fa))I-Child

I-Child
I-Child

NV1

E2E1

Fa

NV

I-ChildNV2

E

E3

I-Child

PN

I-ChildI-Child

S2S1

I-C

I-parent

I-parent

I-parent I-parent

I-parent

I-parent
I-parent

I-Child

I-parent

I-C

I-parent

main

U(M(PN))

U(M(NV))

U(M(Fa))

Fig. A2. CDG for the com

INFSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
ED P
ROOThe NODE_VISITOR inheritance hierarchy has a smaller

impact on the complexity since there are only two classes.

The complexity for this hierarchy is only 4.

Since all paths involved in the interactions cross the same

inheritance hierarchies, they all have the same complexity:

54!4Z216. In the same way, both interactions have the

same complexity that is the product of the two path’s

complexity: 216!216Z46656.

Here, the design can be refined with stereotypes on

associations from COMPILER to NODE_VISISTOR and from

COMPILER to NODE_BUILDER. Indeed, COMPILER instances

should use NODE_VISITOR instances only for queries, the

association is thus stereotyped «use_consult». The associ-

ation from COMPILER to NODE_NUILDER should be stereo-

typed «use_def» since COMPILER instances might change
U(M(Parser))

U(M(NB)) Parser

NB

Scanner

S

S3

hild

S4

I-Child

S5

I-Child
S6

I-Child

LList

I-Child

I-parent

I-parent
I-parent I-parent

I-parent

hild

U(M(PN))

U(M(Scanner))

U(M(S))

piler architecture.

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

T

OOF

BuddyNonConnected

ClientState

ICQIndirectProtocol AIMIndirectProtocol

<<instantiate>>

Buddy

BuddyConnected <<interface>>
DirectProtocol

<<interface>>
IndirectProtocol

ICQDirectProtocol

<<instantiate>>

1 *

BuddyState

BuddyICQ

1 1

1

Client

ClientConnected

BuddyAIM

1 1

1*

<<instantiate>>

*

<<instantiate>>

AIMDirectProtocol

ClientNonConnected

Fig. A3. An instant-messaging client.

IN

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–2118

DTD 5 ARTICLE IN PRESS

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996
the state of NODE_BUILDER instances. If these stereotypes are

added to the design, the programmer should not implement

any object interactions.

Fig. A3 presents the class diagram for a software that

allows distant instant messaging clients to communicate

using the ICQ protocol. Any kind of media may be

used: texts, sounds, and video. There are two central

classes in this architecture, CLIENT and BUDDY. Both

classes can be either in a connected or non-connected
UNCORREC
I-Parent

bnc

bSt

bc

I-Child

I-Child

b

I-Parent

I-Child

bicq baim

I-Child

I-Ch

I-C

I-Parent
I-Pare

U(M(b))

U(M(bSt))

U(M

U(M(ip))
U(M(dp))

U(M(create))
U(M(create))

bnc

bSt

bc

b

bicq baim

Fig. A4. CDG for an insta

FSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
ED P
R

state. An instance of CLIENT is connected to a BUDDY via

a direct or indirect protocol, depending on the state of

the buddy.

Several anti-patterns can be detected from the CDG for

this system (Fig. A4). Two self-usage interactions SU(c)

and SU(b), and four class interactions CI(b,idp), CI(b,adp),

CI(b,iip), CI(b,aip). Both self-usage interactions are of

complexity 4, and all the class interactions are of

complexity 16.
c

I-Parent

cc

cSt

cnc

I-Child

I-Child

idp

dp

adp

I-Child

ild

hild

iip

ip

aip

I-Child

nt

U(M(cSt))

U(M(c))
(b))b

U(M(create))

c

cc

cSt

cnc

idp

dp

adp

iip

ip

aip

U(M(create))

nt-messaging client.

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

TED P
ROOF

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–21 19

DTD 5 ARTICLE IN PRESS

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127
UNCORREC
INFSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21

2128

TED P
ROOF

IN

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–2120

DTD 5 ARTICLE IN PRESS

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226
REC
R 2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240
UNCOAppendix B. J Tracor book manager system study

We present here the main traces and the object graphs

obtained with the Jtracor tool available from http://franck.

fleurey.free.fr/JTracor/index.htm. JTracor is a framework

and has a specific output format for traces that can be easily

implemented. Here is the simple kind of results we produce

with the standard version, a textual and a graph representing

the objects instances and their message exchanges. A future

version will produce UML sequence diagram in the XMI

standard exchange format of UML. The tool has been
FSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
successfully applied on very complex system calls invol-

ving hundred of communicating objects (such as call on the

Java virtual machine).
References

[1] J.M. Voas, K. Miller, Software testability: the new verification, IEEE

Software 12 (3) (1995) 17–28.

[2] R.V. Binder, Design for testability in object-oriented systems,

Communications of the ACM 37 (9) (1994) 87–101.

[3] A. Abdurazik, A.J. Offutt. Using UML collaboration diagrams for

static checking and test generation. In Proceedings of UML’00. York,

UK, October 2000. pp. 383–395.

http://franck.fleurey.free.fr/JTracor/index.htm
http://franck.fleurey.free.fr/JTracor/index.htm

T

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–21 21

DTD 5 ARTICLE IN PRESS

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333
[4] R.S. Freedman, Testability of software components, IEEE Trans-

actions on Software Engineering 17 (6) (1991) 553–564.

[5] J.M. Voas, PIE: a dynamic failure-based technique, IEEE Trans-

actions on Software Engineering 18 (8) (1992) 717–727.

[6] J.M. Voas, K. Miller, Semantic metrics for software testability,

Journal of Systems and Software 20 (3) (1993) 207–216.

[7] Y. Le Traon, C. Robach. Testability measurements for data flow

designs. In: Proceedings of International Software Metrics

Symposium (Metrics’97). Albuquerque, NM, USA, November

1997. pp. 91–98.

[8] Y. Le Traon, F. Ouabdessalam, C. Robach. Analyzing testability on

data flow designs. In: Proceedings of ISSRE’00 (Int. Symposium on

Software Reliability Engineering). San Jose, CA, USA, October 2000.

pp. 162–173.

[9] B.W. Weide, S.H. Edwards, W.D. Heym, T.J. Long, W.F. Ogden.

Characterizing observability and controllability of software com-

ponents. In: proceedings of 4th International Conference on Software

Reuse. Orlando, USA, April 1996. pp. 62–71.

[10] J.M. Bieman, J. Schultz. Estimating the number of test cases required

to satisfy the all-du-paths testing criterion. In: Proceedings of

Software Testing Analysis and Verification Symposium, December

1989. pp. 179–186.

[11] S. Rapps, E.J. Weyuker, Selecting software test data using data flow

information, IEEE Transactions on Software Engineering 11 (4)

(1985) 367–375.

[12] M. Shepperd, Object-oriented metrics: an annotated bibliography.

http://dec.bournemouth.ac.uk/ESERG/bibliography.html.

[13] N.E. Fenton, R.W. Whitty, Axiomatic approach to software metrica-

tion through program decomposition, Computer Journal 29 (4) (1986)

330–339.

[14] M. Shepperd, D. Ince, Derivation and Validation of Software Metrics,

Oxford University Press, New York, NY, 1993. p. 167.

[15] L. Briand, S. Morasca, V.S. Basili, Property-based software

engineering measurement, IEEE Transactions on Software Engineer-

ing 22 (1) (1996) 68–86.

[16] B. Kitchenham, S.L. Pfleeger, N. Fenton, Towards a framework for

software measurement validation, IEEE Transactions on Software

Engineering 21 (12) (1995) 929–944.

[17] B. Baudry, J.-M. Jézéquel, Y. Le Traon. Robustness and diagnosa-

bility of designed by contracts OO systems. In: Proceedings of

Metrics’01 (Software Metrics Symposium). London, UK, April 2001,

pp. 272–283.

[18] M. Fowler, Reducing coupling, IEEE Software 18 (4) (2001)

102–104.
UNCORREC

INFSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
ED P
ROOF

[19] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Professional Com-

puting, Addison-Wesley, 1995.

[20] A. Correa, C.M.L. Werner, G. Zaverucha. Object oriented design

expertise reuse: an approach based on heuristics, design patterns and

anti-patterns. In: Proceedings of International Conference on Software

Reuse, June 2000. pp. 336–352.

[21] J.-M. Jézéquel, D. Deveaux, Y. Le Traon, Reliable objects: a

lightweight approach applied to Java, IEEE Software 18 (4) (2001)

76–83.

[22] M.J. Harrold, G. Rothermel. Performing data flow testing on classes.

In: Proceedings of FSE (Foundation on Software Engineering). New

Orleans, US, December 1994. pp. 154–163.

[23] K. Akif, H. Vu Le, Y. Le Traon, J.-M. Jézéquel. Selecting an efficient

OO integration testing strategy: an experimental comparison of actual

strategies. In: Proceedings of ECOOP’01 (European Conference for

Object-Oriented Programming). Budapest, Hungary, June 2001.

pp. 381–401.

[24] D.C. Kung, J. Gao, P. Hsia, Y. Toyashima, C. Chen, On regression

testing of object-oriented programs, The Journal of Systems and

Software 32 (1) (1996) 21–40.

[25] L. Briand, Y. Labiche. Revisiting strategies for ordering class

integration testing in the presence of dependency cycles. In:

Proceedings of ISSRE’01 (Int. Symposium on Software Reliability

Engineering). Hong-Kong, China, December 2001. pp. 287–296.

[26] Y. Le Traon, T. Jéron, J.-M. Jézéquel, P. Morel, Efficient OO

integration and regression testing, IEEE Transactions on Reliability

49 (1) (2000) 12–25.

[27] R.V. Binder, Testing Object-Oriented Systems: Models, Patterns and

Tools, Addison-Wesley, 1999.

[28] L. Briand, Y. Labiche, A UML-based approach to system testing,

Journal of Software and Systems Modeling 1 (1) (2002) 10–42.

[29] L. Briand, J.W. Daly, J.K. Wüst, A unified framework for coupling

measurement in object-oriented systems, IEEE Transactions on

Software Engineering 25 (1) (1999) 91–121.

[30] S.R. Shyam, C.F. Kemerer, A metrics suite for object oriented design,

IEEE Transactions on Software Enginnering 20 (6) (1994) 476–493.

[31] R.T. Alexander, J. Offutt. Criteria for testing polymorphic relation-

ships. In: Proceedings of ISSRE’00 (Int. Symposium on

Software Reliability Engineering). San Jose, CA, USA, October

2000. pp. 15–23.

[32] J.-M. Jézéquel, M. Train, C. Mingins, Design Patterns and Contracts,

Addison-Wesley, 1999. p 348.
2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

http://dec.bournemouth.ac.uk/ESERG/bibliography.html.

	Measuring design testability of a UML class diagram
	Introduction
	Testability of OO design: definitions and methodology
	Software testability
	Designing for testability: a methodology
	Example

	Test criterion and testability anti-patterns for OO systems
	Informal analysis of testability anti-patterns
	Inheritance complexity
	Test criterion for UML class diagrams
	Example for test generation

	Modeling testability anti-patterns
	Graph construction from a UML model
	Detecting testability anti-patterns from the CDG
	Measuring the complexity of anti-patterns
	Measuring the complexity of the book manager system

	Improving design testability
	Application examples
	The book manager
	Testability of a virtual meeting server

	Related work
	Conclusion
	A compiler architecture and an ICQ client
	J Tracor book manager system study
	References

