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Abstract

Design-for-testability is a very important issue in software engineering. It becomes crucial in the case of OO designs where control flows

are generally not hierarchical, but are diffuse and distributed over the whole architecture. In this paper, we concentrate on detecting,

pinpointing and suppressing potential testability weaknesses of a UML class diagram. The attribute significant from design testability is

called ‘class interaction’ and is generalized in the notion of testability anti-pattern: it appears when potentially concurrent client/supplier

relationships between classes exist in the system. These interactions point out parts of the design that need to be improved, driving structural

modifications or constraints specifications, to reduce the final testing effort. In this paper, the testability measurement we propose counts the

number and the complexity of interactions that must be covered during testing. The approach is illustrated on application examples.

q 2005 Published by Elsevier B.V.

Keywords: Object-oriented software measurement; UML; Object-oriented testing; Software design quality; Testability; Anti-patterns
T

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106
CORREC

1. Introduction

Software testing is often a very costly part of its life

cycle. Any technique that improves a software design at an

early stage can have highly beneficial impact on the final

testing cost and efficiency. This paper is concerned with the

issue of testability of object-oriented (OO) static designs

based on the UML (Unified Modeling Language) class

diagrams. It aims at pinpointing the parts of the software

architecture where complex interactions may appear and

lead to difficulties for testing. Testability, informally defined

as the easiness to test a piece of software, is a strongly

desired feature of software. It tends to make the validation

phase more efficient in exposing faults during testing, and

consequently to increase quality of the end-product for

clients’ satisfaction. Furthermore, testability is a criterion of

crucial importance to software developers since the sooner

it can be estimated, the better the software architecture will

be organized to improve subsequent implementation

and maintenance. This question of testability [1] has been

revived with the object-orientation [2].
UN
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ED PTo guide the testing task, the main OO static design view,

namely the class diagram, appears as a good basis to detect

and master the widespread implicit control dependencies,

due to inheritance and dynamic binding. However, a class

diagram is often ambiguous, incomplete, and may lead to

several false interpretations, consequently possibly false

implementations and, dramatically, useless tests. Comp-

lementary views of the UML, such as object diagrams or

collaboration diagrams and sequence ones could help.

Indeed, collaboration diagrams may serve as expected

traces that a test case must exhibit [3], while sequence

diagrams offer a basis for specifying nominal and excep-

tional test purposes. If statechart diagrams represent

exhaustively a given dynamic behavior, collaboration and

sequence diagrams may help understanding interactions but

cannot detail each one nor restrict their possible number. In

the same way, object diagrams only represent a particular

system configuration of class instances and do not catch all

potential ones. In conclusion, we consider that the main

views on which testability must be analyzed are class

diagrams and statecharts, while the other views only display

snapshots of some possible behaviors. This work focuses on

the testability weaknesses of UML class diagrams.

Like for any classical software, the difficulty for testing is

due to the existence of client/supplier relationships in
Information and Software Technology xx (xxxx) 1–21
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the system. Indeed, if there were no client in the software

there would be no defined set of executions and thus nothing

to test. Thus, after unit testing, failures should only occur

because of a misuse due to wrong interactions between

objects: these interactions go throughout the architecture

and are made more complex if the client/supplier depen-

dencies traverse inheritance trees. Polymorphic dependen-

cies multiply the number of potential object types that may

interact with various—and possibly false—implemen-

tations. This paper introduces a testing criterion that

requires the coverage of these object interactions. To be

realistically applied, the number of test cases must be

reasonable and the paper proposes an estimate of the testing

effort, measured by approximating the number of object

interactions from the UML class diagram.

The number of object interactions is estimated by the

number of ‘class interactions’: a class interaction is a

topological configuration that occurs if a class is supplier

from another through various possible paths of dependencies.

Moreover, this work proposes a complexitymeasurement for

class interactions based on the complexity of inheritance

hierarchies that are present along in the paths of dependencies

involved in the interaction. The number of class interactions

being an estimate of object interactions (it is actually the

maximumnumberofpossibleobject interactions), it is also an

estimate of the number of test cases that will have to be

exhibited to test thesystem.Moreover, thecomplexityofclass

interactions is an estimate of the complexity of producing the

test cases. The number and complexity of class interactions is

thus an estimate of the difficulty of testing a system, and it is

the testability measurement proposed in this paper.

The proposed testability measurement is computed from

the class diagram and thus offers a worst-case estimate of the

testability of the implementation (the case where each class

interaction is actually implemented), which can be different

from the actual testability. However, we believe this is still

useful from a methodological point view, since the class

interactions are still specific points the designer should be

aware of in terms of testability (it is thus useful to identify

them automatically). Moreover, associating a complexity

measure to these interactions enables the designer to focus on

the most complex to improve the design.

Based on the proposed testing criterion, the objectives of

the paper are:
213

214
–
FSO

215

Oto provide a model to capture class interactions and

pinpoint classes that cause the interactions,
216
–
217

218
Cto identify hard-to test interactions and measure their

number and complexity due to polymorphic uses,

considered here as our estimate of design testability,
219
–
220

221

222
UNto suggest improvements on the design to reduce the

number and complexity of class interactions: these

improvements at design level are realistic since static

verifications on the code ensure their implementation,
223
–
224
in fine to provide a way of accepting or rejecting a design

based on testability analysis. The design is rejected when
F 4543—10/2/2005—20:41—RAJA—134962—XML MODEL 5 – pp. 1–21
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no improvement can be added to limit the object

interactions.

The measure of testability we propose is a counting

measure: it counts the number and the complexity of class

interactions to be covered by test cases. It is thus a global test

cost measure for OO systems designed with a class diagram.

Section 2 opens with a general presentation of the

testability measurement, and what particular points should

be studied in an object-oriented context. It also introduces a

methodology to design testable OO systems. Section 3

analyses the notion of testability anti-pattern, and proposes

precise definitions in terms of elements of a UML class

diagram. Then, it defines a testing criterion and illustrates

the test generation on a small example. Section 4 defines a

graph model that can be derived from a class diagram and

from which all anti-patterns can be detected. We also

propose a measure for the complexity of anti-patterns, that

can be automatically computed from the graph model.

Section 5 gives clues for refinements that can drive the

design closer to the implementation and thus make the

measurement on the design closer to actual testability

problems. Section 6 gives two application examples, and

Section 7 summarizes related work.
ED P
R2. Testability of OO design: definitions and methodology

This section introduces the context for this work. It starts

with definitions about software testability and what type of

information the measure must capture. Then, we describe

specific testing problems that appear in many OO

architectures. This leads to a proposal for a methodology

for testability of OO software. At last, we present an

example that is used through the paper for illustration.
2.1. Software testability

In this paper, testability serves two goals: a technical one,

and a more managerial one. Testability is a tool for the

software designer who wishes to identify hard-to-test

systems while still at the design stage. For the project

manager, they provide a means to decide whether a trade-off

in terms of cost is worth searching for between solutions

based on different designs and different testing methods.

For example, whatever the quality factor under scrutiny

is, the type of situations that a designer might hope to

identify include:
–
 stress points where there is a bad degree of this factor,

and thus a need to improve the design,
–
 inadequate refinement leading to a sharp and undesired

variation in this factor.

Our general definition for testability is the following.
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Definition. Testability. We define the quality factor

testability as the ease of testing a piece of software design.

This easiness is both an intrinsic property of the design (thus a

proper characteristic of the product) and a property correlated

to the testing strategy which is used to reach a chosen test

criterion (thus, a joint characteristic of the product and the

process). Testability is influenced by three parameters:

288

289
–
INF

290
Global test cost: the overall test cost to reach a (a joint

product-process property),
291
–
292
Controllability: the overall easiness of generating test data

(an intrinsic software property),
293
–
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Observability: the overall easiness of checking the

validity of the execution results (another intrinsic soft-

ware property).

In this paper, we focus on a global test cost measure of

testability.

Definition. Global test cost. This factor concerns the testing

effort needed to reach a given testing criterion. It relates to

the size of the test set, the difficulty of generating the test

data to reach a given test adequacy criterion and the

difficulty of deciding on the validity of the run results.

The test objective is not only to cover or execute each part

of the model but also to reveal hidden faults. From this

viewpoint, the notions of controllability and observability of

a software component, introduced by Freedman [4] are

complementary to the global test cost. For instance,

controllability is related to the effective coverage of the

declared output domain from the input domain. However, his

approach fails at considering the inherent difficulty to execute

and infect a component and propagate the faulty state to the

outputs. This drawback has been well analyzed by Voas’

pragmatic approach [1,5], at code level. At design stage,

several measurements have been proposed to estimate an

information loss, such as Voas’ Domain/Range Ratio (Drr)

[6] for imperative programs or the controllability/observa-

bility measurements stated in [7,8] for data flow designs.

Weide et al. [9] have characterized observability and

controllability on abstract data types from an understand-

ability viewpoint for software reuse. Up to now, the question

of measuring the controllability/observability in the OO

context at design stage has not found any satisfying answer.

We do not address this issue in this paper. Concerning the

‘global test cost’ category of measures, Bieman and Schultz
UNC
OO Design

Testability
analysis

2. Improve the design

3. Reject the design

4. Accept and
the des

5.

1. Model the design

Fig. 1. Improving testabil
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[10] have examined the number of test cases that are needed

to satisfy the all-du-paths criterion [11], and in catalogues of

measures such as [12], testability is indirectly estimated,

based on the general assumption that testability is likely to

degrade with a more highly coupled system of objects.

To obtain a relevant testability measure, specific OO

issues must be taken into account: the control distributed all

over the architecture and the numerous and complex

interactions among objects (due to dynamic binding and

polymorphism). The literature insists on the difficulty to

elaborate valid measurements [13–16], and we can easily

find catalogues of measures, typically counting every

attributes that can be found in an object-oriented system

(number of methods, depth of inheritance trees, etc.). The

measures are obtained neither from the observation of case

studies nor by a clear intuitive relation between the factor

under measurement and the measured attributes of the

software. In this paper, since the measured factor, the

testability, first appear as quite abstract and unclear, we

choose to have a pragmatic approach. Conversely to our

previous research based on axiomatization [8,17], the

measurement philosophy is thus different from classical

‘top down’ approaches. We also renounce to cover all the

spectrum of what may be measured and related ‘a posteriori’

to testability. Our methodology is ‘bottom-up’, in the sense

we first studied concrete applications carefully, in order to

identify the attributes that impact the testability, in a precise

testing context. To do that, we need to define precisely the

testing task (testing criterion that has to be satisfied) and

then be able to evaluate the effort to test a piece of software

according to this criterion (evaluate all the interactions that

have to be covered as well as their complexity). The concept

we identify as relevant of a ‘testability weakness’ is called a

testability anti-pattern and the measured attribute a class

interaction or self-usage interaction. The global test cost

measure we define is equal to the number of detected

testability anti-patterns. It will be defined precisely in the

following after the study of an application example.

2.2. Designing for testability: a methodology

Fig. 1 summarizes a methodology that helps improve a

design’s testability. The main specification for the testabi-

lity analysis is the class diagram. The first step of

the proposed method consists in running a testability

analysis on the class diagram. This analysis detects points
Constraints
verification on the
 implementation

 implement 
ign

 Modify the implementation

Implementation
Testing

ity of OO designs.
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+execute(In b:Book)

Borrow

Reserve

InLibraryBorrowed

Reserved

Ordered Fix

context

BookState

+borrow()

1currentState

Book

getCurrent_state()

manageEvent()

setCurrent_state()

setDamaged()

*
1

AvailableBeingFixed

GiveBack

SetDamagedDeliver

SetRepaired

commands

Fig. 2. UML class diagram for book manager sub-system.
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in the design that have to be improved for testability. As we

will see in Section 2.3 these points correspond to particular

configurations in the diagram that can lead to hard-to-test

implementations. To run this analysis automatically on a

class diagram, we need a model that can be derived from the

diagram and from which it is possible to detect hard points

for testability in an unambiguous way.

As a result, the testability analysis lists all the points that

need to be improved in the design. As we will see in Section

4, it also associates a complexity measure to these points.

Once the analysis has been run, it possible to improve the

design at those specific points, or to reject as too difficult to

test, or to accept this design as testable and implement it.

The design can be improved, either by reducing coupling in

the architecture [18], or by expressing constraints that will

help the developer avoid implementing error-prone object

interactions. Our suggestion (Section 5) is to use dedicated
UNCORREC

Reserved

Available

[#re

[#

/reserve

/reserve

[

ordered

[#reservations > 0]/deliver

[#reservations = 0]/deliver

/reserve

/b
/borrow

Fig. 3. UML statechart for

FSOF 4543—10/2/2005—20:41—RAJA—134962—XML MODEL 5 – pp. 1–21
OFstereotypes on association and dependencies specifying

more clearly the type of usage that must be implemented

(creation, reading.). So, when the design is implemented,

the constraints are checked, and the implementation may

need to be modified if the constraints are not verified.
ED P
RO

2.3. Example

We introduce here a UML class diagram that serves as an

illustration example all along this paper. This diagram

corresponds to a sub-system in charge of managing books in

a larger library system (Fig. 2). All the classes are given but

we show only the methods that are used to illustrate

particular points in the following sections. This class

diagram is the design for a system implementing the UML

statechart presented Fig. 3. The statechart describes the

dynamic behavior of a book object. An object is created
InLibrary

BeingFixed

[damaged]/fix

[damaged]/fix

servations > 0]/deliver

reservations = 0]/deliver

/reserve

#reservations > 0]/give_back

[#reservations = 0]/give_back

orrow Borrowed

/reserve

book management.
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when a book has been ordered (initial state). Once the book

is ordered, it can be reserved at any time. When it comes in

the library, it is either available or reserved, and it can then

be borrowed. If the book is damaged and is in the library, it

can be fixed. The design proposed to implement this

statechart (Fig. 2) is based on two design patterns [19]: the

state pattern that reifies each state of the statechart in one

class and the command pattern that reifies events.

Now that the general context for this work has been

presented, Section 3 details the particular interactions we

focus on, as testability weaknesses in a class diagram. Then,

we propose a testing adequacy criterion to cover these

interactions and illustrate this criterion by writing test cases

for the book manager sub-system.
T
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3. Test criterion and testability anti-patterns

for OO systems

A testing criterion is needed to detect object misuses due

to erroneous interactions. Here we propose a criterion based

on the UML as a reference specification, that aims at

covering all object-to-object dependencies that should be

tested. The class diagram is the main specification used to

define precisely what must be tested. To apply the criterion,

we show that the design must be precise enough and as close

as possible to the actual implementation. Once the

testability problems have been highlighted, a design can

be either improved or rejected as not testable.

This section starts with an informal analysis of testability

problems of the book manager design (Fig. 2). These

problems actually correspond to particular configurations

that can be found in a class diagram and lead to hard-to-test

implementations. These configurations are called testability

anti-patterns, as they describe patterns that should be

avoided for a testable design. We also explain how

inheritance can increase the complexity of anti-patterns.

After that, those anti-patterns are defined more precisely

in terms of elements in a UML class diagram. Based on

these definitions, we are able to express a testing criterion to

cover those interactions. The section ends with the

generation of test cases for the book manager that verify

the testing criterion.

3.1. Informal analysis of testability anti-patterns

This section aims at pointing, in an informal way,

interactions in a class diagram that can lead to problems for

testing the corresponding implementation. We look at the

class diagram given in Fig. 2 as an example. This

architecture is a typical object-oriented design. It uses

basic constructs of object-orientation: inheritance, abstract

classes, associations, aggregation and usage dependency

relationships between classes in the system. A first look at

this architecture reveals that many classes have strongly

inter-dependent processes. For instance, all the children
INFSOF 4543—10/2/2005—20:41—RAJA—134962—XML MODEL 5 – pp. 1–21
classes are strongly linked to their parent classes, and BOOK

and BOOKSTATE are interdependent. This type of architecture

has a considerable potential for faulty behavior. For

example, BOOKEVENT may depend on BOOK via several

paths. If such usage is undesired, it has to be either tested

for, or avoided by constrained construction. These potential

problems have to be identified in order to estimate the

verification and validation effort. The two potential sources

of problems are the following:
†
 When a method m1 in class BOOK uses a method m of class

BOOKSTATE, the class BOOKSTATE may use BOOK to

process m. That means that the class BOOK might use

itself when it uses BOOKSTATE to process part of its work.
†

ED P
ROOF

When a class of BOOKEVENT uses BOOK, it might do so in

two different ways: directly by declaring an instance of

class BOOK, or through a use of BOOKSTATE which uses

BOOK.

The exact number of potential misuses as well as their

complexity is difficult to determine with a simple obser-

vation of the design. Thus, we need a model to capture all

these interactions with the inheritance complexity.

This informal analysis emphasizes two weaknesses for

testability: interactions from one class to another we call

class interactions, and a configuration we call self-usage

that corresponds to a class that uses itself by transitive usage

dependencies. We call these weaknesses testability anti-

patterns. An anti-pattern describes a solution to a recurrent

problem that generates negative consequences to a project

[20]. As design patterns, anti-patterns can be described with

the following general format: the main causes of its

occurrence, the symptoms describing ways to recognize

its presence, the consequences that may results from this bad

solution, and what should be done to transform it into a

better solution.

Testability anti-pattern. A testability anti-pattern is a

design solution that presents a configuration in the class

diagram which increases the testing effort.

In this paper the testing effort is estimated by the number

of test cases as well as the complexity to produce the test

cases needed to verify a given test criterion. An anti-pattern

is thus a design decision that increases the number and/or

the complexity of test cases. Two specific configurations in

a class diagram have been identified as such design

decisions: class interactions and self-usage. Both designs

present hard points for testing because in both cases, test

cases must be generated to cover paths that go through

several classes. In most cases if the path is actually

coverable, the test data is very specific and thus difficult to

generate. Moreover, if several paths are involved in class

interactions or self-usages, test cases must check the

combinations of those different paths, which also increases

the necessary effort to produce the test cases. For these

reasons class interactions and self-usages that are identified

on the class diagram are testability anti-patterns.
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Fig. 4. Concurrent usage through an inheritance hierarchy.
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The complexity of both anti-patterns worsen when usage

dependencies go through an inheritance tree because of

polymorphism. Section 3.2 illustrates this point.

3.2. Inheritance complexity

The complexity due to inheritance appears when transi-

tive dependencies go through one or several inheritance

hierarchies. This section aims at giving the intuition of the

complexity of polymorphic relationships, based on the class

diagram of Fig. 4. The figure presents a class interaction from

C to D. The interaction is complex because if C uses an

instance of class A or A2 or A21, anyway those three classes

have relationships between each other. In that case, the

interaction with each of the three potential usages by C (A or

A2 orA21) have to be tested, and for each of those,we have to

test the relationships between the classes in the inheritance

hierarchy. However, by constraining the design (and make it

more precise), we can reduce the complexity of the

interaction. Indeed, if classes A and A2 are interface classes,

we can ensure that C can only use A21 or A22: the area of the

interaction with class D is thus reduced to class A21. The

model must also capture the complexity of the interaction.

The testing model has thus to discriminate between up

and down dependencies into an inheritance tree. Moreover,

the testing model must not count brother classes as

dependent, since they are always independent from a testing

point of view.

3.3. Test criterion for UML class diagrams

In this section, we come back on the anti-patterns that

have been identified in Section 3.1 and define them precisely

in terms of elements in a UML class diagram. Then, we

define a test criterion that requires the coverage of those

anti-patterns when testing the implementation. This testing

criterion concentrates on the hard-to-detect errors that can

appear when side effects may occur, i.e. when one or several

objects may modify the state of an object using independent

paths of dependencies. Such combinations of dependencies

can lead to inconsistent states for the handled objects.

In an OO system, classes depend on each other’s for their

processing. A class A is said to use a class B if methods in
FSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
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A call methods from B, either through an attribute or a local

variable of type B. The UML allows the designer to

illustrate this relationship on a class diagram drawing either

an association between the classes or a dependency

stereotyped «uses». This relationship is called a direct

usage relationship between classes.

Direct usage relationship. There is a direct usage

relationship from class A to class B on a UML class

diagram, if there exists an association or a «uses»

dependency from A to B. In case of non-directed

associations, dependencies exist from A to B and from B

to A. The set of direct usage relationships for a class

diagram is denoted SDU. Fig. 5 illustrates the two types of

UML dependencies: an association between BOOKSTATE and

BOOK classes and dependency BOOKEVENT and BOOK classes.

The direct usage relationship can be extended to the

transitive usage relationship. Yet, a relationship may exist

between two classes A and B even if there is neither an

association nor a dependency between them; this is due to

transitive relationships.

Transitive usage relationship. Direct usage relationships

are considered transitive. This means that, if there is a direct

usage relationship exist from class A to class B and from B

to C then, there is a transitive usage relationship from A to C

called A R C.

There may be several transitive usage relationships from

A to C, in that case the ith transitive usage relationship from

A to C is denoted A Ri B. If the final code allows the

instantiation of a transitive usage relationship from an

object o1 of class A to an object o2 of class B, we say there is

a real transitive relationship from A to B.

For example, Fig. 6 illustrates two relationships between

classes BOOKEVENT and BOOK. A «uses» dependency



T

oState:OrderedbCmd:Borrow b:Book

borrow

setCurrent_state

Fig. 7. Sequence diagram illustrating a real indirect relationship between

BookEvent and Book.
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between the two classes specifies a direct usage relationship.

The second relationship is an transitive one through the

BOOKSTATE class. The BOOKEVENT class depends on the

BOOKSTATE class which depends on BOOK. Thus BOOKEVENT

may depend transitevily on BOOK when calling services

from BOOKSTATE. This relationship is a real relationship if

methods of BOOKSTATE, called by BOOKEVENT objects, use

services from BOOK. The sequence diagram from Fig. 7

illustrates a real transitive relationship between BOOKEVENT

and BOOK. When a BORROW object (of type BOOKEVENT)

calls the borrow( )method of class ORDERED, this method

calls the setCurrent_state( )method of BOOK. Thus,

a BORROW object actually depends on a BOOK object through

a BOOKSTATE object.

Let us define now the notions of class interaction and

self-usage interaction. These interactions are potential

interactions since they are detected from the class diagram

which is only an abstract view of the software. Indeed, the

interactions detected at the design level can disappear or can

be worsen when the design evolves and is implemented. We

thus also define object interactions, which are real

interactions since relationships between running objects

are involved. Some of them can be detected at the design

level from UML sequence diagrams, but, since those

diagrams can offer only a partial view of the system, and

are likely to change, they cannot be used to detect every real

interaction in the system. Those two notions are made more

formal in the following definitions.

Class interaction (potential interaction). A class inter-

action occurs from class A to class B iff:
 R 770

771
INF
di and j, isj, such as A Ri B and A Rj B,

772
773

774

775

776

777

778

779

780

781

UNCORA self-usage interaction occurs around class A iff: A Ri A

Fig. 6 illustrates a class interaction between Bookevent

and Book. This interaction involves two dependencies

between those two classes. More generally, a class

interaction may involve more than two transitive usage

relationships.

Object Interaction (real interaction). There exists an

object interaction from an object o1 of class A to o2 of class

B iff:

782

783
–
 di and j, isj, such as A Ri B and A Rj B, or A Ri A
784
–
 Ri and Rj are real transitive relationships for o1 and o2.
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For example, if the sequence diagram of Fig. 7 is

associated to the class diagram of Fig. 6, the class

interaction between the BOOKEVENT and BOOK classes is

also an object interaction.

Property. The number of class interactions and self-

usage interactions is an upper bound for the number of

object interactions.

The property is obvious under the assumption that the

code is derived (possibly automatically using an appropriate

CASE tool) from the design.

Now that we have defined the class and object

interactions, we can give our testing criterion.

Test criterion. For each class interaction, either a test

case is produced that exhibits a corresponding object

interaction, either a report is produced that shows this

interaction is not feasible.

The task of producing test cases/reports is impossible if

the number of class interactions is high. The main purpose of

the paper concerns the limitation of these interactions by

improving the design. Indeed, the design must be as close as

possible to the code. Hopefully, we have not to deal with the

determination of real interactions: even with code, the real

dependencies cannot be statically deduced, since OO

languages are not statically typed. Since the number of

class interactions is an upper bound of the number of object

interactions, we recommend to put additional information on

the design that would reduce the number of class interactions.

These additional pieces of information are design constraints

for the programmer (e.g. expressed using UML stereotypes):

one can statically verify that the implementation fits the

constraints. This means that using static verification at the

code level reduces the testing effort. As an example, being

given a «instantiate» stereotype on a dependency from A to

B, the code of class A should invoke only the creation

methods of B. This can be verified statically.
3.4. Example for test generation

This section introduces an example for test generation

process using the adequacy criterion defined in Section 3.3.

The example is based on the class diagram of Fig. 3. First,

testability anti-patterns are identified in the diagram, then

test cases are produced when interactions are implemented

as actual object interactions.

Two self-usage interactions and one class interaction

appear on the class diagram of Fig. 3:
†
 SU1 from BOOK to itself through BOOKSTATE
†
 SU2 from BOOK through BOOKEVENT
†
 CI between BOOKEVENT and BOOK through two different

paths (a direct one and a path going through BOOKSTATE).

The testing criterion states that a test case has to be

produced for each class or self-usage interactions to exhibit

an actual object interaction. For potential interactions that



IN

B. Baudry, Y.L. Traon / Information and Software Technology xx (xxxx) 1–218

DTD 5 ARTICLE IN PRESS

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857
are not implemented as object interactions, a report stating

this absence of actual interaction has to be produced.

The entry point to test this set of classes is the BOOK class.

Thus, a test case consists in creating a BOOK instance and

calling methods on this object. If the reader wants to check

the source code of the example, it is available at the

following URL: http://www.irisa.fr/triskell/results/BOOK/.

3.4.1. SU1 interaction

Our first test objective is the self-usage interaction going

from BOOK to itself through the BOOKEVENT class (SU1). To

cover this interaction, the test case has to call a method in

BOOK that uses the commands set, and this method has to

call a method in the BOOKEVENT class that uses the BOOK. In

the BOOK class, only the manageEvent( ) method uses

commands. In all the concrete event classes, the methods

are of the following form:

858

859
860

861

862

863
execute(Book b){.}

Thus, a test case that calls the manageEvent( )-
method in BOOK, covers the interaction. Here is an example

of such a test case (TC1):
864

865
FSO

866

867
public void testManageEvent( ){
Book bZnew Book( );
b.manageEvent(“setDamaged”);
F 4
868
TE
 

b:Book bCmd:Borrow aState:Available

bState:Borrowed

execute

getCurrent_state

aState

borrow

CreateAction

setCurrent_state

Fig. 8. Sequence diagram for test case no3.
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}

3.4.2. SU2 interaction

The second test objective is the interaction going from

BOOK to itself through the BOOKSTATE class (SU2). A test

case covering this interaction should call a method that uses

the currentState attribute in BOOK. Actually, there is

no such method in the Book class, this attribute is only read

by the getState( ) method. The self-usage interaction

we are trying to test has thus not been transformed in an

object interaction in the implementation. Since there is no

actual self-usage interaction in the implementation, no test

case needs to be defined to cover SU2.

This example illustrates the fact that class interactions

are a worst-case estimation of the testing effort for the

implementation corresponding to a class diagram. Indeed,

some interactions detected on the class diagram (and thus

identified as hard-points for testing on the design) are not

implemented as interactions between objects and are not

taken into account for testing the implementation (and are

not taken into account in the testing effort).

3.4.3. CI interaction

The third objective is to exhibit an object interaction

between BOOKEVENT and Book through two different paths

(CI). Since the BOOK class is the entry point for testing, the

test case has to call a method that uses the commands set.

When writing a test case for the first test objective, we have

seen that a call to the manageEvent( ) method covers
543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
the relationship from BOOK to BOOKEVENT, and also the one

from BOOKEVENT to BOOK. Thus the direct path from

BOOKEVENT to BOOK is covered by test case calling

manageEvent( ) in the BOOK class. To cover the second

path from BOOKEVENT to BOOK (through BOOKSTATE), the

call to manageEvent( ) has to cover the relationship

between BOOKEVENT and BOOKSTATE. This can be done by

calling an event which processing depends on the actual

state of the BOOK instance. In that case the execute( )
method in the concrete events has the following form:

execute(Book b){b.getState( );.}
Then, if a transition in the statechart is triggered by the

called event, then the relationship between BOOKSTATE and

BOOK is covered, since in that case the method in the

concrete state calls a method on the context attribute. For

example, the borrow( ) method in the AVAILABLE class

has to change the state of the context to which it is

associated, since the borrow event in the AVAILABLE state

triggers a transition from Available to the BORROWED state.

Here is the corresponding code:
OF
class Available{

public void borrow( ){context.chan-
geState(new Borrowed( ));}
PRO}

To summarize this third test objective, the following test

case covers the interaction between BOOKEVENT and BOOK

through two different paths and Fig. 8 gives the sequence

diagram for this test case (TC2).
Dpublic void testManageEvent( ){
Book bZnew Book( ); //the book is in the
ordered state
b.manageEvent(‘deliver’); //puts the
book in the available state
b.manageEvent(‘borrow’);
}

The Table 1 summarizes the results for testing an

implementation of the book manager system (Fig. 2)

according to the test criterion of Section 3.4. This table

http://www.irisa.fr/triskell/results/Book/


Table 1

Test report for the book manager sub-system

SU1 SU2 CI

Status Infeasible

TC1 X

TC2 X
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presents the status for each anti-patterns detected in the

system (feasible or not), then, for each test case, which anti-

pattern is covered. Actually, there are much more than three

interactions that should be tested due to the fact that

BOOKSTATE and BOOKEVENT have many sub-classes. Section

4.3, details a way to compute the complexity of these

interactions. This complexity corresponds to the maximum

number of interactions that can appear in presence of

inheritance, and that have to be tested.

We have developed a tool that can help generating test

cases that satisfy the test criterion. This tool is called

JTracor and is available at http://franck.fleurey.free.fr/

JTracor/index.htm. It produces execution traces for java

programs. This tool enables to know which objects have

actually interacted, and which methods have been called by

those objects. The traces obtained when running TC1 and

TC2 are given in Appendix B.
T
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4. Modeling testability anti-patterns

In this section, we describe rules for building a graph to

capture testing interactions from an object-oriented system

described with the UML. Definitions are needed about this

graph, called Class Dependency Graph. Then, topological

rules on the graph are given that formally determine

potential interactions. It serves as a basis for applying

classical graph algorithms to detect interactions and

measure their complexity.

4.1. Graph construction from a UML model

This section provides several definitions about the class

dependency graph model. The graph is an oriented labeled
UNCORR
(b)

« interface »
a

a1

a

I-Child

a1

(d)(c)

(a)

ac

ac

ac

ac
U(M(a))

ac

Fig. 9. Basic transformations from a
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graph, the following thus defines the various labels that can

be found in the graph. Moreover, the definitions provide

information on the way the graph is derived from a UML

class diagram.

In the following definitions, we call C the set of all

classes of a system, and M(c) the set of methods of a class

c2C.

Definition. Class dependency graph (CDG). A class

dependency graph is a pair CDGZ(X,G), where
X is the set of vertices, each vertex representing a class of

an object-oriented system. A class is represented by only

one vertex.

G is a set of pairs (x,y)2X2, called set of directed edges

((x,y)s(y,x)). An edge between two vertices, x and y,

represents a dependency between two classes. An edge is

labeled by the type of dependency that exists between the

classes, namely usage dependencies and inheritance.

Remark. Since there is a vertex for each class and each

vertex represents one and only one class, in the following

definitions, the vertex corresponding to a class c is simply

called c.

Definition. Edge labels. Every edge in a CDG represents a

dependency between two classes of an object-oriented

system. Let c2C, d2C, the edge between vertices c and d

is labeled by the type of dependency that exists between c

and d. Dependencies can be of two types: usage(labeled U)

if c uses d, or inheritance(labeled I) if csd and c inherits

from d. Both labels, carry extra information.

Definition. Label U. We associate a set of methods to the

label U which corresponds to the set of methods in M(d)

used by class c. For this set of method, the default value is

M(d) (as long as we do not know the sub-set ofM(d) used by

c). This transformation is illustrated Fig. 9 (a).

Remark. In the case of Usage dependency named

«instantiate» or «create» between classes C and D, the set

of methods associated to the label U would be (createD( ))

indicating that C only calls the creation method of class D

through this usage relationship.
a

a1

a

I-Child

a1

I-parent

« interface »
a

a1

a

I-Child

a1

d

d

UML class diagram to a CDG.
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B

B1 B2
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1
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b22b21

I-Child

U(M(d))

e
U(M(e)) I

I-Child

I-Child
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b2b1

c

b22b21e
I-Parent
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Fig. 10. CDG example.
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Definition. Label I. The inheritance label is specialized in

two labels (Fig. 9(b)). Let c2C, d2CK{c}, if

d2Parent(c):
1083

1084
†
FSO

1085

1086

1087

1088

1089
There is an edge (d,c) labeled I—child. From a testing

point of view, we need a dependency from the parent to

the child, because everywhere the parent class occurs, the

child can occur as well. So, for every parent of the class,

we must test the same statement with an occurrence of

every child.
1090
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There is an edge (c,d) labeled I—parent. From a testing

point of view, this dependency from the child to the

parent is obvious: c uses d when it calls a method

m2MINH(c).

About the definition of label I, it has to be noticed

that, in the case of pure interfaces, there is only one edge

going from the interface to its subclasses. Indeed, the

subclasses do not depend on the super class since this

one is empty (pure interface). However, the edge from

the interface to its subclasses is still meaningful to

indicate the dependence between the interface and the

classes that implement the services it defines (in that

way, the graph reflects that a client of the interface

actually depends on the subclasses that implement the

services, by transitivity).

Example: Fig. 10, shows a class dependency graph

obtained from a small class diagram, by applying trans-

formation rules given in the definitions above.
R

edc
U(M(d)) U(M(e))U(M(c))

ba
U(M(b))

U(M(f))

U(M(c))

f
U(M(f))

Fig. 11. CI on a CDG.
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UNCO4.2. Detecting testability anti-patterns from the CDG

In this section, we come back on the anti-patterns

informally described in Section 3.1, and give more precise

definitions of these in terms of the CDG model. First we

recall the definitions of paths and cycles in graphs, then the

class interaction and the self-usage configurations are

defined formally using the graph model.

Definition. Path. A path P in a CDG is a sequence of

vertices PZ[xi1,xi2,xi3,.,xik], such that:
F 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
(xi1, xi2)2G, (xi2, xi3)2G,., (xikK1, xik)2G
xi1 is the origin of the path and is called origin(P)
xik the end and is called end(P)
ED P
ROOFthe xij (2%j%kK1), are the intermediate vertices (we

call the set of intermediate vertices itVertices(P)).

Definition. Cycle. Let P be a path, P is a cycle if and only if

end(P)Zorigin(P).

Definition. Elementary path, cycle. An elementary path is a

sequence of vertices in which there is never twice the same

vertex. An elementary cycle, is an elementary path for

which only the origin vertex is repeated.

On Fig. 10, [c, b, b2, b22] or [c, b, b2, b21, e] are

elementary paths, but [c, b, b2, b21, b2] is not. In the same

way, [b, b1, b] is an elementary cycle, but [b, b2, b21, b2, b]

is not.

Definition. Class interaction (CI). There exists a class

interaction from class c2C to class d2CK{c} (CI(c,d)) if

d at least two elementary paths P1 and P2, P1sP2 such

that:

ðoriginðP1ÞZ originðP2ÞZ cÞo ðendðP1ÞZ endðP2Þ

Z do ðitVerticesðP1ÞsitVerticesðP2ÞÞ:

There is one constraint about paths involved in the class

interaction.Forapathgoing throughan inheritancehierarchy,

it must cross the hierarchy only in one direction, i.e. there

must only edges going from child vertices to parent vertices,

or only edges going from parent vertices to child vertices.

On Fig. 11, a potential CI(d,f) interaction can be detected

because there are two different elementary paths going from

d to f: [d,e,f] and [d,f] which intermediate vertices are

distinct.



edc U(M(d)) U(M(e))

U(M(c))

Fig. 12. SU on a CDG.
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This definition of the CI interaction, takes into account

only unitary interactions: on CDG of Fig. 11, only two

potential interactions are detected: CI(a,c) and CI(d,f), a

bigger interaction which could be CI(a,f) is not detected. We

assume that detecting only unitary interactions is sufficient,

because if interactions CI(a,c) and CI(d,f) are solved, the

bigger interaction CI(a,f) is also solved.

Definition. Self usage (SU). There exists a self usage on

class c2C (SU(c)), if there exists an elementary cycle

which origin is c.

There is one constraint about the cycle, if it goes through

an inheritance hierarchy, it must cross the hierarchy only in

one direction, i.e. there must be only edges going from child

vertices to parent vertices, or only edges going from parent

vertices to child vertices

Fig. 12 shows a small graph on which a SU (c)

interaction can be detected: there is an elementary cycle

from vertex c to vertex c. As for the CI interaction, the

definition of the SU interaction given above considers only

unitary interactions.
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4.3. Measuring the complexity of anti-patterns

The complexity of an anti-pattern can now be formalized

by taking into account polymorphism in the system. This

complexity increases when one or several paths involved

goes through a strongly connected component (SCC) of the

graph corresponding to an inheritance hierarchy. This

increase is due to the fact that the classes in an inheritance

hierarchy interact with their ancestor and children classes.

So when there is a class C, that is part of an inheritance

tree, along a path involved in an anti-pattern, all the classes

in the anti-pattern interact with C and the ancestor and

children of C.

The complexitymeasurewe detail here aims at computing

the exact maximum number of interactions involved in an

anti-pattern, in presence of inheritance trees. As it was stated
UNCO
A

A1 A2

A21 A22

C

a

I

a

I-P

a

c

Fig. 13. Slice in a SCC correspondin
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in the introduction of this paper, the proposed complexity

measurement is based on the number of paths involved in one

anti-pattern as well as on the complexity due to the

inheritance hierarchy that are crossed by these paths.

This gives a good feedback on the testability of the class

diagram since themore paths are involved themore test cases

have to be written. Moreover, the longer is one path, and the

more inheritance hierarchies it traverses, the more difficult it

is to write a test case. At last, each path in one interaction

(each behavior) should be tested in combination with each

other. Indeed, a test case that covers one path checks the

consistency of the target class for the source class when using

this paths, but the test must also check the consistency of the

target class when the paths are combined. So the complexity

of an interaction is the combination of the complexities of all

paths in the interaction.

Definition. Complexity of interaction. Let P1,.,PnbPaths be

nbPaths different paths corresponding to a class interaction

CI. The complexity of the interaction is linked to the

complexity of the different paths in the following way:

complexityðCIÞ

Z
XnbPaths

iZ1

ðcomplexityðPiÞ
X

jO1

ðcomplexityðPjÞ

The complexity of a path is defined in the following.

Definition. Descendents-path. In an inheritance hierarchy, a

descendents-path is the set of classes crossed by a path

going from the root class of the hierarchy to a leaf class.

As defined earlier, paths involved in an interaction have

can go through an inheritance hierarchy only in one

direction. So, a sub-component can be extracted from a

SCC. This sub-component corresponds to a slice of the

inheritance hierarchy going from a root class to a leaf as

shown Fig. 13. This sub-component is called a descendents-

path in an inheritance hierarchy. If a path involved in an

interaction goes through one or several classes of a sub-

component in the graph, the interaction’s complexity grows

in the following way: if there are n classes in the

descendents-path, which are not pure interfaces, the

complexity of the sub-component is n(nK1), because
1
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U(M(d))

I-Parent
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I-ChildI-Child

a descendents-path in
the inheritance SCC
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Fig. 14. CDG for the book manager system.
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every class has a relationship with each of the (nK1) others:

n$(nK1) interactions may occur that must be tested.

The total complexity of a path is the product of the

complexity associated to every hierarchy crossed by the

interaction. Indeed, if two inheritance hierarchies are

crossed, every class of a hierarchy can have a relationship

with every class of the other hierarchy.

Definition. Complexity of a path in a class interaction. Let

P be a path involved in a class interaction, IH1,.,IHnbCrossed

be nbCrossed inheritance hierarchies crossed by P

complexityðPÞZ
YnbCrossed

iZ1

complexityðIHi;PÞ

Several descendents-path, in one inheritance hierarchy,

may increase the complexity of one path. If a path in the

interaction goes through a class that is not a leaf in the

inheritance hierarchy, there may be different descendents-

path including this class. For example, on Fig. 14, the

path [bEvt, bSt, book] goes through the root class of

the BOOKSTATE inheritance hierarchy. Since BOOKSTATE is

not a leaf in the inheritance hierarchy, all the

descendents-paths starting with the node bSt have to be

taken into account for the computation of the complexity

of the path [bEvt, bSt, book]. The descendents-paths

[bSt, Or], [bSt, Bd], [bSt, IL, BFx], [bSt, IL, Av], [bSt,

IL, Rd] are involved in the complexity of the path [bEvt,

bSt, book].

Definition. Complexity of a path going through an

inheritance hierarchy. Let IH be an inheritance hierarchy

and P be a path crossing IH. The complexity of IH for P is

the addition of the complexity of dp1,., dpnbDP, the nbDP

descendents-path in IH influencing P’s complexity.

complexityðIH;PÞZ
XnbDP

iZ1

complexityðdpiÞ
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The complexity of a descendents-path corresponds to the

number of potential interactions between classes in this

path. In the worst case, each class in the class has a

relationship with each other, so, if there are n classes in the

path, there are at most n(nK1) interactions in the path.

Definition. Complexity of a descendents-path. Let dp be a

descendent-path and h be the height of dp, the complexity

for dp is:

complexityðdpÞZ hðhK1Þ

The testability measure is being implemented as an

external component of the industrial CASE tool Objecteer-

ing (www.objecteering.com). It is an object oriented CASE

tool created by the French firm Softeam. Objecteering/UML

modeler covers all UML models and can be used to model

entire applications from analysis to semi-automatic code

generation. Section 4.4 gives an example for the complexity

measurement.
4.4. Measuring the complexity of the book manager system

Fig. 14, gives the class dependency graph for the class

diagram of Fig. 2. We detail here the computation for the

complexity of the class interaction from Bookevent to Book.

The complexity is the product of the complexities of the two

different paths involved in this interaction. The first path P1

is a direct link from bEvt to book, the second path P2 is a

path from bEvt to book going through bSt.

Even if P1 is a single edge between two nodes, it still has

an associated complexity since the BOOKEVENT class is part

of an inheritance hierarchy. This complexity is the addition

of the complexity of each descendents-path involved. Since

BOOKEVENT is the root class for this hierarchy, all

descendents-paths are involved in the computation of the

complexity. Those descendents-path are all of the same size,

and thus the same complexity: 2!(2K1). There are 7

descendents-path, the complexity for the inheritance

http://www.objecteering.com
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hierarchy is thus 7!2!(2K1)Z14. This is also the

complexity for P1.

The path P2 goes through bEvt and bSt that correspond to

two classes that are root classes of inheritance trees. We

have just computed the complexity of the tree under bEvt,

which is 14. The complexity for the second inheritance

tree is computed in the same way, it is the addition of

the complexity of each descendents-path involved. There

are two paths of length 2 and three of length 3, so

the complexity is: 2!(2K1)C2!2K1)C3!(3K1)C
3!(3K1)C3!(3K1)Z22. The complexity of P2 is the

product of the two complexities, this corresponds too the

fact that classes in one inheritance tree can potentially

interact with every class in the other tree. The path P2 has a

complexity of 22!14Z308.

The total complexity for the class interaction is equal to

the product of the complexities of P1 and P2. This is the

maximum number of class-to-class interactions. Of course a

very large number of them is infeasible (e.g. the setdamaged

event never interacts with any state) and interactions

between several classes can be covered by a single test

case (e.g. TC2 in Section 3.4 covers interactions between 4

classes). The complexity of an interaction is thus an upper

bound for the number of relationships that should be

covered, taking into account all the dependencies in the

same way. As wee see in Section 5, defining roles for

the relationships would enable to ignore some edges in the

computation of the complexity, and thus have a value closer

to the actual number of class-to-class interactions.
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5. Improving design testability

Improving testability of the software, with respect to our

testing criterion, means either avoiding object interactions

and especially concurrent accesses to shared objects, or

decreasing the number of potential interactions to have a

better idea of the actual testability of the design. As we

suggested in Section 3, a solution may consist in clarifying

the design, so that the code can be as close as possible to

what the designer wants.

When it is possible, a way to improve testability and

break inheritance complexity is to use of interface classes

that are ‘empty’ from an execution point of view. Never-

theless it is not possible in all cases. Besides, the UML

allows a user to define stereotypes to associate a semantic to

UML elements. We thus define several stereotypes that

specify the semantic of links involved in testability anti-

patterns (association, dependency, aggregation, compo-

sition). Thanks to these additional specifications, the

programmer should avoid implementing an object inter-

action. As it will be illustrated in Section 6, a simple set of

refinement actions may be of great help to improve the

design, suppress ambiguity and reduce the testing effort.

The stereotypes introduced here are analogous in some way

to data flow testing criteria for classical software [11], that
INFSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
identify ‘definition’ and ‘use’ of variables in a program.

This classical testing model aims at determining the data

flow, the ‘life line’ of variables at unit level.

Here are the four stereotypes we propose:
-
 «create»: a create stereotype on a link from classA to class

B means that objects of type A calls the creation method

on objects of type B. If no «use» stereotype is attached to

the same link, only the creation method can be called.
-
 «use»: a use stereotype on a link from class A to class B

means that objects of type A can call any method

excluding the create one on objects of type B. It may be

refined in the following stereotypes:

– «use_consult»: is a specialization of «use» stereotype

where the called methods do never modify attributes

of the objects of type B.

– «use_def»: is a specialization of «use» stereotype

where at least one of the called methods may modify

attributes of the objects of type B.
ED P
ROOFThe absence of stereotype on a link is equivalent to a

combination of «use» and «create».

The stereotypes are taken into account by the graph

model by associating another value to U labels. This also

allows a designer to estimate the improvement of the design

after adding stereotypes. It corresponds to step 2 of the

methodology proposed in Section 2.1. The use of stereo-

types modifies the identification of objects interactions w.r.t.

the following properties.

Assertion 1—objects interaction: Let P1 and P2 be two

paths from class C to class D, defining a class interaction

between C and D. Let e1 be the entry edge of end(P1), e2 be

the entry edge of end(P2), an objects interaction exists iff

e1 and e2 have associated stereotypes «use» or

«use_def».

Assertion 2—self-usage object interaction: Let P be a

path from class C to itself, defining a self-usage class

interaction for C. Let e be the entry edge of end(P), a self-

usage object interaction exists iff:
-
 e has either «use» or «use_def» stereotype.

Comment: As a consequence, when encountering an

anti-pattern, if the corresponding assertion is false, due to

the specified stereotype, it will never generate interaction

between objects of the final implementation. A static

analysis may verify that the implementation is consistent

with stereotypes. The testing task will not focus on

exhibiting such interactions nor explaining why such

interactions cannot be tested (w.r.t. the testing criterion).

Fig. 15 illustrates a class interaction. The paths going

from class C to D which end with an edge stereotyped «use»

or «use_def», so they cause a contradictory usage of the

shared provider D by class C.

Automated verifications may check that the code is in

conformance with stereotypes constraints. For example, the



C D

e1 « use_def »

e2 « use »

P1

P2

Fig. 15. A class interaction between C and D.
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verification of a «use-consult» from A to B consists in

verifying that:
1523

-

FSO
A only calls query methods of B,

1524
-

1525

1526

1527

1528

1529

1530

1531
B query methods never modify B state (directly and

indirectly through the call of non-query methods).

Section 6 illustrates potential testability problems on two

small architectures, and gives examples of what can be done

to avoid real problems at the code level. Stereotypes are

introduced directly by the designer, who wants to specify

more precisely the software.
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6. Application examples

In this section, we apply our testability analysis on two

different designs, and for each of them, we propose rules

that can improve the testability of these designs. First, we

illustrate our approach on the book manager example, then

we study a virtual meeting server. The obtained results are

useful since they underline the hard points of the designs,

where misleading interpretations may occur causing a very
UNCORRECT
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Fig. 16. The Virtual M
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hard to test implementation. The testability analysis for two

other case studies is presented in Appendix A.
PROOF

6.1. The book manager

The CDG for the book manager sub-system is presented

Fig. 14. In Section 4.4, we computed the complexity for the

class interaction between Bookevent and Book. We

mentioned at this moment that many interactions are

infeasible, and should thus not be taken into account for

the computation of the complexity. In the Section 6 we

presented stereotypes that aim at clarifying the model by

allocating roles to the relationship. In that way, the different

types of relationships could taken into account in different

ways when computing the complexity.

The class interaction CI(bEvt, book) can be removed by

specifying that the «uses» dependency between the classes

BOOKEVENT and BOOK is only for reading. The dependency

can be stereotyped «uses_consult», and there is no class

interaction anymore. The path going from BOOKEVENT to

BOOK through BOOKSTATE is still complex, but could be

simplified by refactoring the BOOKEVENT and BOOKSTATE

classes into interface classes. This would avoid interactions

between those classes and their children, and bring back the

complexity of this path to 56 instead of 308.

In the same way, the complexity of the two self-usages

interactions SU1(book) and SU2(book) can be reduced by

refactoring the BOOKEVENT and BOOKSTATE classes into

interface classes.
ED 
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Fig. 17. CDG for the virtual meeting server.
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6.2. Testability of a virtual meeting server

Fig. 16 presents the class diagram for a virtual meeting

server. This server aims at simulating work meetings. When

connected to the server, a client can enter or exit a meeting,

speak, or plan new meetings. Three types of meetings exist:

1657

1658
-
 T

INF

1659

1660
standards meetings where the client who has the floor is

designated by a moderator (nominated by the organizer

of the meeting)

1661
-

1662

1663
Cdemocratic meetings which are standard meetings where

the moderator is a FIFO robot (the first client to ask for

permission to speak is the first to speak)

1664
-
User

MM

Mtg

ServU(M(User)) U(M(Mtg))

U(M(MM))
U(M(User))

U(M(User))

Fig. 18. Configuration of included class interactions.
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UNCORREprivate meetings which are standard meetings with

access limited to a defined set of clients.

All the possible commands are reified and inherit of the

COMMAND interface. The possible internal states of a client

and a meeting are managed through the STATE pattern.

The Class Dependency Graph for the Virtual Meeting

Server is given Fig. 17. A lot of class interactions are

detected on this model, and we do not detail all of them, but

just emphasize interesting configurations, and show that

even on a quite simple design (29 classes), a lot of testing

problems appear.

There are two self usage interactions around nodes

User and Mtg. This is due to the use of a State design

pattern [19]. For both of these interactions, it is possible

to refactor the USERSTATE and MEETINGSTATE to make

interfaces instead of abstract classes. This refactoring does
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their complexity.

An interesting configuration of nested class interactions

exists between User, Serv, Mtg and MM. There is a class

interaction CI(Serv, User) on one hand, and another CI(Mtg,

User) on the other hand. Note that CI(Serv, User) includes

CI(Mtg, User).

Two remarks can be made on this particular configur-

ation isolated on Fig. 18. First, depending on the way the

nested interaction CI(Mtg, User) will be solved, its

enclosing class interaction CI(Serv, Mtg) is not necessarily

solved. Secondly, even if it is not possible to delete CI(Mtg,

User), CI(Serv, User) can be solved, for example refining

the design with a stereotype «use_consult» on the

association from Server to Meeting. From this configur-

ation, we can deduce that the class interactions can be

combined in different ways; in some cases, not all the class

interactions have to be taken into account (as in Fig. 11), in

others cases, it is necessary to deal with all the class

interactions(as in Fig. 18)
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Others class interactions can be detected, from example

from Mtg to User (where Mtg can access to User directly,

through MM or through MM and PM) or from Serv to Mtg.
T

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792
UNCORREC

7. Related work

Testability is at the border of two software research

fields. On one hand it is related to testing problems: it

evaluates the effort needed to test a piece of software. On the

other hand, the testability is a measurement, thus a large part

of this work is related to previous work about object-

oriented metrics.

Traditionally, testing is often divided into several phases,

for example, unit testing, integration testing and system

testing. This separation is not so clear for testing of an OO

system. Due to inheritance and dynamic binding, the control

flow of an OO–system is not rooted anymore in the main

encapsulation unit, the class. Unit testing, which focuses on

classes and methods, cannot capture the interactions

distributed throughout the system. The effectiveness of

unit testing is thus even more limited to local aspects [21,22]

than it is in ‘traditional’ (non–OO) systems. Integration

testing, on the other hand, insists more on the component

interfaces and on the order in which components are

integrated [23–26]. It does not concentrate on testing of

internal component interaction. Hence, it also may miss

some of the interactions among the classes. Finally, at the

system level, testing is usually of the ‘black-box’ nature,

and is often not formalized, and when it is, it requires, to be

really applicable in practice, strong (and possibly unrealis-

tic) assumptions concerning the completeness of behavioral

and dynamic models [27]. In this paper, the work we

propose is complementary to system testing: it aims at

covering object interdependencies with test cases that may

be obtained using system testing techniques [28], e.g.

derived from use cases and sequence/collaboration

diagrams.

Besides, a large number of measures have been proposed

to evaluate the quality of object-oriented designs [12], one

of them is coupling. The coupling measures the strength of

the relationship between two modules. In the case of object-

oriented designs, modules are classes. Since the introduc-

tion of this measure, a large number of coupling measures

have been proposed, which correspond to different types of

relationships between classes [29].

This paper proposes a mapping of a coupling

measurement to precise modeling elements of the UML.

The coupling between object (CBO) measure [29,30]

corresponds to a set of classes that use each other’s. In the

UML class diagram, a class A is said to use another class

B if there exists an association or a dependency between

these classes. The CBO measure is discussed in terms of

testability in [2], and test criteria for this type of

relationship among classes are proposed in [31]. These

work focus on each path independently and aims at
FSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
counting/covering. Here, we concentrate on particular

paths that contribute to interactions in the overall system.

To our knowledge, this precise contribution to the

testability of each dependency participating to coupling

has never been studied, and especially in the case of

software designed using the UML. To summarize, the

goal of the paper is less to limit coupling than to specify

roles of links participating to coupling.
ED P
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8. Conclusion

In this paper, we have identified two configurations in

a UML class diagram that can lead to code difficult to

test. These configurations are called testability anti-

patterns, and can be of two types, either class interaction

or self-usage interaction. Those anti-patterns between

classes may be implemented as interactions between

objects in which case, the final software may be very

difficult to test. The paper proposes a test criterion that

forces to cover all object interactions. It also defines a

model that can be derived from a class diagram, and from

which it is possible to detect, in an unambiguous way all

the anti-patterns. From this model, it is also possible to

compute the complexity of anti-patterns which is the

maximum number of object interactions that could exist

(and should be tested). The testability measurement

corresponds to the number and complexity of the anti-

patterns.

Since this measurement is done from a class diagram, all

we have are potential interactions that may become real. So

the complexity is really an estimation of the worst case that

could appear, and is often much greater than the actual

complexity of the implementation. A refinement in the

design could consist in précising the role of the relationships

between classes, so that the information available at a

design phase is closer to the implementation. In that case,

the obtained complexity would be closer to the actual

complexity of the software. To do so, we propose a set of

refinement actions based on refactoring and UML

stereotypes.

A further step in that direction would be the study of

design patterns [19] as microarchitectures in which the roles

of associations and dependencies are well-known. The idea

would be to automatically add stereotypes when applying a

design pattern on a class diagram.
Appendix A. A compiler architecture and an ICQ client

Fig. A1 gives an object-oriented architecture for a

compiler taken from [32]. This architecture includes a

Scanner class that produces tokens, a Parser that produces

an abstract syntax tree using a NODE_BUILDER and a

PROGRAM_NODE representing an abstract node in the abstract

syntax tree.
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Fig. A1. A compiler architecture.
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A Class Dependency Graph can be derived from this

architecture (Fig. A2). Two potential class interactions can

be detected from this graph. The first one, CI(Fa,PN), is due

to the two paths [Fa, NB, PN] and [Fa, NV, PN]. The second

potential interaction, CI(NV,PN), is due to the paths [NV,

Fa, NB, PN] and [NV, PN]. Both interactions seem quite

simple as only four classes, linked by simple uses

relationships, are involved. But, their complexity grows

enormously because of the eleven classes in the PROGRAM_-

NODE inheritance hierarchy: 9 descendents-paths of size

three are involved in both interactions. The global complex-

ity of this hierarchy is

X9

iZ1

ð3ð3K1ÞÞZ 54:
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Fig. A2. CDG for the com
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impact on the complexity since there are only two classes.

The complexity for this hierarchy is only 4.

Since all paths involved in the interactions cross the same

inheritance hierarchies, they all have the same complexity:

54!4Z216. In the same way, both interactions have the

same complexity that is the product of the two path’s

complexity: 216!216Z46656.

Here, the design can be refined with stereotypes on

associations from COMPILER to NODE_VISISTOR and from

COMPILER to NODE_BUILDER. Indeed, COMPILER instances

should use NODE_VISITOR instances only for queries, the

association is thus stereotyped «use_consult». The associ-

ation from COMPILER to NODE_NUILDER should be stereo-

typed «use_def» since COMPILER instances might change
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the state of NODE_BUILDER instances. If these stereotypes are

added to the design, the programmer should not implement

any object interactions.

Fig. A3 presents the class diagram for a software that

allows distant instant messaging clients to communicate

using the ICQ protocol. Any kind of media may be

used: texts, sounds, and video. There are two central

classes in this architecture, CLIENT and BUDDY. Both

classes can be either in a connected or non-connected
UNCORREC
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state. An instance of CLIENT is connected to a BUDDY via

a direct or indirect protocol, depending on the state of

the buddy.

Several anti-patterns can be detected from the CDG for

this system (Fig. A4). Two self-usage interactions SU(c)

and SU(b), and four class interactions CI(b,idp), CI(b,adp),

CI(b,iip), CI(b,aip). Both self-usage interactions are of

complexity 4, and all the class interactions are of

complexity 16.
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UNCOAppendix B. J Tracor book manager system study

We present here the main traces and the object graphs

obtained with the Jtracor tool available from http://franck.

fleurey.free.fr/JTracor/index.htm. JTracor is a framework

and has a specific output format for traces that can be easily

implemented. Here is the simple kind of results we produce

with the standard version, a textual and a graph representing

the objects instances and their message exchanges. A future

version will produce UML sequence diagram in the XMI

standard exchange format of UML. The tool has been
FSOF 4543—10/2/2005—20:42—RAJA—134962—XML MODEL 5 – pp. 1–21
successfully applied on very complex system calls invol-

ving hundred of communicating objects (such as call on the

Java virtual machine).
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