
Behaviors Generation From Product Lines

Requirements �

Tewfik Ziadi, Loic Hélouët, Jean-Marc Jézéquel

IRISA, Campus de Beaulieu 35042 Rennes Cedex, France
{tziadi, lhelouet, jezequel} @irisa.fr

Abstract. Modeling variability in product lines (PL) has received a lot
of attention in recent years, building on the idea that product could be
automatically derived from a PL through model transformations, at least
for its static architecture (e.g. class diagrams). This paper proposes to go
beyond these static aspects by also addressing the behavioral aspect of
software product lines. Inspired by the way UML2.0 sequence diagrams
can be algebraically composed, we propose to specify PL behavioral re-
quirements as algebraic expressions extended with constructs to specify
variability. Then we propose a two stages approach to synthesize de-
tailed behavior for each product member in the PL. The first stage uses
abstract interpretation of the variability operators in scenarios to get be-
havior specialization of the PL according to a given decision criteria. The
second stage uses statechart synthesis from product expressions. We de-
scribe the interest of our method on a well known case study, and briefly
discusses its implementation in a prototype tool.

1 Introduction

The Software Product Line (PL) approach (also called Product Family), have
received a great attention in last years. Several product line approaches concern-
ing the entire software life cycle (requirements, design, development, testing, and
evolution) have been proposed.

Capturing and specifying requirements in software development is a very
important activity. Several notations and formalisms such as Use Cases and sce-
narios are now very popular for single products development. In the PL context,
most works [7, 2, 21, 13] extend UML Use Cases with variability mechanisms to
document PL requirements. They introduce variability into the textual descrip-
tion of Use Cases. In addition to textual templates, Use Cases can be illustrated
by means of interactions between system objects using scenarios such as UML
sequence diagrams.

While scenarios capture requirements in the early stage of the development
process, statecharts [8] are often used for a more detailed design, as they are
closer to the implementation. The idea of synthesizing statecharts out of a col-
lection of scenarios has thus received a lot of attention in the context of single
� This work has been partially supported by the ITEA project ip02009, FAMILIES in

the Eureka Σ! 2023 Programme

products development. However, no work proposes statecharts synthesis from
PL requirements. In this paper we propose an algebraic approach that generates
statecharts from PL scenarios, thus fostering a better traceability between PL
requirements and the detailed design.

We specify PL requirements as algebraic expressions on basic UML2.0 se-
quence diagrams, where variability is introduced by means of three new algebraic
constructs. Our synthesis approach is defined in two steps: we first define an al-
gebraic way to derive product expressions from PL ones and then statecharts
are generated by transforming product scenarios given as an expression into a
composition of statecharts.

This paper is organized as follows: Section 2 shows, through the well known
Banking Product Line (BPL) [1] example, how PL requirements are specified
using UML2.0 sequence diagrams. Section 3 describes our synthesis approach
and illustrates it on the BPL example. Section 4 discusses the interest of our
approach. Section 5 presents related works.

2 PL Requirements as UML2.0 Sequence Diagrams

Capturing and specifying requirements is often a preliminary task during soft-
ware development. Several notations such as Use Cases and Scenarios have been
proposed to document and formalize systems requirements. To be useful in the
PL context, these formalisms should allow for the expression of variability in
requirements. Variabilities are characteristics that may vary from a product to
another one. In this Section we use scenarios represented as UML2.0 sequence
diagrams (SDs) to specify PL behavioral requirements. Variabilities are intro-
duced by means of three mechanisms: optionality, variation and virtuality [24].
We take advantage from UML2.0 SDs and their composition operators to spec-
ify PL scenarios as algebraic expressions extended by algebraic constructs for
variability. Before showing how PL requirements are specified using UML2.0 se-
quence diagrams, we first present an example that will be used throughout the
paper.

2.1 Running example
Throughout this paper, we reuse the example of a Banking Product Line (BPL)
as described in [1]. It is a set of products providing simple functionalities to
clerks in the banking domain. It provides four main functionalities:
– Creation of accounts: customers are able to open simple accounts but must do

so with a minimum balance. Account can have an associated limit specifying
to what extent a customer can overdraw money.

– Money deposit on accounts.
– Money withdrawal from accounts.
– Currency exchange calculation(exhange from and to Euro).

Variability in the BPL example concerns the support of overdrawing to a set limit
and the currency exchange calculation. Table 1 shows four different products
members of the BPL. The BS1 product for example supports limits on accounts
and does not support exchanges calculation.

Table 1. The Banking PL Members

Product Limit support Exchange calculation

BS1 YES NO
BS2 NO NO
BS3 NO YES
BS4 YES YES

2.2 UML2.0 sequence diagrams
Sequences diagrams (SDs) have been extended in UML2.0 [6] by means of com-
position operators. This allows the specification of more elaborated behaviors
than in UML 1.4, which contain alternatives, loops, and so on. In fact, UML
2.0 sequence diagrams can be considered as the algebraic composition of simple
interactions, that will be called basic Sequence Diagrams hereafter.
Figure 1 shows basic SDs defining possible scenarios for the Banking PL. To
simplify the presentation, we only show here a portion of the BPL excluding
SDs related to exchange calculation. The sequence diagram Deposit for example
describes the interaction of Clerk actor and two objects Bank and Account to
deposit money on an account.

Fig. 1. UML2.0 Sequence Diagrams for the Banking PL

UML2.0 basic SDs can be composed in composite SDs called combined inter-
action using a set of operators called interaction operators [6]. We will only use
three fundamental operators: seq, alt, and loop. The seq operator specifies a

weak sequence between the behaviors of two operand SDs. The alt operator de-
fines a choice between a set of interaction operands. The loop operator specifies
an iteration of an interaction. For all these operators, each operand is either a
basic or a combined SD.

The combined SD BPLPortion in Figure 2 shows how basic SDs for the BPL
are related. It refers to basic interactions using the ref operator. BPLPortion
specifies that there are three main alternative behaviors for requirements of BPL
members: (1) Account creation (2) Deposit on account (3) Withdraw from ac-
count, this last functionality is described using the combined SD WithdrawFromAccount.
Following UML2.0 notations [6], combined SDs are defined by rectangles which
left corner is labelled by an operator (alt, seq, loop). Operands for sequence
and alternative are separated by dashed horizontal lines. Sequential composition
can also be implicitly given by the relative order of two frames in a diagram.
For example, in the SD BankSystem basic SD CreateAccountOk is referenced
before SD SetLimit. This is equivalent to the expression CreateAccountOk seq
SetLimit.

2.3 Variability
As shown in [24], variability can be specified in UML2.0 sequence diagrams
using simple stereotypes and tagged values. We briefly describe here three of
these mechanisms, interested readers can consult [24] for more detail:

– Optional interaction. A sequence diagram can be defined as optional. This
means that the interaction specified by this SD is only supported by some
products.

– Variation interaction. A variation SD is a SD that encloses a set of SDs
variants. For any given product, only one SD variant will be present.

– Virtual interaction. A virtual SD in a PL means that the interaction
specified by this SD can be redefined and refined for a specific product by
another SD.

Combined SD in Figure 2 shows two variability mechanisms: optionality and
variation.

– As some products of the BPL do not support overdraft, a stereotype
<<optionalInteraction>> is added to the basic SD SetLimit. Notice
that the same basic SD can be referred several times as optional in the com-
bined SD. To distinguish different occurrences of the optional SD, the tagged
value optionalPart is associated to the <<optionalInteraction>> stereo-
type (see Figure 2, tagged values are represented in UML2.0 as notes)

– There are two interaction variants when withdrawing from an account: with-
draw with balance and limit checking, and withdraw with balance checking
only. The SD Withdraw is defined with the <<variation>> stereotype.
The two SDs WithdrawWithLimit and WithdrawWithoutLimit are variants,
which is indicated by the <<variant>> stereotype (See the WithdrawFromAccount
in Figure 2).

Fig. 2. The UML2.0 Combined Sequence Diagrams for the BPL

2.4 Algebraic Specification

From UML2.0 Combined SDs, an algebraic representation can easily be obtained.
Combined SDs can be considered as expressions on basic SDs composed by
interaction operators [6]. We call these expressions References Expressions for
SD.

Definition 1. A reference expression for sequence diagrams (noted RESD here-
after) is an expression of the form1:
<RESD>::=<PRIMARY> ("alt" <RESD> |"seq" <RESD>)*
<PRIMARY>::=E∅ | <IDENTIFIER> | "("<RESD>")" |

"loop" "(" <RESD> ")"
<IDENTIFIER>::= ([”6”,"a"-"z","A"-"Z"]|["0"-"9"])*

seq, alt and loop are the SD operators mentioned above. E∅ is the empty
expression that defines a Sequence Diagram without interaction.

So far, this algebraic framework does not contain means to specify variability.
We introduce three algebraic constructs that correspond to the three variability

1 We use a notation close to EBNF (Extended Backus-Naur Form) to define reference
expressions.

mechanisms presented above. This allows defining optional, variation and virtual
expressions.

Definition 2. The optional expression (OpE) is specified in the following form:
OpE ::= "optional" <IDENTIFIER> "[" <RESD> "]"
where <IDENTIFIER> refers to the name of the optional part and the <RESD>
refers to its corresponding expression.

The tagged value optionalPart in UML2.0 SD specifies the name of the op-
tional part in the optional expression. For the BSF example, optionality of the
interaction SetLimit is specified by the expression: optional settingLimit
[SetLimit]

Definition 3. A Variation expression (VaE) is defined as follows:
VaE::= "variation" <IDENTIFIER> "[" <RESD> "," (<RESD>)* "]"

For example, the variation interaction Withdraw in Figure 2 encloses two inter-
action variants. It is specified algebraically as follows:
variation Withdraw [WithdrawWithLimit, WithdrawWithoutLimit]

Definition 4. Virtual expressions (ViE) are specified as:
ViE ::= "virtual" <IDENTIFIER> "[" <RESD> "]"

The SD BPLPortion of Figure 2 can be algebraically represented by the follow-
ing expression:

EBPLPortion = loop(Deposit alt CreateAccount seq (CreateAccountOk
seq (optional settingLimit [SetLimit]) alt CreateAccountFailed)
alt variation withdrawAccount [WithdrawWithLimit,
WithdrawWithoutLimit] seq (WithdrawOk alt WithdrawFailed))

Hence, algebraic expressions including variability will be defined by expres-
sions of the form:
<RESD-PL>::=<PRIMARY-PL> ("alt" <RESD-PL> | "seq" <RESD-PL>)*
<PRIMARY-PL>::=E∅ | <IDENTIFIER> | "("<RESD-PL>")" |

"loop" "(" <RESD-PL> ")" | VaE | OpE |ViE

3 Synthesizing Products Behaviors

In the previous Section, we have specified PL behavioral requirements using sce-
narios represented as UML2.0 SDs enriched with variability mechanisms. Sce-
narios are not the only way to describe software behaviors, statecharts [8], for
example, are another formalism that is often used to depict the behavioral as-
pect of systems. However, if scenarios capture requirements in the early stage
of the development process, statecharts models are more dedicated to detailed
design phases as they are closer to an implementation (some tools such as Rhap-
sody [11] generate code from them). Furthermore scenarios and statecharts differ

on their nature: scenarios capture interactions between a set of objects, and stat-
echarts represent the internal behavior of a single object. Statecharts synthesis
out of a collection of scenarios has received a lot of attention in the context
of single products development [14, 15, 17, 22]. So far, the proposed solutions do
not consider the PL aspects. In this section, we propose an algebraic approach
to synthesize product statecharts from PL scenarios. Variability is resolved by
deriving the PL-RESD into a set of RESDs, one for each product, then state-
charts are generated by transforming product scenarios given as an RESD into
a composition of statecharts.

3.1 Product Expressions derivation
The first step towards product behaviors synthesis is to derive the corresponding
product expressions from PL-RESD. As shown previously, PL-RESDs include a
set of variation points. Derivation needs some decisions (or choices) associated
to these variation points to produce a specific product RESD. A decision model
is used to capture and record decision resolution associated to each product
member in the PL.

Definition 5. A decision model (noted hereafter DM) for a product P is a set
of pairs (namei, Res), where namei designates a name of an optional, variation
or virtual part in the PL-RESD and Res is its decision resolution related to the
product P . Decision resolutions are defined as follows:

– The resolution of an optional part is either TRUE or FALSE.
– For a variation part with E1, E2, E3.. as expression variants, the resolution

is i if Ei is the selected expression.
– The resolution of a virtual part is a refinement expression E.

For the derivation of products expressions from the BPLPortion of the BPL
example, one needs decision resolutions for the optional expression settingLimit
and for the variation expression Withdraw. The BS1 product supports limit on
accounts. This requires the presence of the SetLimit SD and the choice of the
WithdrawWithLimit SD variant which is the first variant expression. So, the BS1
product decision model is:
DM1 ={(settingLimit, TRUE), (Withdraw, 1)}. The decision model for the
BS2 product is: DM2 ={(settingLimit, FALSE), (Withdraw, 2)}

The derivation can be seen as a model specialization through abstract inter-
pretation of a generic PL expression PLE in DMi context, where DMi is the
decisions model related to a specific product. For each variability mechanism,
the interpretation in a specific context is quite straightforward:
1. Interpreting an optional expression means deciding on its presence or not in

the product expression. This is defined as:

〚 optional name [E] 〛DMi =
{
E if (name, TRUE) ∈ DMi
E∅ if (name, FALSE) ∈ DMi

Note that the empty expression is a neutral element for the sequential and
the alternative composition. It is also idempotent for the loop, i.e:

– E seq E∅ = E ; E∅ seq E = E

– E alt E∅ = E ; E∅ alt E = E

– loop (E∅) =E∅.

This allows us to replace a complete part of a PL-RESD by E∅ when this
part should be removed.

2. Interpreting a variation expression means choosing one expression variant
among its possible variants. This is defined as:
〚 variation name [E1, E2,..] 〛DMi = Ej if (name, j) ∈ DMi

3. Interpreting virtual expressions means replacing the virtual expression by
another expression:
〚 virtual name [E] 〛DMi = E’ if (name, E′) ∈ DMi, E otherwise

The BS1 product expression EBS1 is obtained by the interpretation of the EBPLPortion

in the DM1 context: EBS1 = 〚EBPLPortion 〛DM1

The derivation of the BS1 product with a decision model given by context DM1

produces the following expression :

EBS1 = loop(Deposit alt CreateAccount seq SetLimit seq
(CreateAccountOk alt CreateAccountFailed alt
WithdrawWithLimit seq (WithdrawOk alt WithdrawFailed))

The BS2 product does not provide overdrawing on accounts, which will be
characterized by the absence of the SetLimit SD in the derived expression, and
by the choice of SD WithdrawWithoutLimit at variation point Withdraw. The
product expression obtained for product BS2 is:

EBS2 = loop(Deposit alt CreateAccount seq
(CreateAccountOk alt CreateAccountFailed) alt
WithdrawWithoutLimit seq (WithdrawOk alt WithdrawFailed))

3.2 Statecharts Generation

The derived product expression are expressions without variability, i.e expres-
sions that only compose basic SDs by interaction operators: alt, seq, and
loop. The second step of our synthesis approach aims at generating statecharts
for objects in each derived product at the detailed design level. Product scenarios
are translated into statecharts using the method proposed in [25].

We generate flat statecharts, i.e. statecharts without hierarchy. Figure 3
shows examples of flat statecharts, in which states represented by double cir-
cled states are called junction states. Junction states will have an additional role
during statechart composition. Transitions are labelled e/a where e is a trig-
gering event and a is an action. ST∅ refers to an empty statechart, containing
a single state which is at the same time an initial and a junction state (see
statechart ST∅ in Figure 3).

e1' e2'/a2'

/a3'

e1/a1 /a2

ST1 ST2

ST

e1' e2'/a2'

/a3'

e1/a1 /a2

ST1 seqs ST2

e1'

e2'/a2'

/a3'

loops (ST2)

e1' e2'/a2'

/a3'

e1/a1 /a2

ST1 alts ST2

Fig. 3. Flat statecharts

Statecharts operators. Our algebraic framework for statecharts composition
is inspired from the algebraic composition of UML2.0 sequence diagrams. We
have formalized three statechart operators: seqs, alts and loops respectively
for the sequential composition, the alternative and the iteration of statecharts.
We briefly describe these operators in the rest of this section, the complete
formalization can be found in [25]:

Sequence (seqs). The sequential composition of two statecharts is a statechart
that describes the behavior of the first operand followed by the behavior of the
second one. Figure 3 shows the sequential composition of the ST1 and ST2.

Alternative (alts). The statechart resulting from the alternative composition
describes a choice between the behaviors of its operands. See for example ST1
alts ST2 in Figure 3.

Loop (loops). This operator defines iteration of a statechart. Figure 3 shows
the iteration of the ST2.

As for sequence diagrams, we algebraically describe statecharts composition with
reference expressions.

Definition 6. A Reference expression for statecharts (noted REST hereafter)
is an expression of the form:
<REST>::=<PRIMARY-REST> ("alts" <REST> | "seqs" <REST>)*

<PRIMARY-REST>::=ST∅ | <IDENTIFIER> | "("<REST>")"
| "loops" "(" <REST> ")"

Generation process. Using our algebraic framework for statecharts, translat-
ing product UML sequence diagrams to statecharts can easily be defined in two
steps. First flat statecharts are generated from basic sequence diagrams and then
product RESD is mapped to RESTs:

Basic sequence diagrams. The first step of our synthesis algorithm is to generate
a statechart P (S, O) depicting the behavior of O in S for each object O and each
SD S in the system. We do not detail here the algorithm computing P (SD, O),
which can be found in [25]. To summarize, this algorithm is a projection of
SDs on object lifelines. Receptions in the SD become events in the statechart
and emissions become actions. For a transition associated to a reception, the
action part will be void, and for transitions associated to actions, the event part
will be empty. The generated statechart contains a single junction state that
corresponds to the state reached when all events situated on an object lifeline
have been executed. When an object does not participate in a basic SD, the
algorithm generates an empty statechart. Figure 4 illustrates the synthesis of
the statechart associated to the Bank from the Deposit basic SD.

Fig. 4. Statechart synthesis from basic SD

Combined sequence diagram. Once we have obtained a collection of statecharts
through projections of basic SDs, we can combine them with the same alge-
braic operators used for SD reference expressions. For each object O, a REST is
constructed by replacing in the RESD seq, alt, and loop respectively by stat-
echarts operators seqs, alts, and loops, and each reference to a SD S by the
statechart P (S, O). From the REST obtained, a statechart can be built using
statechart composition operators.

Let us apply this construction method to the combined SD for the BS1 prod-
uct. The Bank’s REST, called RESTBS1 is described below. Figure 5 shows the
statechart obtained from this REST.

RESTBS1 = loops(P(Deposit, Bank) alts P(CreateAccount, Bank) seqs

P(SetLimit, Bank) seqs (P(CreateAccountOk, Bank) alts

P(CreateAccountFailed, Bank) alts P(WithdrawWithLimit, Bank)
seqs (P(WithdrawOk, Bank) alts P(WithdrawFailed, Bank)))

createAccount (custID, bal) / create (custID) / deposit (bal)

/ insufficientMessage ()

depositOnAccount (accID, amount)

/ deposit (amount)

withdrawFromAccount (accID, amount)

/ verifyBalance (amount) / verifyLimit (amount)

sufficientBalance () / withdraw () / withdrawOk ()

/ withdrawOkMessage ()

insufficientBalance ()

withdrawFailledMessage ()

/ setLimit()

Bank

Fig. 5. The Bank Statechart in the BS1 product

The same method can be applied for the BS2 product. An expression EBS2

is produced from the generic expression, and then transformed into the state-
chart composition expression RESTBS2 defined below. Figure 6 shows the Bank
statechart obtained from RESTBS2. Note that as BS1 and BS2 only differ on the
presence or not of an overdrawing limit, the synthesized statecharts will be very
similar, and differ only on some transitions. The differences between the stat-
echarts obtained for product BS1 and BS2 are illustrated in Figure 5 by grey
zones.

RESTBS2 = loops(P(Deposit, Bank) alts P(CreateAccount, Bank) seqs

(P(CreateAccountOk, Bank) alts P(CreateAccountFailed, Bank)
alts P(WithdrawWithoutLimit, Bank) seqs (P(WithdrawOk, Bank)
alts P(WithdrawFailed, Bank)))

createAccount (custID, bal) / create (custID)

/ deposit (bal)

/ insufficientMessage ()

depositOnAccount (accID, amount)

/ deposit (amount)

withdrawFromAccount (accID, amount)

/ verifyBalance (amount)

sufficientBalance () / withdraw () / withdrawOk ()

/ withdrawOkMessage ()

insufficientBalance ()

withdrawFailledMessage ()

Bank

Fig. 6. The Bank Statechart in the BS2 product

4 Implementation and discussion

A prototype tool of the proposed approach has been implemented in Java. PL-
RESDs and decision models are specified in textual formats. The prototype im-
plements a product expressions derivation from PL-RESD expression according
to a given decision models. A Statechart for a specific object is generated from
the derived expression and basic interactions which are also specified in textual
format [12]. A more complete description of this prototype can be found in [23].
We have used our approach for a complete BPL case study with fourteen basic
SDs. Table 2 shows statistics (number of states and transitions) on the generated
statecharts for the Bank object in each BPL member.

Table 2. States and transitions for the generated Bank statechart

States # Transitions

BS1 12 16
BS2 10 14
BS3 13 19
BS4 15 21

A Flexible Approach. Defining statecharts synthesis from UML2.0 SDs as a
mapping from RESD to RESTs gives a certain flexibility to the synthesis pro-
cess: any modification (adding or removing a SD for example) of the RESD only
lightly influences the synthesis process. It is only sufficient to modify (adding
or removing the corresponding statechart) the RESTs, thus fostering a better
traceability between the requirements and the detailed design. To illustrate this,
let us consider again the BS1 product with a new functionality for currency
exchange calculations. This is described by the three new basic SDs shown in
Figure 7. The new BS1 RESD is obtained from the older one by adding refer-
ences to SetCurrency, ConvertToEuro and ConvertFromEuro:

RESTBS1 = loop(Deposit alt CreateAccount seq (CreateAccountOk seq
SetLimit seq SetCurrency alt CreateAccountFailed) alt
WithdrawWithLimit seq (WithdrawOk alt WithdrawFailed)
alt ConvertToEuro alt ConvertFromEuto)

The new Bank’s REST is obtained from the older one by adding the syn-
thesized statecharts from the three basic SDs. We keep the same composition
information added in the new BS1 RESD:

RESTnewBS1 = loops(P(Deposit, Bank) alts P(CreateAccount, Bank) seqs

P(SetLimit, Bank) seqs P(SetCurrency, Bank) seqs

(P(CreateAccountOk, Bank) seqs alts P(CreateAccountFailled, Bank))
alts P(WithdrawWithLimit, Bank) seqs (P(WithdrawOk, Bank)
alts P(WithdrawFailled, Bank)) alts P(ConvertFromEuro, Bank)

alts P(ConvertToEuro, Bank))

Fig. 7. Basic SDs for currency exchange calculations

PL Engineering process. The proposed approach can easily be integrated into
the general PL process [18]. It fulfills two important objectives in PL: Domain

engineering and Application Engineering [4]. The integration of variability into
scenarios with PL-RESD allows for the definition of generic requirements, which
brings a new contribution to domain engineering. Derivation of a specific product
and then of specific statecharts is a step towards detailed design phases. Standard
approaches such as [9] can be used to generate applications from the synthesized
statecharts. As a part of synthesis can be reused during statechart generation,
our approach clearly deserves reuse in application engineering.

5 Related work

This section briefly compares our work with other approaches related to vari-
ability integration in requirements, and to statechart synthesis from scenarios.

Requirements Modeling in Product Lines. Few approaches model variabil-
ity in requirements using scenarios. Gomaa [5] introduces variability in UML col-
laboration diagrams with three stereotypes <<kernel>>, <<optional>>
and <<variant>>. These stereotypes are also defined for use cases and class
diagrams. While we explicitly formalize the derivation process, Gommaa et al
do not describe how the introduced stereotypes are used to derive products ar-
chitectures. Atkinson et al. [1] introduces the stereotype <<variant>> which
can be applied to messages in sequence diagrams and to statecharts. In our ap-
proach, variability is only introduced in scenarios which are more close to users
understanding than statecharts. Most approaches on PL requirements rely on
Use Cases rather than on scenarios to formalize PL requirements including vari-
ability. Halmans et al. [7] presents a detailed study on requirements engineering
for product lines, and extends Use Cases with stereotypes to specify variabil-
ity. Use Cases are described using templates. Bertolino [2] introduces tags to
describe variability in a textual description of uses cases. Massen [21] extends
the UML Use Case meta-model to allow variability. John [13] tailors Use Case
diagrams and textual use cases to support PL requirements specification. Even if
the textual description through templates, used by the previous work, is a good
way to document PL requirements, sequence diagrams are more operational and
as shown with our approach detailed design can be generated from them. Hau-
gen et al. [10] also use UML2.0 sequence diagrams to specify requirements. They
introduce a new operator called xatl to distinguish between mandatory and
potential behaviors. A potential behavior represent a variant of a mandatory
behavior. This is close to our variation construct where interaction variants
correspond to the potential behaviors.

Statecharts Synthesis from scenarios for single products. Several ap-
proaches for Statechart synthesis from scenarios have been proposed this last
decade. This section gives a brief overview of some of them. Note however that
all of these approaches are dedicated to synthesis for a single product, and do
not consider synthesis for several products. Due to the poor expressive power
of UML1.x sequence diagrams, the proposed solutions for statecharts synthe-
sis [14, 15, 17, 22] often use additional information or ad hoc assumptions for

managing several scenarios. For example, Whittle et al. [22] enriches messages
in sequence diagrams with pre and postconditions given in OCL (Object Con-
straints Language) which refer to global state variables. State variables identify
identical states throughout different scenarios and guide the synthesis process.
Our approach does not use variables, and structures the statecharts and tran-
sitions thanks to information provided by lifeline orderings and SD operators.
Koskimies et al. [15] uses Biermann-Krishnaswamy algorithm [3] which infers
programs from traces. This work establishes a correspondence between traces and
scenarios and between programs and statecharts. In [17, 14] it is also proposed to
use interactive algorithms to generate statecharts from UML1.x sequences dia-
grams. Several other approaches [19, 20, 16] study state machines synthesis from
Message Sequence charts (MSC) [12], a scenario formalism similar to sequence
diagrams. MSCs allow composition of basic scenarios (bMSCs) with High-Level
Message Sequence Charts (HMSC). This composition mechanism is very close
to current SD in UML 2.0 and our approach can be used to generate statecharts
from MSCs.

6 Conclusion

In this paper we have proposed an approach to derive product behaviors from
PL requirements. Firstly algebraic construct are introduced to specify variability
in UML2.0 sequence diagrams. Then, we use interpretations of the algebraic
expressions to resolve variability and derive product expressions. The derived
expressions are then transformed into a set of statecharts. The introduction of
variability can be used to factorize common behaviors in different products, and
should then facilitate domain engineering phases. As discussed in [25], statecharts
synthesis should be more considered as a step towards implementation rather
than as a definitive bridge from user requirements to code. However, some parts
of the synthesis can be reused from a product to another, hence facilitating reuse
during application engineering.

References

1. C. Atkinson, J Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua,
D. Muthig, B. Paech, J. Wüst, and J. Zettel. Component-based Product Line
Engineering with UML. Component Software Series. AW, 2001.

2. A. Bertolino, A. Fantechi, S. Gnesi, G. Lami, and A. Maccari. Use Case Description
of Requirements for Product Lines. In Requirement Engineering for Product Lines
(REPL02), pages 12–18, September 2002.

3. A.W Biermann and Krishnaswamy.R. Constructing programs from example com-
putations. IEEE Transaction Software Engineering, 2(3):141–153, September 1976.

4. K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods, Tools, and
Applications. AW, 2000.

5. H. Gomaa. Modeling Software Product Lines with UML. In P. Knauber and
G. Succi, editors, SPLW2, pages 27–31, Toronto, Canada, May 2001. IESE. IESE-
Report. No. 051.01/E.

6. Object Management Group. Uinified modeling language specification version 2.0:
Superstructure. Technical Report pct/03-08-02, OMG, 2003.

7. G. Halmans and K. Pohl. Communicating the variability of a software-product
family. Software System Model, 3:15–36, 2003.

8. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, 1987.

9. D. Harel and E. Gery. Executable object modeling with statecharts. In Proceeding
of International Conference on Software Engineering (ICSE 1996), 1996.

10. O. Haugen and K. Stolen. STAIRS-Steps to Analyze Interactions with Refinement
Semantics. In <<UML2003>>-The Unified Modeling Language Conference, pages
388–402, October 2003.

11. I-Logix. Rhapsody. http://www.ilogix.com/products/rhapsody/index.cfm.
12. ITU-T. Z.120 : Message sequence charts (MSC), november 1999.
13. I. John and D. Muthig. Tailoring Use Cases for Product Line Modeling. In Require-

ment Engineering for Product Lines (REPL02), pages 26–32, September 2002.
14. I. Khriss, M. Elkoutbi, and R. Keller. Automating the synthesis of uml statechart

diagrams from multiple collaboration diagrams. In Proceedings of UML’98: Beyond
the Notation, pages 115–126bis, 1998.

15. K. Koskimies, T. Systä, J Tuomi, and Männistö.T. Automated support for mod-
eling oo software. IEEE Software, 15:87–94, Janu 1998.

16. I. Krger, R. Grosu, P. Scholz, and M. Broy. From mscs to statecharts. In Franz J.
Rammig, editor, Distributed and Parallel Embedded Systems. Kluwer Academic
Publishers, 1999.

17. E. Mäkinen and T. Systä. Mas-an interactive synthesizer to support behavioral
modeling. In Proceeding of International Conference on Software Engineering
(ICSE 2001), 2001.

18. L.M. Northrop. A framework for software product line practice -version 3.0.
Web http://www.sei.cmu.edu/plp/framework.html, Software Engineering Insti-
tute, 2002.

19. S. Uchitel and J. Kramer. A workbench for synthesising behaviour models from sce-
narios. In Proceeding of International Conference on Software Engineering (ICSE
2001), 2001.

20. S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral models from scenarios.
IEEE Transaction on Software Engineering, 29(2):99–115, February 2003.

21. T. van der Maßen and H. Lichter. Modeling Variability by UML Use Case Di-
agrams. In Requirement Engineering for Product Lines (REPL02), pages 19–25,
September 2002.

22. J. Whittle and J. Schumann. Generating statechart designs from scenarios. In Pro-
ceeding of International Conference on Software Engineering (ICSE 2000), 2000.

23. T. Ziadi. Technical and additional material.
http://www.irisa.fr/triskell/results/UML04/.

24. T. Ziadi, L. Hélouët, and J.M. Jézéquel. Toward a uml profile for software prod-
uct lines. In Proceedings of the Fifth Internationl Workshop on Product Familly
Engineering (PFE-5), volume 3014 of LNCS. Springer Verlag, 2003.

25. T. Ziadi, L. Hélouët, and J.M. Jézéquel. Revisiting statecharts synthesis with an al-
gebraic approach. In International Conference on Software Engineering, ICSE’26,
Edinburgh, Scotland, United Kingdom, May 2004.

