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Abstract

The idea of synthesizing statecharts out of a collec-
tion of scenarios has received a lot of attention in re-
cent years. However due to the poor expr essive pwer of
first generation scenario languages, including UMLI.x
sequence diagrams, the proposed solutions often use ad
hoc tricks and suffer from many shortcomings. The re-
cent adoption in UML2.0 of a richer scenario language,
including interesting composition operators, now makes
it possible to revisit the problem of statechart synthe-
sis with a radic allynew approach. Inspir ed by the way
UMLZ2.0 sequence diagr ams can be algebraically com-
posed, we first define an algebraic framework for com-
posing state charts. Then we show how to leverage the
algebraic structure of UML2.0 sequence diagrams to
get a direct algorithm for synthesizing a composition
of state charts out of them. The synthesized statecharts
exhibit inter esting prop erties that make them partic-
ularly useful as a basis for the detaile d design pro-
cess. Beyond offering a systematic and semantically
well founded method, another interest of our approach
lies in its flexibility: the modification or replac ement of
a given scenario has a limited impact on the synthesis
process, thus fostering a better traceability between the
requirements and the detailed design.

1. Introduction

Scenario languages such as UML Sequence Diagrams
(SD) are often used to capture behavioral requirements
of a system. Requirements may contain usual behav-
iors expected from the system as w ellas exceptional
cases. Scenarios represent a global view of cooperations
inside a system. They are close to human understand-
ing and usually remain rather abstract and unprecise.
While it seems illusory to try to define a system by
trying to design “all its scenarios”, the idea of synthe-
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sizing statec harts out of a collection of scenarios has
receiv ed a lot of attertion in recent years. This is prob-
ably because designing a system behavior directly with
statecharts is not a intuitiv e process, as the notion of
state is often not natural in early stages of develop-
ment. As pointed out by [7], a sequence diagram is an
inter-object view of a system, i.e. an history implying a
cooperation of several objects to realize a functionality,
while a statechart can be considered as an intra-object
description, that includes several functionalities and is
closer to an implementation.

Due to the poor expressive power of first genera-
tion scenario languages, including UML1.x sequence
diagrams, the proposed solutions for statechart synthe-
sis [21, 11, 16, 10] often use ad hoc tricks and suffer from
many shortcomings. The recent adoption in UML2.0 of
a richer scenario language, including interesting com-
position operators, now makes it possible to revisit the
problem of statec hart synthesis with a radically new
approach.

Inspired by the way UML2.0 sequence diagrams can
be algebraically composed, we first define an algebraic
framework for composing statec harts. Then w eshow
ho w to lewerage the algebraic structure of UML2.0 se-
quence diagrams to get a direct algorithm for synthe-
sizing statecharts: w epropose to transform scenar-
ios given as a composition of sequence diagrams (as
defined in UML2.0) into a composition of state ma-
chines. Beyond offering a systematic and semantically
well founded method, another interest of our approach
lies in its flexibility: the modification or replacement
of a given scenario has a limited impact on the synthe-
sis process, thus fostering a better traceability betw een
the requirements and the detailed design.

This paper is organized as follows: Section 2 intro-
duces the main concepts and notations used through-
out the paper through the w ellknown A TM (Auto-
matic T eller Machine) example [20, 21]. It goes on
by introducing our algebraic framework for compos-
ing statecharts. Section 3 describes our synthesis al-
gorithm and illustrates it on the ATM example. Sec-
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tion 4 discusses the role and limitations of synthesis in
a development process, including the precise semantic
relationship existing betw een the scenarios and the syn-
thesized statecharts. Section 5 compares our approach
with related works.

2. Scenarios and statecharts

Scenarios are used to define systems behavioral re-
quirements. They are close to users understanding and
they are often used to refine use cases and provide an
abstract view of a system. Several notations have been
proposed, among which UML sequence diagrams[5],
message sequence charts(MSCs) [9], and live sequence
charts [3]. In this paper w efocus on scenarios repre-
sen ted as UML2.0 sequence diagrams (SDs). Scenarios
are not the only way to capture behaviors of a system,
and a formalism like statecharts [6] can also be used.
How ever, even if both views depict beldoral aspects
of a system, they have a very different nature. While
scenarios capture interactions betw een a set of objects,
statecharts, represent the internal behavior of a sin-
gle object. As underlined in [7], scenarios are more an
inter-object view of system behaviors while statecharts
are an intra-object view of the same system.

An important question concerning syn thesisis the
relationship betw een the initial scenario model and the
synthesized state machines. Should the synthesized be-
haviors be exactly the same, contain or be contained in
the original behaviors given by scenarios 7 Synthesizing
objects that do not even fulfill initial requirements does
not really make sense, so the last option can be forgot-
ten. Because of the incompleteness of typical scenar-
ios, statechart synthesis should be more considered as a
step to w ards an implemetation rather that as a defini-
tive bridge from user requirements to code. Hence, the
most sensible relation required betw een itter and intra
views is that requirement should be at least included
in the synthesized objects behaviors. Section 4 will
show that behavior equality or inclusion is only pos-
sible under certain assumptions about communication
between state machines. In addition to this, requiring
equivalence between inter and intra views behaviors is
only possible when reducing the expressive pow er of
the scenario language.

The approach proposed hereafter revisits the prob-
lem of statecharts synthesis with an algebraic approach
allowing to switch from an algebraic composition of SD
to an algebraic composition of statecharts. We have as-
sumed an asynchronous communication model betw een
communicating state machines, which allows systemat-
ically the inclusion of scenarios in synthesized behav-
iors. In the rest of this section, we first present UML2.0
SDs and their algebraic composition, and then intro-

duce an algebraic framework for statecharts composi-
tion.

2.1. UML2.0 Sequence Diagrams

UML2.0 [5] Sequence diagrams greatly enhance the
previous versions of scenarios proposed in UMLI.x.
Basic Sequence diagrams describe a finite number of
in teractions between a set of objects. They are now
considered as collections of events (instead of ordered
collections of messages in UML1.x), which introduces
concurrency and asynchronism, and allows the defini-
tion of more complex behaviors. In addition to this,
sequence diagrams can now be composed by means of
operators to obtain more complex interactions.

Figure 1 shows five basic SDs defining possible sce-
narios for a well known example, the ATM (Automatic
Teller Machine). We only work on a part of the ATM
behaviors defining the introduction of a card, its re-
moval, and the user iden tification. A UML2.0 SD is
represented by a rectangular frame labeled by the key-
w ordsd follow ed b y the name of the SD. The sequence
diagram EnterPassword of Figurd describes the in-
teractions of four objects User, ATM, Consortium and
Bank. The vertical lines represent life-lines for the
given objects. Interactions between objects are shown
as horizontal arrows called messages (like “enterPass-
w ord”). Each message is defined by two even ts: mes-
sage emission and message reception, which induces an
ordering betw een emission and reception. Even ts situ-
ated on the same lifeline are ordered from top to down.

Definition 1 A basic Sequence diagram is a tuple
(E,<,a,p,A,I) where E is a set of events, < is a
partial ordering imposed by lifelines and messages, A
is a set of actions (message emissions and receptions),
I is a set of objects p articip ating to the intexction, and
a and ¢ are mappings associating respectively an ac-
tion name and a location (i.e an object affected by the
event) to an event.

Sequence diagram UserCancel in Figure 1 sho ws
the interactions betw eenan User and the ATM when
a transaction is cancelled. Note that interactions are
not mandatorily sync hronous,as in UML1.x. Hence,
messages EjectCard can be sent before reception of
message cancelledMessage.

Basic SDs only represent finite behaviors without
branching (when executing a Sequence diagram, the
only branching is due to interlea ving of concurrent
events), but can be composed to obtain more complete
descriptions. UML2.0 basic SDs can be composed in a
composite SD called combined inter actionusing a set of
operators called interaction operators. The three fun-
damental operators are: seq, alt, and loop. The seq
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sd UserArrives sd EnterPassword sd ATMPortion
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badPassword badAccount i
ref
requestPassword | badAccountMessage BadPassword
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sd UserCancel requestTakeCard ref
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[ user | [ ™M | [ Consortium | [ :Bank | >
cancel alt i
» ref
cancelledMessage B coount
ejectCard
requestTakeCard [ T‘efi - - - - = = —i=
takeCard UserCancel
ref
UserCancel

Figure 1. Sequence diagrams for the ATM example

operator specifies a weak sequence betw een the behar-
iors of two operand SDs (all events in the first operand
situated on an object 0 must be executed before even ts
of the second operand situated on the same object).
The alt operator defines a choice between a set of in-
teraction operands. The loop operator specifies an it-
eration of an interaction.

For all these operators, eah operand is either a ba-
sic or a combined SD. The combined SD ATMPortion
in Figure 1 composes fiv ebasic SDs using operators.
References to SD are described by a rectangular frame
labeled by the keyword ref in the upper left corner
and containing the name of the referred SD. The com-
position operators are described by rectangles which
left corner is labeled by an operator (alt, seq, loop).
Operands for sequence and alternative are separated
by dashed horizontal lines. Sequential composition
can be also implicitly given by the relativ e order of
tw oframes in a diagram. F orexample, in the SD
ATMPortion the basic SD EnterPassword is referenced
before the SD BadPassword. This is equivalen t to
the expression EnterPassword seq BadPassword.
Composition operators can be seen as defining regular
expressions on a set of sequence diagrams, that will be
called references expressions for SDs.

Definition 2 A references expression for sequence di-
agrams (noted RESD hereafter) is an expression of the
form:

E::=8D | (Ealt E) | (E seq E) | loop ( E)
where SD is a reference to a basic sequence diagram
and seq, alt and loop are the SD operators mentioned
above.

Let us consider the SD ATMPortion of Figure 1. This
SD can be represented by the following expression:

E = loop( UserArrives seq (loop(
EnterPassword seq BadPassword ) seq
(EnterPassword seq (BadAccount alt
UserCancel)) alt UserCancel))

2.2. Algebraic framework for statecharts

We propose to define an algebraic framework for
statechart composition in a similar way. We formalize
three operators allowing sequential composition, alter-
native and iteration of statec harts. We use reference
expressions for statecharts as an algebraic specification
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of statechart composition. So far, we do not consider
concurrency along an object’s lifeline in a SD. We will
not need high-level constructs in statecharts such as
hierarchy and concurrent states. We will only use flat
statecharts.

Definition 3 A flat statechart is a 6-tuple
(S,s0,E,A,8,J) where S is a set of states, so is
the initial state, E is a set of events, A is a set of
actions, 6 C S x E x A x S is the transition relation.
J C S is a set of junction states.

Junction states are close to the usual notion of final
states in classical automatas, but will ha vean addi-
tional role during statechart composition (they will be
a kind of “merging states” for some operators). Tran-
sitions can be either:

e (s5,0,a,s"), which corresponds to message emis-
sion. T ransitions of this kind will be denoted ly an
arrow from the starting state to the target state,
and labeled by /a.

e (s,e,0,s"), which corresponds to message recep-
tions. T ransitions of this kind will be denoted ly
an arrow from the origin state to the target state,
and labeled by e.

Note that we have not adopted the usual
even t/reaction notation for transitions, as w e think
that message emissions can result from internal ¢ hoices
that are not represented in an interaction, and
can not be systematically depicted as reactions to
a message reception. How eer, compacting state-
charts transitions to obtain transitions of the kind
reception/emission, emissions, ... is surely possible
in many cases.

Figure 2 shows examples of flat statecharts, in which
junction states are represented b y double circled states.
STy refers to an empty statechart, containing a single
state which is at the same time an initial and a junction
state (see statechart STy in Figure 2).

ST2 ol o STI1
loop (ST1 seq, ST2) seqST1 STH’> @

Figure 2. Flat statecharts

2.3. Statecharts operators

We formalize three statechart operators: seqs,
loop, and alty respectively for the sequential compo-
sition, the iteration and the alternative composition of
statecharts. Junction states that have been introduced
previously will be necessary to formalize these opera-
tors. A statechart ST is a loop if the initial state is a
junction state, and if it is not an empty statec hart (i.e
so € JAST # STy). Equality of statecharts is defined
as isomorphism between their definitions.

Let ST1 = (S', s}, EY, Al,§',J') and ST2 =
(82,82, E%, A?,52, J%) be two flat statecharts.

Sequence (seq;). The sequential composition of tw o
statecharts is a statechart that describes the behavior
of the first operand followed by the behavior of the
second one. ST'1 seqs ST2 = (S, s9, E, A, 6, J), where:

e The initial state of ST1 seqs ST2 is the initial
state of the first statechart if it is not empty and
of the second one otherwise.

{ s if ST1 # ST,
Sp =

s2 otherwise

StuS? —{s2} if (s2¢J?>VST2=STy)
e S={ §2 ifSTI=S5T,
St U S? otherwise

e E=FE'UE? A= A' U A% events and actions
of ST1 seqs ST?2 are the union of those in the tw o
operands.

e Sequential composition of tw o statecharts pre-
serves all transitions of its operands, except tran-
sitions from the initial state of ST2 when ST2 is
not a loop. For the concatenation of tw ostate-
charts, new transitions are added from each junc-
tion state of the first statechart to all successors of
the initial state of the second one. This is defined
as: 6 =0'U(6aNSx ExAxS)U{(j,e,a,s) €
J' x E% x A? x S?|(s3,e,a,s) € %)}

L[ PuT it e
1 J? otherwise

STp is a neutral element for sequential composition,
i.e. for an ystatechart ST, ST seqs STy = STy seqs
ST = ST.

Loop (loops). This operator defines the iteration of
a statec hart.loops (ST1) = (S, so, E, A, 8, J), where:

e the initial state of the iterated statechart remains
unchanged, i.e. sp = s). S contains all states

excepting junction states, i.e. S = (S'—JhHU{s}}.
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e E=FE' A=A

e Iteration adds transitions from predecessors of
each junction state of the statechart to the initial
state, and removes transitions to junction states.
This is defined as: § = (' NS x E x A x S)U

{(s;e,a,50) | (s,e,a,5) €6}

e the resulting statechart only con tainsthe initial
state as junction state. i.e. J = {s}}.

The iteration of the empty statec hart is the empy
statec hart itself i.e. loops (STy) = STy.

Alternative (alts). The statechart resultingfrom
the alternative composition describes a choice betw een
the behaviors of its operands. ST1 alty; ST2 =
(S, s0,E, A, 4, J), where:

( a new state s if ST1 and ST2 are loops,
i.e. (s§ € JE Ns§ € JPANST1 # STy
ST2 # STy)

s3 if only ST1 is a loop or empty,
ie. (s§ € JEVST1=S8Ty) ANs3 & J?

| 5§ otherwise

Note that w ekeep s} as initial state by default,

but that we obtain a similar result when keeping

5.
(St if (ST2 = STy A ST1 # STy)
S2 if (ST1= STy A ST2 # STy)
{so} if (ST1=STyAST2=ST})
e S=< STUS?2U{s}if (sh € J' As e A

ST1# STy A ST2 # STy)

StuS?—{sk} ifsyg J AsEgJ?
STUS?  otherwise

\
e E=FE'UE? A= A'U A2

e T ospecify a choice betw eenthe behaviors of the
tw ostatecharts, new transitions are added from
the new initial state of to all successors of the ini-
tial states of the operands. This is defined as:

d= (*NSxExAxS)
U(2NSx ExAxS)
U{(s0,e,0a,s) | (s),e,a,s) €&
V(sd,e,a,s) € 62}

e junction states are the union of junction states of
operandsi.e. J = (J'UJ?)NS.

STy is a neutral element for choice, i.e ST alts
STy = STy alt; ST = ST.

As for sequence diagrams, we describe algebraically
statec harts composition as reference expressions.

Definition 4 A Reference expression for statecharts
(noted REST hereafter) is an expression of the form:
E ::= ST | E seqs E | E alt; E | loops (E)

The expression loops(ST'1 alts ST2) is an example
of REST. The flat statechart associated to this ex-
pression is obtained by applying alternative to ST'1
and ST2 and then the loop operator on the re-
sult. Note that the statec harts obtained after com-
position are not necessarily deterministic (see for ex-
ample, the statechart obtained from the expression
loops(ST1seqsST2)seqsST1 in Figure 2). However,
they can be transformed into deterministic automata
using standard algorithms once the synthesis process is
accomplished.

3. Generating statecharts

This section proposes an algorithm generating flat
statec harts from UML2.0 SDs. First, w eshow how
basic statecharts are generated from basic SDs. Then,
w e define the generation of stateharts from combined
SDs as a mapping from RESD to REST.

3.1. Basic Sequence Diagrams

The generation of statechart for a given object from
a basic SD is based on the projection of the SD events
on the object’s life-line. Remember that events situ-
ated on the same lifeline are totally ordered.

Definition 5 The projection 7o (S) of a SD S on an
object O is the restriction of the order < to events
situate don O’s lifeline. As this restriction is a to-
tal order, we will consider the projection as the word
7O = ej.ez...e, such that {e1,...e,} = ¢~ 1(0), and
e <ey<...ep.

Let us denote by !m the sending of message m
and by ?m the corresponding reception. The w ord
ldisplay M ainScrean.?insertCard.!request Password
is the projection of the SD UserArrives of Figure 1
on the "ATM" lifeline. Receptions in the SD become
everts in the statechart and emissions become actions.
For a transition associated to a reception, the action
part will be empty, and for transitions associated to
actions, the event part will be empty.

The following algorithm sho wshow to generate a
flat statechart for a givenobject O from a basic SD
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S. Clearly, statecharts generated will be sequences
of states, and will contain a single junction state,
that corresponds to the state reached wheall ev ents
situated on an object lifeline have been executed.
Note that when an object does not participate in an
interaction, the projection of a SD on this object’s
lifeline is the empty w ord,noted e. For this specific
case, the generated statechart is STy.

algorithm: P(S,0)
Input : A basic SD S, an object O
Output : A statechart STo = (S, 0, E, A, 9, J)
Create the initial state sq
currentState := sg
E=0;A:=0;S:={so}; J=0;6=10
ProjectedEvents := mo(S)
if ProjectedEvents is empty then
return(STy)
else
for i =1 to |ProjectedEvents| do
e; := Projected Events]i]
Create a new state s; S = SU {s}
if e; is a receiving even tthen
E=F U {el}
T r := (currenState, e;, 0, s)
§:=d8U{Tr}
else
if e; is a sending even t then
A=A U {el}
Tr := (currentState, 0, e;, s)
d:=0U{Tr}
end if
end if
currentState := s
end for
J = currentState
return(S7o)
end if

Figure 3 sho ws theflat statecharts generated from
the five basic SDs for the "ATM" object.

3.2. Combined Sequence Diagrams

After building a collection of basic statecharts
through projections of basic SDs, the extension of the
method to SD reference expressions seems quite imme-
diate. Let E be a RESD depicting the interactions of
a set of objects O = {O1,...0O}. For eac h objectO;,
a REST E; is constructed by replacing in the RESD
seq, alt, and loop respectively b y stateharts opera-
tors seqs, alty, and loops, and each reference to a SD
S by the statechart P(S,0;). From theset of REST
{E],..., E,} obtained, k statec harts can be built using

statec hart composition operators.

Let us apply this construction method to the
combined SD ATMPortion Figure 1. The "ATM" ’s
REST is:

Earym = loops(P(UserArrives, ATM) seqs
(loops( P(EnterPassword, ATM) seqs
P(BadPassword, ATM) ) seq; (P(EnterPassword,
ATM) seqy; (P(BadAccount, ATM) altg
P(UserCancel, ATM))) alt, P(UserCancel,ATM)))

The statec harts syrthesized from algebraic expres-
sions are not necessarily minimal. However, smaller
statecharts can be obtained by determinization. Fig-
ure 4 shows the determinized “A TM”statechart ob-
tained from this expression. Note that since a specific
object may not participate to interactions in one or
more basic SDs, its REST can refer several times to
the empty statec hartSTy. This REST can be reduced
knowing that the empty statechart is a neutral element
for the sequential composition and for the alternative,
and idempotent for the loop.

4. Discussion

4.1. Coherence between inter-object and intra-
object views

Defining statecharts generation from combined SDs
as a mapping from RESDs to RESTs gives a certain
flexibility to the synthesis process. After a modifica-
tion of the RESD (adding or removing a SD for ex-
ample) a part of the previous syn thesisresult can be
reused. How ever, this simple and immediate sythesis
method produces state machines whose behavior does
not necessarily exactly match the initial scenarios.

As already mentioned, synthesis must preserve a cer-
tain coherence between the inter-object view given b y
scenarios, and the composition of intra-object views
given by statecharts. Within this con text, the w ay
objects are supposed to communicate is not inno-
cent. As shown in [4], some communication models
do not allow the implementation of even very simple
sequence diagrams. T oillustrate our remark, let us
consider three communication models for statecharts
composition: broadcast, synchronous communications,
and asynchronous communications with buffers man-
aged by event dispatders in a SDL-like style. Let us
consider the sequence diagram of Figure 5, and the
statecharts obtained. If broadcast communication is
assumed betw een state machines, message b can be
broadcast before message a, and as O1 needs to receive
b before sending ¢, O1 and O2 will be deadlocked. This
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P (UserArrives, ATM)

/ displayMainScrean  insertCard  /requestPassword

o O ()

P (EnterPassword, ATM)

enterPassword / verifyAccount

o )

/P (BadAccount, ATM)

badAccount /badAccountMessage / ejectCard

/ requestTakeCard  takeCard

o e O O ) )

P (BadPassword, ATM)

badPassword / requestPassword

o >

P (BadAccount, ATM)

cancel / cancelledMessage / ejectCard

/ requestTakeCard  takeCard

o e O D D )

Figure 3. ATM basic statecharts

ATM
takeCard
/ cancelledMessage / ejectCard / requestTakeCard
cancel : ©
cancel / ejectCard
/ displayMainScrean insertCard  /requestPassword | enterPassword / verifyAccount badAccount /badAccountMessage

o) > C o

/ requestPassword

C

badPassword

Figure 4. Full statechart for the ATM obtained from SDs of Figure 1

situation does not appear with synchronous or asyn-
chronous communication. It clearly shows that some
sequence diagrams cannot be implemented with broad-
cast communication.

Now, let us consider the example of Figure 6, and
the corresponding statecharts synthesized in Figure 7.
If object O1 sends message a, nothing preven ts object
04 from sending message d. This leads to an unavoid-
able deadlock, both in a framework with synchronous
and asynchronous communications. However, in SD
Deadlock, behaviors in SD1 and SD2 were supposed
to be exclusive. Clearly, synthesized machines allow
new behaviors. In fact, the choice of a too restrictive
communication model (such as broadcast) makes syn-
thesis impossible in some cases, while more permissive
communications may produce unexpected behaviors.

Hence, the choice of a communication model is very
important for synthesis and has a consequence on the
relation betw een initial requiremens and behaviors al-
lowed b y generated state mahines. F urthermore, the
relation betw een initial requirements and generated

statec harts must be the same for all sequence diagrams
in order to allow a systematic use of synthesis in a de-
velopmernt process. If a communication model only al-
lows the implementation of a subset of the requirements
(the behaviors of state machines is systematically in-
cluded in the behaviors of scenarios), then it may be
adequate for some verification tasks, but not really as a
step to w ards an implemetation. If the set of generated
behaviors is included in the requirements for some se-
quence diagrams, and contains the requirements for
some others, then statechart synthesis is not really us-
able in the development process (not as a model refine-
ment step nor for verification purposes). With respect
to this remark, assuming broadcast communication for
statecharts within the synthesis context is surely a bad
choice. A possible approach to deal with these prob-
lems is to constrain the use of scenarios in order to
ensure that the syn thesisprocess produces state ma-
chines with exactly the same behaviors that were ex-
pressed in the requirements. We do not believ ethat
this approach is realistic in many cases, as scenarios
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were more designed to express sample behaviors than
for exhaustively specifying a system. Reducing the ex-
pressivit y of scenarios wuld result in a poor language
that would only allow direct implementation in trivial
cases. One good compromise is to keep the expressive-
ness of scenarios, while remaining aw are of the gap that
still exists bet wen inter and intra views of the system.

sdSD P(SD, O1)
O

b P(SD, 02)
c /b

(O

[:01 | [:02 ][0 ]

a

P(SD, 03)
[ (OO }

Figure 5. Example for broadcast

4.2. Conditions for behavior inclusion in UML2.0

For a framework such as UML2.0 with asynchronous
communications between statecharts, the relation be-
tween scenarios and the corresponding state machines
synthesized is clearly established. Let us call T'(SD)
the set of runs depicted by a sequence diagram, and
T(ST) the set possible runs defined by a statechart.
For a given set of statecharts {ST;}, ¢ € 1..K, let

us call || ST; the parallel composition of state ma-
i€l..K
chines with an appropriate communication mechanism.

Let us also assume a very permissive event dispatcher
mechanism that associates a fifo buffer to each pair of
objects in the system, and can consume the first mes-
sage needed in this buffer without deleting preceding
messages (hence allowing some limited message cross-
ing). Within this framework, it has been pro ved[8]
that T'(SD)) C T( || P(SD,o0)). Having behavior in-
0€O

clusion instead of equality has several consequences on
the role that statechart synthesis may play in the de-
sign process.

sd SD1 sd deadlock
[0t | [o2 ][:03 ] [:o1 ] [o2 ][ 03] [:04 ]
- [alt]
b, ref
SD1
sd SD2 [ N A A B
ref
Cot | [Co2 ][ 03] [ o4l SD2
-
g
i e
-~

Figure 6. Example leading to deadlock
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Figure 7. Statecharts generated from Figure 6

4.3. Consequences

First, scenarios cannot be used like a programming
language: if the code obtained from initial requirement
is not equivalent to what was designed, synthesis is not
a way for “executing” scenarios. To solve this problem,
[19 | proposes to detect scenarios that appear in syn-
thesized model (called “implied scenarios”), and then
to enhance the set of requirements to include these
implied scenarios. This solution faces two intractable
problems: first, detecting if all runs of statecharts are
equivalent to runs in the set of requirements is in gen-
eral an undecidable problem [17]. Hence, the detection
of an implied scenario can only be obtained through
simulation, and some unspecified runs can be missed.
Then, the number of implied scenarios can be infinite,
so the set of requirements may never con verge to ards
a stable set of scenarios.

From this consideration, ve see synthesis from sce-
narios as an entry point tow ards more operational mod-
els. If one considers sequence diagrams as sample be-
ha viors of a system, then it is clear that eah behavior
described must match (modulo a certain abstraction)
at least one run of an implementation of this system. If
the ¢ hosen communication model is adequate, synthe-
sis can ensure this property. The statecharts generated
from synthesis must be refined (if possible in a trace-
able way) to go towards code. Then, scenarios can be
used as tests to chec kthat an implementation fulfills
the initial requirements.

Note that the difference betw een thebehaviors de-
fined in the requirements and the behaviors of state
machines is often due to a loss of synchronization that
is implicit in some scenarios. So far, the synthesis ap-
proaches hav e focused more on the behaviors expressed
than on the mechanisms needed to implement them.
Consider again the example of Figure 6. The imple-
mentation of a consensus mechanism between objects
O1 and O4 could ensure that both objects behave ex-
clusiv ely as in scenario SD1 or as in scenario SD2 (up to
consensus hiding). Such situations can be detected au-
tomatically, and one can imagine that ad hoc solutions
(sync hronizations,consensus, ...) could also be auto-
matically integrated into synthesized state machines to

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) .».;@

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY



ensure equality between inter and intra views of the
system.

5 Related work

Due to the poor expressive pow erof UML1.x se-
quence diagrams, the proposed solutions for statecharts
synthesis [10, 11, 16, 21] often use additional informa-
tion or ad hoc assumptions for managing several sce-
narios. Whittle et al propose in [21] to augment mes-
sages in sequences diagrams with pre and postcondi-
tions given in the OCL (Object Constraints Language)
which refer to global state variables. State variables
identify identical states throughout different scenarios
and guide the synthesis process. The drawback of this
approach is that causality between events in a SD is
not exploited by the synthesis process, except if it is
explicitely specified by variables (but such a level of
detail is asking too much precision at the requirement
stage).

= sequence | P(SD, O1)
Con ] Lo || =T
/a
46‘»
:4> P(SD, 02)
I oM
a

Figure 8. Simple sequence diagram

Consider the example of Figure 8. The same mes-
sage is sent and received three times. With the ap-
proach proposed by Whittle et al, the generated stat-
echart would only have one transition corresponding
to message emission/reception, except if variables ex-
plicitly specify that the system’s state evolves. Our
approach does not use variables, and structures the
state machines and transitions thanks to information
provided by lifeline orderings and SD operators. How-
ever, the introduction of variables would probably be
necessary for state unification in the case of statechart
synthesis from several RESD.

Koskimies et al describe a method in [11, 12] to gen-
erate flat statec hartsfrom a set of scenarios. It uses
the Biermann-Krishnaswamy algorithm [2] which infers
programs from traces. This work establishes a corre-
spondence between traces and scenarios and between
programs and statecharts. Sending events define states
while receiving even ts define transitions. The main as-
sumption of the approach is that states are identical if
they are associated to the same sending event. Again,

this state identification may lead to arbitrary merg-
ing when the same message can be sent several times.
The algorithm proposed by Mikinen et al [16 ]is also
interactive, and generates flat statecharts from UML
sequences diagrams. The main advantage of this ap-
proach is to allow interaction with user to accept or to
refuse the generated statecharts. The work of Khriss et
al. [10] also proposes an interactive algorithm to gen-
erate statecharts from multiples scenarios expressed as
UML collaborations. To integrate statecharts, the al-
gorithm interacts with users to add state names to the
generated statecharts.

Some w orksstudy state machines synthesis from
Message Sequence Charts (MSC) [9]. MSCs allo ws
composition of basic scenarios (bMSCs) with High-
Level Message Sequence Charts (HMSC). This compo-
sition mechanism is ery close tocurren t SD in UML
2.0. Uc hitel[18, 19] proposes to synthesize labeled
transition systems from a HMSC. Communications be-
tw eenstate machines are synchronous. As shown is
Section 4, this can have an important impact on the
synthesis process, due to the shape of scenarios that
can be used to express requirements, and on the rela-
tion betw een iter object and synthesized intra object
views of the system.

Kruger [13] proposes to generate statecharts from a
set of MSC. States of the syn thesized statecharts are
identified using conditions of MSCs. The same condi-
tion in several scenariosrefers to the same state of a
statec hart.

The approaches proposed by [1, 15] are based on
projection of Message Sequence Charts to obtain SDL
code. No restriction is imposed on the initial scenar-
ios, and the SDL behaviors synthesized are not al-
w ayscomparable with the scenarios. A similar ap-
proach [14] proposes a synthesis of roomcharts (a kind
of asynchronous statecharts) from High-Level Message
Sequence charts. This w orkimposes some strong re-
strictions on the shape of scenarios used in order to
ensure equality betw een requiremens and behaviors of
syn thesized madines. As discussed in 4, we think that
restrictions to scenario often produce poor languages.

6 Conclusion

This paper has proposed an algebraic framework
for syn thesizing statecharts from UML 2.0 sequence
diagrams. Assuming that the statecharts EventDis-
patc hersemantics is that of very generic fifo queues,
w eestablished that our synthesis framework ensures
the inclusion of initial scenarios in the behaviors of the
synthesized state machines. For the momert, our ap-
proach is limited to three main operator of UML 2.0
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sequence diagrams: seq, alt, and loop. The extension
of this framework to include more UML 2.0 operators
such as opt (the optional operator) or loops with ex-
plicit bounds is currently under study. A prototype of
the proposed approach has been implemented in Java.
It takes as input interactions specified in textual for-
mat (close to [9]), and produces a statecharts for each
object. We have used our approach for a complete
ATM example including ten basic SDs. The prototype
tool is also used on a well known banking system case
study [22]. We are currently using this approach in the
context of product families.
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