
Revisiting Statechart Synthesis with an Algebraic Approach�

Tew�k Ziadi� Lo�c H�lou�t� Jean�Marc J�z�quel

IRISA� Campus de Beaulieu� ���	
 Rennes Cedex� F rance

�tew�k�ziadi� loic�helouet� jeze quel��irisa�fr

Abstract

The idea of synthesizing statecharts out of a collec�

tion of scenarios has received a lot of attention in re�

cent years� However due to the poor expr essive power of

�rst generation scenario languages� including UML��x

sequence diagrams� the proposed solutions often use ad

hoc tricks and su�er from many shortcomings� The re�

cent adoption in UML��� of a richer scenario language�

including interesting composition operators� now makes

it possible to revisit the problem of statechart synthe�

sis with a radic allynew approach� Inspir ed by the way

UML��� sequence diagr ams can be algebraically com�

posed� we �rst de�ne an algebraic framework for com�

posing state charts� Then we show how to leverage the

algebraic structure of UML��� sequence diagrams to

get a direct algorithm for synthesizing a composition

of state charts out of them�The synthesized statecharts

exhibit inter esting prop erties that make them partic�

ularly useful as a basis for the detaile d design pro�

cess� Beyond o�ering a systematic and semantically

well founded method� another interest of our approach

lies in its �exibility	 the modi�cation or replac ement of

a given scenario has a limited impact on the synthesis

process� thus fostering a better traceability between the

requirements and the detailed design�

�� Introduction

Scenario languages such as UML Sequence Diagrams
�SD� are often used to capture behavioral requirements
of a system� Requirements may contain usual behav�
iors expected from the system as w ellas exceptional
cases� Scenarios represent a global view of cooperations
inside a system� They are close to human understand�
ing and usually remain rather abstract and unprecise�
While it seems illusory to try to de�ne a system by
trying to design �all its scenarios�� the idea of synthe�

�This work has been partially supported by the F AMILIES

European project� Eurek a
P

� ���� Program� ITEA project ip

������

sizing statec harts out of a collection of scenarios has
receiv ed a lot of attention in recent years� This is prob�
ably because designing a system behavior directly with
statecharts is not a intuitiv e process� as the notion of
state is often not natural in early stages of develop�
ment� As pointed out by �	
� a sequence diagram is an
inter�object view of a system� i�e� an history implying a
cooperation of several objects to realize a functionality�
while a statechart can be considered as an intra�object
description� that includes several functionalities and is
closer to an implementation�

Due to the poor expressive power of �rst genera�
tion scenario languages� including UML��x sequence
diagrams� the proposed solutions for statechart synthe�
sis ���� ��� �
� ��
 often use ad hoc tricks and su�er from
many shortcomings� The recent adoption in UML��� of
a richer scenario language� including interesting com�
position operators� now makes it possible to revisit the
problem of statec hart synthesis with a radically new
approach�

Inspired by the way UML��� sequence diagrams can
be algebraically composed� we �rst de�ne an algebraic
framework for composing statec harts� Then w eshow
ho w to leverage the algebraic structure of UML��� se�
quence diagrams to get a direct algorithm for synthe�
sizing statecharts� w e propose to transform scenar�
ios given as a composition of sequence diagrams �as
de�ned in UML���� in to a composition of state ma�
chines� Beyond o�ering a systematic and semantically
well founded method� another interest of our approach
lies in its �exibility� the modi�cation or replacement
of a given scenario has a limited impact on the synthe�
sis process� thus fostering a better traceability betw een
the requirements and the detailed design�

This paper is organized as follows� Section � intro�
duces the main concepts and notations used through�
out the paper through the w ell known A TM�Auto�
matic T ellerMachine� example ���� ��
� It goes on
by introducing our algebraic framework for compos�
ing statecharts� Section � describes our synthesis al�
gorithm and illustrates it on the ATM example� Sec�

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

tion � discusses the role and limitations of synthesis in
a development process� including the precise semantic
relationship existing betw een the scenarios and the syn�
thesized statecharts� Section � compares our approach
with related works�

�� Scenarios and statecharts

Scenarios are used to de�ne systems behavioral re�
quirements� They are close to users understanding and
they are often used to re�ne use cases and provide an
abstract view of a system� Several notations have been
proposed� among which UML sequence diagrams����
message sequence charts�MSCs	 �
�� and live sequence
charts ���� In this paper w efocus on scenarios repre�
sen ted as UML��
 sequence diagrams �SDs	� Scenarios
are not the only way to capture behaviors of a system�
and a formalism like statecharts ��� can also be used�
How ev er� ev en if both views depict behavioral aspects
of a system� they have a very di�erent nature� While
scenarios capture interactions betw een a set of objects�
statecharts� represent the in ternal behavior of a sin�
gle object� As underlined in ���� scenarios are more an
inter�object view of system behaviors while statecharts
are an intra�object view of the same system�

An important question concerning syn thesis is the
relationship betw een the initial scenario model and the
synthesized state machines� Should the synthesized be�
haviors be exactly the same� contain or be contained in
the original behaviors given by scenarios � Synthesizing
objects that do not even ful�ll initial requirements does
not really make sense� so the last option can be forgot�
ten� Because of the incompleteness of typical scenar�
ios� statechart synthesis should be more considered as a
step to w ards an implementation rather that as a de�ni�
tive bridge from user requirements to code� Hence� the
most sensible relation required betw een inter and intra
views is that requirement should be at least included
in the synthesized objects behaviors� Section � will
show that behavior equality or inclusion is only pos�
sible under certain assumptions about communication
between state machines� In addition to this� requiring
equivalence between inter and intra views behaviors is
only possible when reducing the expressive pow erof
the scenario language�

The approach proposed hereafter revisits the prob�
lem of statecharts synthesis with an algebraic approach
allowing to switch from an algebraic composition of SD
to an algebraic composition of statecharts� We have as�
sumed an asynchronous communication model betw een
communicating state machines� which allows systemat�
ically the inclusion of scenarios in synthesized behav�
iors� In the rest of this section� we �rst present UML��

SDs and their algebraic composition� and then intro�

duce an algebraic framework for statecharts composi�
tion�

2.1. UML2.0 Sequence Diagrams

UML��
 ��� Sequence diagrams greatly enhance the
previous versions of scenarios proposed in UML��x�
Basic Sequence diagrams describe a �nite number of
in teractions between a set of objects� They are no w
considered as collections of events �instead of ordered
collections of messages in UML��x	� which introduces
concurrency and asynchronism� and allows the de�ni�
tion of more complex behaviors� In addition to this�
sequence diagrams can now be composed by means of
operators to obtain more complex interactions�

Figure � shows �ve basic SDs de�ning possible sce�
narios for a well known example� the ATM �Automatic
Teller Machine	� We only work on a part of the ATM
behaviors de�ning the introduction of a card� its re�
moval� and the user iden ti�cation� A UML��
 SD is
represented by a rectangular frame labeled by the key�
w ordsd follo w ed b y the name of the SD� The sequence
diagram EnterPassword of Figure� describes the in�
teractions of four objects User� ATM� Consortium and
Bank� The vertical lines represent life�lines for the
given objects� In teractions between objects are shown
as horizontal arrows called messages �like �enterPass�
w ord�	� Each message is de�ned by two even ts� mes�
sage emission and message reception� which induces an
ordering betw een emission and reception�Even ts situ�
ated on the same lifeline are ordered from top to down�

De�nition � A basic Sequence diagram is a tuple
�E��� �� ��A� I� where E is a set of events� � is a
partial ordering imposed by lifelines and messages� A
is a set of actions �message emissions and receptions��
I is a set of objects particip ating to the interaction� and
� and � are mappings associating respectively an ac�
tion name and a location �i�e an object a�ected by the
event� to an event�

Sequence diagram UserCancel in Figure � sho ws
the interactions betw eenan User and the ATM when
a transaction is cancelled� Note that interactions are
not mandatorily sync hronous�as in UML��x� Hence�
messages EjectCard can be sent before reception of
message cancelledMessage�

Basic SDs only represent �nite behaviors without
branching �when executing a Sequence diagram� the
only branching is due to interlea ving of concurrent
ev en ts	� but can be composed to obtain more complete
descriptions� UML��
 basic SDs can be composed in a
composite SD called combined inter actionusing a set of
operators called interaction operators� The three fun�
damental operators are� seq� alt� and loop� The seq

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

Figure 1. Sequence diagrams for the ATM example

operator speci�es a weak sequence betw een the behav�
iors of two operand SDs �all events in the �rst operand
situated on an object o must be executed before even ts
of the second operand situated on the same object��
The alt operator de�nes a choice between a set of in�
teraction operands� The loop operator speci�es an it�
eration of an interaction�

F or all these operators� each operand is either a ba�
sic or a combined SD� The combined SD ATMPortion

in Figure � composes �v ebasic SDs using operators�
References to SD are described by a rectangular frame
labeled by the keyword ref in the upper left corner
and containing the name of the referred SD� The com�
position operators are described by rectangles which
left corner is labeled by an operator �alt� seq� loop��
Operands for sequence and alternative are separated
by dashed horizontal lines� Sequential composition
can be also implicitly giv en by the relativ e order of
tw o frames in a diagram� F or example� in the SD
ATMPortion the basic SD EnterPassword is referenced
before the SD BadPassword� This is equivalen t to
the expression EnterPassword seq BadPassword�
Composition operators can be seen as de�ning regular
expressions on a set of sequence diagrams� that will be
called references expressions for SDs�

De�nition � A references expression for sequence di�
agrams �noted RESD hereafter� is an expression of the
form�
E ��� SD � �E alt E� � �E seq E� � loop � E �

where SD is a reference to a basic sequence diagram
and seq� alt and loop are the SD operators mentioned
above�

Let us consider the SD ATMPortion of Figure �� This
SD can be represented by the following expression�

E � loop� UserArrives seq �loop�

EnterPassword seq BadPassword � seq

�EnterPassword seq �BadAccount alt

UserCancel�� alt UserCancel��

2.2. Algebraic framework for statecharts

We propose to de�ne an algebraic framework for
statechart composition in a similar way� We formalize
three operators allowing sequential composition� alter�
native and iteration of statec harts� We use reference
expressions for statecharts as an algebraic speci�cation

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

of statechart composition� So far� we do not consider
concurrency along an object�s lifeline in a SD� We will
not need high�level constructs in statecharts such as
hierarchy and concurrent states� We will only use �at

statecharts�

De�nition � A �at statechart is a ��tuple

hS� s�� E�A� �� Ji where S is a set of states� s� is

the initial state� E is a set of events� A is a set of

actions� � � S � E � A � S is the transition relation�

J � S is a set of junction states�

Junction states are close to the usual notion of �nal
states in classical automatas� but will ha vean addi�
tional role during statechart composition �they will be
a kind of �merging states� for some operators	� Tran�
sitions can be either

� �s� �� a� s��� which corresponds to message emis�
sion� T ransitions of this kind will be denoted by an
arrow from the starting state to the target state�
and labeled by �a�

� �s� e� �� s��� which corresponds to message recep�
tions� T ransitions of this kind will be denoted by
an arrow from the origin state to the target state�
and labeled by e�

Note that w e have not adopted the usual
even t�reaction notation for transitions� as w e think
that message emissions can result from internal c hoices
that are not represented in an interaction� and
can not be systematically depicted as reactions to
a message reception� How ever� compacting state�
charts transitions to obtain transitions of the kind
reception�emission�� emission�� ��� is surely possible
in many cases�

Figure � shows examples of �at statecharts� in which
junction states are represented b y double circled states�
ST� refers to an empty statechart� containing a single
state which is at the same time an initial and a junction
state �see statechart ST� in Figure �	�

Figure 2. Flat statecharts

2.3. Statecharts operators

We formalize three statechart operators
 seqs�
loops and alts respectively for the sequential compo�
sition� the iteration and the alternative composition of
statecharts� Junction states that have been introduced
previously will be necessary to formalize these opera�
tors� A statechart ST is a loop if the initial state is a
junction state� and if it is not an empty statec hart �i�e
s� � J � ST �� ST�	� Equality of statecharts is de�ned
as isomorphism between their de�nitions�

Let ST� � hS�� s�
�
� E�� A�� ��� J�i and ST� �

hS�� s�
�
� E�� A�� ��� J�i be two �at statecharts�

Sequence �seqs�� The sequential composition of tw o
statecharts is a statechart that describes the behavior
of the �rst operand followed by the behavior of the
second one� ST� seqs ST� � hS� s�� E�A� �� Ji� where

� The initial state of ST� seqs ST� is the initial
state of the �rst statechart if it is not empty and
of the second one otherwise�

s� �

�
s�
�
if ST� �� ST�

s�
�
otherwise

� S �

��
�

S� � S� � fs�
�
g if �s�

�
�� J� 	 ST� � ST��

S� if ST� � ST�

S� � S� otherwise

� E � E� � E�
 A � A� � A�
 ev ents and actions
of ST� seqs ST� are the union of those in the tw o
operands�

� Sequential composition of tw o statecharts pre�
serv es all transitions of its operands� except tran�
sitions from the initial state of ST� when ST� is
not a loop� For the concatenation of tw ostate�
charts� new transitions are added from each junc�
tion state of the �rst statechart to all successors of
the initial state of the second one� This is de�ned
as
 � � �� � ���
 S � E � A � S� � f�j� e� a� s� �
J� �E� �A� � S�j�s�

�
� e� a� s� � ���g

� J �

�
J� � J� if s�

�
� J�

J� otherwise

ST� is a neutral element for sequential composition�
i�e� for an ystatechart ST � ST seqs ST� � ST� seqs
ST � ST �

Loop �loops�� This operator de�nes the iteration of
a statec hart� loops�ST�� � hS� s�� E�A� �� Ji� where

� the initial state of the iterated statechart remains
unchanged� i�e� s� � s�

�
� S contains all states

excepting junction states� i�e� S � �S��J���fs�
�
g�

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

� E � E�� A � A��

� Iteration adds transitions from predecessors of
each junction state of the statechart to the initial
state� and removes transitions to junction states�
This is de�ned as� � � ��� � S � E � A � S� �
f�s� e� a� s�

�
� j �s� e� a� j� � ��g

� the resulting statechart only con tains the initial
state as junction state� i�e� J � fs�

�
g�

The iteration of the empty statec hart is the empty
statec hart itself i�e� loops �ST�� � ST��

Alternative �alts�� The statec hart resulting from
the alternative composition describes a choice betw een
the behaviors of its operands� ST� alts ST� �
hS� s�� E�A� �� Ji� where�

� s� �

������������
�����������

a new state s if ST� and ST� are loops�
i�e� �s�

�
� J� � s�

�
� J� � ST� �� ST��

ST� �� ST��

s�
�
if only ST� is a loop or empty�

i�e� �s�
�
� J� � ST� � ST�� � s�

�
�� J�

s�
�
otherwise

Note that w ekeep s�
�
as initial state by default�

but that we obtain a similar result when keeping
s�
�
�

� S �

��������������
�������������

S� if �ST� � ST� � ST� �� ST��
S� if �ST� � ST� � ST� �� ST��
fs�g if �ST� � ST� � ST� � ST��

S� � S� � fsg if �s�
�
� J� � s�

�
� J��

ST� �� ST� � ST� �� ST��

S� � S� � fs�
�
g if s�

�
�� J� � s�

�
�� J�

S� � S� otherwise

� E � E� � E�� A � A� � A��

� T ospecify a choice betw eenthe behaviors of the
tw ostatecharts� new transitions are added from
the new initial state of to all successors of the ini�
tial states of the operands� This is de�ned as�

� � ��� � S �E �A� S�
���� � S �E �A� S�
�f�s�� e� a� s� j �s

�

�
� e� a� s� � ��

��s�
�
� e� a� s� � ��g

� junction states are the union of junction states of
operands i�e� J � �J� � J�� � S�

ST� is a neutral element for choice� i�e ST alts
ST� � ST� alts ST � ST �

As for sequence diagrams� we describe algebraically
statec harts composition as reference expressions�

De�nition � A Reference expression for statecharts
�noted REST hereafter� is an expression of the form�
E ��� ST � E seqs E � E alts E � loops �E�

The expression loops�ST� alts ST�� is an example
of REST� The �at statechart associated to this ex�
pression is obtained by applying alternative to ST�
and ST� and then the loop operator on the re�
sult� Note that the statec harts obtained after com�
position are not necessarily deterministic 	see for ex�
ample� the statechart obtained from the expression
loops�ST�seqsST��seqsST� in Figure �
� However�
they can be transformed in to deterministic automata
using standard algorithms once the synthesis process is
accomplished�

�� Generating statecharts

This section proposes an algorithm generating �at
statec harts from UML��� SDs� First� w e show how
basic statecharts are generated from basic SDs� Then�
w e de�ne the generation of statecharts from combined
SDs as a mapping from RESD to REST�

3.1. Basic Sequence Diagrams

The generation of statechart for a given object from
a basic SD is based on the projection of the SD events
on the object�s life�line� Remember that events situ�
ated on the same lifeline are totally ordered�

De�nition � The projection �O�S� of a SD S on an
object O is the restriction of the order 	 to events
situate d on O�s lifeline� As this restriction is a to�
tal order� we will consider the projection as the word
�O � e��e� � � � en such that fe�� � � � eng � ����O�� and
e� � e� � � � � en�

Let us denote by �m the sending of message m

and by �m the corresponding reception� The w ord
�displayMainScrean��insertCard��requestPassword
is the projection of the SD UserArrives of Figure �
on the
ATM
 lifeline� Receptions in the SD become
ev ents in the statechart and emissions become actions�
For a transition associated to a reception� the action
part will be empty� and for transitions associated to
actions� the event part will be empty�

The following algorithm sho ws how to generate a
�at statechart for a giv en object O from a basic SD

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

S� Clearly� statecharts generated will be sequences
of states� and will contain a single junction state�
that corresponds to the state reached whenall ev en ts
situated on an object lifeline have been executed�
Note that when an object does not participate in an
interaction� the projection of a SD on this object�s
lifeline is the empty w ord�noted �� For this speci�c
case� the generated statechart is ST��

algorithm� P �S�O�

Input � A basic SD S� an object O
Output � A statechart STO � �S� s�� E�A� �� J�
Create the initial state s�
currentState �� s�
E �� �� A �� �� S �� fs�g� J � �� � � �
ProjectedEvents �� �O�S�
if ProjectedEvents is empty then

return�ST��
else

for i � � to jProjectedEventsj do
ei �� ProjectedEvents�i�
Create a new state s� S � S � fsg
if ei is a receiving even tthen
E �� E � feig
T r �� �currentState� ei� �� s�
� �� � � fTrg

else

if ei is a sending even tthen
A �� A � feig
Tr �� �currentState� �� ei� s�
� �� � � fTrg

end if

end if

currentState �� s

end for

J � currentState

return�STO�
end if

Figure 	 sho ws the
at statecharts generated from
the �ve basic SDs for the �ATM� object�

3.2. Combined Sequence Diagrams

After building a collection of basic statecharts
through projections of basic SDs� the extension of the
method to SD reference expressions seems quite imme�
diate� Let E be a RESD depicting the interactions of
a set of objects O � fO�� � � � Okg� F or eac h objectOi�
a REST Ei is constructed by replacing in the RESD
seq� alt� and loop respectively b y statecharts opera�
tors seqs� alts� and loops� and each reference to a SD
S by the statechart P �S�Oi�� F rom the set of REST
fE�

�
� � � � � E�

k
g obtained� k statec harts can be built using

statec hart composition operators�

Let us apply this construction method to the
combined SD ATMPortion Figure
� The �ATM� �s
REST is�

EATM � loops�P�UserArrives� ATM� seqs
�loops� P�EnterPassword� ATM� seqs
P�BadPassword� ATM� � seqs �P�EnterPassword�

ATM� seqs �P�BadAccount� ATM� alts
P�UserCancel� ATM��� alts P�UserCancel�ATM���

The statec harts synthesized from algebraic expres�
sions are not necessarily minimal� However� smaller
statecharts can be obtained by determinization� Fig�
ure � shows the determinized �A TM� statechart ob�
tained from this expression� Note that since a speci�c
object may not participate to in teractions in one or
more basic SDs� its REST can refer several times to
the empty statec hartST�� This REST can be reduced
knowing that the empty statechart is a neutral element
for the sequential composition and for the alternative�
and idempotent for the loop�

�� Discussion

4.1. Coherence between inter-object and intra-
object views

De�ning statecharts generation from combined SDs
as a mapping from RESDs to RESTs gives a certain

exibility to the synthesis process� After a modi�ca�
tion of the RESD �adding or removing a SD for ex�
ample� a part of the previous syn thesisresult can be
reused� How ev er� this simple and immediate synthesis
method produces state machines whose behavior does
not necessarily exactly match the initial scenarios�

As already mentioned� synthesis must preserve a cer�
tain coherence between the inter�object view given b y
scenarios� and the composition of intra�object views
given by statecharts� Within this con text� the w ay
objects are supposed to communicate is not inno�
cent� As shown in ���� some communication models
do not allow the implementation of ev en very simple
sequence diagrams� T o illustrate our remark� let us
consider three communication models for statecharts
composition� broadcast� synchronous communications�
and asynchronous communications with bu�ers man�
aged by even t dispatchers in a SDL�like style� Let us
consider the sequence diagram of Figure �� and the
statecharts obtained� If broadcast communication is
assumed betw een state machines� message b can be
broadcast before message a� and as O� needs to receive
b before sending c� O� and O� will be deadlocked� This

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

Figure 3. ATM basic statecharts

Figure 4. Full statechart for the ATM obtained from SDs of Figure 1

situation does not appear with synchronous or asyn�
chronous communication� It clearly shows that some
sequence diagrams cannot be implemented with broad�
cast communication�

Now� let us consider the example of Figure �� and
the corresponding statecharts synthesized in Figure ��
If object O� sends message a� nothing preven ts object
O� from sending message d� This leads to an unavoid�
able deadlock� both in a framework with synchronous
and asynchronous communications� However� in SD
Deadlock� behaviors in SD� and SD� were supposed
to be exclusive� Clearly� synthesized machines allow
new behaviors� In fact� the choice of a too restrictive
communication model �such as broadcast� makes syn�
thesis impossible in some cases� while more permissive
communications may produce unexpected behaviors�

Hence� the choice of a communication model is very
important for synthesis and has a consequence on the
relation betw een initial requirements and behaviors al�
lowed b y generated state machines� F urthermore� the
relation betw een initial requirements and generated

statec harts must be the same for all sequence diagrams
in order to allow a systematic use of synthesis in a de�
velopment process� If a communication model only al�
lows the implementation of a subset of the requirements
�the behaviors of state machines is systematically in�
cluded in the behaviors of scenarios�� then it may be
adequate for some veri�cation tasks� but not really as a
step to w ards an implementation� If the set of generated
behaviors is included in the requirements for some se�
quence diagrams� and contains the requirements for
some others� then statechart synthesis is not really us�
able in the development process �not as a model re�ne�
ment step nor for veri�cation purposes�� With respect
to this remark� assuming broadcast communication for
statecharts within the synthesis context is surely a bad
choice� A possible approach to deal with these prob�
lems is to constrain the use of scenarios in order to
ensure that the syn thesisprocess produces state ma�
chines with exactly the same behaviors that were ex�
pressed in the requirements� We do not believ ethat
this approach is realistic in many cases� as scenarios

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

were more designed to express sample behaviors than
for exhaustively specifying a system� Reducing the ex�
pressivit y of scenarios would result in a poor language
that would only allow direct implementation in trivial
cases� One good compromise is to keep the expressive�
ness of scenarios� while remaining aw are of the gap that
still exists bet ween inter and intra views of the system�

Figure 5. Example for broadcast

4.2. Conditions for behavior inclusion in UML2.0

For a framework such as UML��� with asynchronous
communications between statecharts� the relation be�
tween scenarios and the corresponding state machines
synthesized is clearly established� Let us call T �SD�
the set of runs depicted by a sequence diagram� and
T �ST � the set possible runs de�ned by a statechart�
For a given set of statecharts fSTig� i � ���K� let
us call

f

i����K

STi the parallel composition of state ma�

chines with an appropriate communication mechanism�
Let us also assume a very permissive event dispatcher
mechanism that associates a �fo bu�er to each pair of
objects in the system� and can consume the �rst mes�
sage needed in this bu�er without deleting preceding
messages �hence allowing some limited message cross�
ing�� Within this framework� it has been pro ved	
�
that T �SD�� � T �

f

o�O

P �SD� o��� Having behavior in�

clusion instead of equality has several consequences on
the role that statechart synthesis may play in the de�
sign process�

Figure 6. Example leading to deadlock

Figure 7. Statecharts generated from Figure 6

4.3. Consequences

First� scenarios cannot be used like a programming
language� if the code obtained from initial requirement
is not equivalent to what was designed� synthesis is not
a way for
executing� scenarios� To solve this problem�
	�� � proposes to detect scenarios that appear in syn�
thesized model �called
implied scenarios��� and then
to enhance the set of requirements to include these
implied scenarios� This solution faces two intractable
problems� �rst� detecting if all runs of statecharts are
equivalent to runs in the set of requirements is in gen�
eral an undecidable problem 	���� Hence� the detection
of an implied scenario can only be obtained through
simulation� and some unspeci�ed runs can be missed�
Then� the number of implied scenarios can be in�nite�
so the set of requirements may never con verge to wards
a stable set of scenarios�

F rom this consideration� we see synthesis from sce�
narios as an entry point tow ards more operational mod�
els� If one considers sequence diagrams as sample be�
ha viors of a system� then it is clear that each behavior
described must match �modulo a certain abstraction�
at least one run of an implementation of this system� If
the c hosen communication model is adequate� synthe�
sis can ensure this property� The statecharts generated
from synthesis must be re�ned �if possible in a trace�
able way� to go towards code� Then� scenarios can be
used as tests to chec kthat an implementation ful�lls
the initial requirements�

Note that the di�erence betw een thebehaviors de�
�ned in the requirements and the behaviors of state
machines is often due to a loss of synchronization that
is implicit in some scenarios� So far� the synthesis ap�
proaches have focused more on the behaviors expressed
than on the mechanisms needed to implement them�
Consider again the example of Figure �� The imple�
mentation of a consensus mechanism between objects
O� and O� could ensure that both objects behave ex�
clusiv ely as in scenario SD� or as in scenario SD� �up to
consensus hiding�� Such situations can be detected au�
tomatically� and one can imagine that ad hoc solutions
�sync hronizations�consensus� ���� could also be auto�
matically integrated into synthesized state machines to

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

ensure equality between inter and intra views of the
system�

� Related work

Due to the poor expressive pow er of UML��x se�
quence diagrams� the proposed solutions for statecharts
synthesis ���� ��� ��� ��� often use additional informa�
tion or ad hoc assumptions for managing several sce�
narios� Whittle et al propose in ���� to augment mes�
sages in sequences diagrams with pre and postcondi�
tions given in the OCL 	Object Constraints Language

which refer to global state variables� State variables
identify identical states throughout di�erent scenarios
and guide the synthesis process� The drawback of this
approach is that causality between events in a SD is
not exploited by the synthesis process� except if it is
explicitely speci�ed by variables 	but such a level of
detail is asking too much precision at the requirement
stage
�

Figure 8. Simple sequence diagram

Consider the example of Figure
� The same mes�
sage is sent and received three times� With the ap�
proach proposed by Whittle et al� the generated stat�
echart would only have one transition corresponding
to message emission�reception� except if variables ex�
plicitly specify that the system�s state evolves� Our
approach does not use variables� and structures the
state machines and transitions thanks to information
provided by lifeline orderings and SD operators� How�
ever� the in troduction of variables would probably be
necessary for state uni�cation in the case of statechart
synthesis from several RESD�

Koskimies et al describe a method in ���� �� � to gen�
erate �at statec harts from a set of scenarios� It uses
the Biermann�Krishnaswamy algorithm ��� which infers
programs from traces� This work establishes a corre�
spondence between traces and scenarios and between
programs and statecharts� Sending events de�ne states
while receiving even ts de�ne transitions� The main as�
sumption of the approach is that states are identical if
they are associated to the same sending event� Again�

this state identi�cation may lead to arbitrary merg�
ing when the same message can be sent several times�
The algorithm proposed by M�kinen et al ��� �is also
interactive� and generates �at statecharts from UML
sequences diagrams� The main advantage of this ap�
proach is to allow interaction with user to accept or to
refuse the generated statecharts� The work of Khriss et
al� ���� also proposes an interactive algorithm to gen�
erate statecharts from multiples scenarios expressed as
UML collaborations� To integrate statecharts� the al�
gorithm interacts with users to add state names to the
generated statecharts�

Some w orks study state machines synthesis from
Message Sequence Charts 	MSC
 ���� MSCs allo ws
composition of basic scenarios 	bMSCs
 with High�
Level Message Sequence Charts 	HMSC
� This compo�
sition mechanism isv ery close tocurren t SD in UML
���� Uc hitel ��
 � �� � proposes to synthesize labeled
transition systems from a HMSC� Communications be�
tw eenstate machines are synchronous� As shown is
Section �� this can have an important impact on the
synthesis process� due to the shape of scenarios that
can be used to express requirements� and on the rela�
tion betw een inter object and synthesized intra object
views of the system�

Kruger ���� proposes to generate statecharts from a
set of MSC� States of the syn thesizedstatecharts are
identi�ed using conditions of MSCs� The same condi�
tion in sev eral scenarios refers to the same state of a
statec hart�

The approaches proposed by ��� ��� are based on
projection of Message Sequence Charts to obtain SDL
code� No restriction is imposed on the initial scenar�
ios� and the SDL behaviors synthesized are not al�
w ayscomparable with the scenarios� A similar ap�
proach ���� proposes a synthesis of roomcharts 	a kind
of asynchronous statecharts
 from High�Level Message
Sequence charts� This w orkimposes some strong re�
strictions on the shape of scenarios used in order to
ensure equality betw een requirements and behaviors of
syn thesized machines� As discussed in �� we think that
restrictions to scenario often produce poor languages�

� Conclusion

This paper has proposed an algebraic framework
for syn thesizing statecharts from UML ��� sequence
diagrams� Assuming that the statecharts EventDis�
patc hersemantics is that of very generic �fo queues�
w e established that our synthesis framework ensures
the inclusion of initial scenarios in the behaviors of the
synthesized state machines� F or the moment� our ap�
proach is limited to three main operator of UML ���

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

sequence diagrams� seq� alt� and loop� The extension
of this framework to include more UML ��� operators
such as opt �the optional operator� or loops with ex�
plicit bounds is currently under study� A prototype of
the proposed approach has been implemented in Java�
It takes as input interactions speci�ed in textual for�
mat �close to 	
��� and produces a statecharts for each
object� We have used our approach for a complete
ATM example including ten basic SDs� The prototype
tool is also used on a well known banking system case
study 	���� We are currently using this approach in the
context of product families�

References

��� M� Abdalla� F� Khendek� and G� Butler� New results
on deriving sdl speci�cations from mscs� In G� � Y� e�
R�Dssouli� editor� Proc� of �th SDL forum� pages ���
��� �			�

�
� A� Biermann and Krishnaswamy�R� Constrcuting pro�
grams from example computations� IEEE Transaction
Software Engineering�
�
��������
� September �	���

�
� W� Damm and D� Harel� Lscs� Breathing life into
message sequence charts� Formal Methods in System
design� �	����������
����

��� A� Engels� S� Mauw� and M� Reniers� A hierarchy of
communication models for message sequence charts� In
T� H� T� Mizuno� N� Shiratori and A� Togashi� editors�
Proc� of FORTE X and PSTV XVII� pages ���	�� Os�
aka� Japon� Novembre �		�� Chapman � Hall�

��� O� M� Group� Uini�ed modeling language speci�cation
version
��� Superstructure� Technical Report ptc��
�
����
� OMG�
��
�

��� D� Harel� Statecharts� A visual formalism for complex
systems� Science of Computer Programming� ��
��

��

��� �	���

��� D� Harel and R� Marelly� Come� Let�s Play � Scenario�
Based Programming Using LSCs and the Play�Engine�
Springer�
��
�

��� L� H�lou�t and C� Jard� Conditions for synthesis of
communicating automata from hmscs� In �th Inter�
national Workshop on Formal Methods for Industrial
Critic al Systems �FMICS�� April
����

�	� ITU�T� Z��
� � Message sequence charts �MSC��
novem ber �			�

���� I� Khriss� M� Elkoutbi� and R� Keller� Automating
the syn thesis of uml statechart diagrams from multiple
collaboration diagrams� In Pr oc� of UML��	�Beyond
the Notation� pages �����
�� �		��

���� K� Koskimies� T� Syst�� J� T uomi� and M�nnist��T�
Automated support for modeling oo softw are� IEEE
Software� ������	�� Janu �		��

��
� K� M� K oskimies�T� Syst�� and J� T uomi� Sced� A
tool for dynamic modeling object systems� Technical
Report A��		���� University of Tampere� �		��

��
� I� Kr�ger� R� Grosu� P � Scholz� and M� Broy� From
mscs to statecharts� In F� J� Rammig� editor� Dis�
tributed and Parallel Embedded Systems� Kluwer Aca�
demic Publishers� �			�

���� S� Leue� L� Mehrmann� and M� Rezai� Synthesizing
room models from message sequence chart speci�ca�
tions� In Proc� of
�th IEEE Conference on Auto�
mated Software Engineering� Honolulu� Haw aii� Octo�
bre �		��

���� N� Mansurov and D� Zhuk ov�Automatic synthesis of
sdl models in use case methodology� In G� � Y� e�
R�Dssouli� editor� Proc� of �th SDL forum� pages

��

��� �			�

���� E� M�kinen and T� Syst�� Mas�an interactive synthe�
sizer to support behavioral modeling� In Pr oc� of Inter�
national Conference on Software Engineering �ICSE
�

��
����

���� A� Muscholl and D� Peled� Message Sequence Graphs
and decision problems on mazurkiewicz traces� In
Pr oc� of MFCS���� LNCS ���
� �			�

���� S� Uchitel and J� Kramer� A workbench for synthesis�
ing behaviour models from scenarios� In Pr oc� of Inter�
national Conference on Software Engineering �ICSE
�

��
����

��	� S� Uchitel� J� Kramer� and J� Magee� Detecting implied
scenarios in message sequence chart speci�cations� In
proceedings of the �th European Software Engineering
Conferece and �th ACM SIGSOFT International Sym�
posium on the Foundations of Software Engineering
�ESEC�FSE�

�� September
����

�
�� S� Uchitel� J� Kramer� and J� Magee� Syn thesis of be�
havioral models from scenarios� IEEE Transaction on
Software Engineering�
	�
��		����� February
��
�

�
�� J� Whittle and J� Schumann� Generating statechart
designs from scenarios� In Pr oc� of International Con�
ference on Software Engineering �ICSE �

��
����

�

� T� Ziadi� Technical and additional material�
http���www�irisa�fr�triskell�results�ICSE����

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

