
Using UML sequence diagrams as the basis for a

formal test description language ?

Simon Pickin1 and Jean-Marc J�ez�equel2

1 Dpto. de Ingenier��a Telem�atica, Universidad Carlos III de Madrid, Spain

Simon.Pickin@it.uc3m.es

2 IRISA, Campus de Beaulieu, Universit�e de Rennes, France

Abstract. A formal, yet user-friendly, test description language could

increase the possibilities for automation in the testing phase while at

the same time gaining widespread acceptance. Scenario languages are

currently one of the most popular formats for describing interactions

between possibly distributed components. The question of giving a solid

formal basis to scenario languages such as MSC has also received a lot of

attention. In this article, we discuss using one of the most widely-known

scenario languages, UML sequence diagrams, as the basis for a formal

test description language for use in the distributed system context.

1 Introduction

Testing is crucial to ensuring software quality and the testing phase absorbs a

large proportion of development costs. Despite this fact, testing remains more
of a craft than a science. As a result, the productivity gains to be obtained
from a more systematic treatment of testing, and from the consequent greater
level of automation in the testing phase, are potentially very large. The use of
a formal test description language is a key part of such a systematic treatment,

as explained in [24].

One of the main ben�ts of such a language is the ability to abstract away
from the less important detail. As well as being crucial to managing complexity,

abstraction is the means by which platform-independent descriptions are made
possible. Graphical analysis and design languages are at the heart of recent moves
to raise the level of abstraction in usual software development practice. However,
the lack of a formal basis to the most widely-used of these languages, such as

UML, limits the extent to which they can be used to facilitate automation.
Among such graphical languages, scenario languages are becoming popular for
describing interactions between possibly-distributed components, due to the fact
that they present the communications and the temporal orderings between them

? This work was initiated in the COTE project of the French RNTL research pro-

gramme during Simon Pickin's stay at IRISA c
 Springer-Verlag

in a clear and intuitive fashion. They would therefore seem to be the notation of
choice for describing tests in which the communication aspect is predominant.

In this article we discuss de�ning a formal test description language based
on UML sequence diagrams and give an overview of such a language called
TeLa, originally developed in the COTE project [12] (an early version of TeLa
is presented in [20]). In so doing, we deal with the main semantic issues involved
in using UML sequence diagrams, and scenario languages in general, as the
basis for a formal language, in our case, for a test description language. Despite
the importance of these issues, given the rapid uptake of UML, there is a lack
of detailed analyses of them in the literature, not least in the oÆcial UML
documentation. Here we provide such an analysis not only for UML 1.4/1.5 [16]
sequence diagrams but also for the sequence diagrams of the upcoming UML
2.0 [17] standard.

We chose to base our language on UML in order to increase the chances of
the work having some industrial impact, notably in widely-used development
processes and CASE tools. In addition, this choice should make testing more
accessible, not only due to the user-friendly syntax but also since: for a System
Under Test (SUT) that is an implementation of a model designed in UML, if
the test language is also based on UML, the relation between the tests and (part
of) the design model is more manifest. In the component testing context, this

accessibility also facilitates the use of tests as component documentation. This
documentation can be viewed as a type of constructive contract, as an instal-
lation aid, as a regression testing aid in case of changes in the implementation
of the component or of its environment, etc. TeLa was conceived as a test lan-
guage for component-based applications. The use of TeLa as the interface to the
Umlaut UML simulator and the TGV test synthesis tool in the COTE project
is treated in [21].

We currently restrict our interest to black-box testing, though scenario lan-
guages could also be used for some types of grey-box testing. We aim our lan-
guage at a higher level of abstraction than, for example, TTCN [6] for which
a scenario-based graphical syntax has also been developed in recent years. The
UML Test Pro�le, see [18], is testimony to the industrial interest in a UML-based
test description language. The work on TeLa reported on here begun before that
on the Test Pro�le and though the two approaches have similarities they are not
currently compatible, see Section 3.4.

In Section 2 and Section 3 we analyse the suitability of UML 1.4/1.5 sequence
diagrams and UML 2.0 sequence diagrams, respectively. In Section 4 we give a

avour of the TeLa language and in Section 5 we present some important aspects

of its semantics. In Section 6 we draw conclusions from this work.

2 Suitability of UML 1.4/1.5 Sequence Diagrams

In this section we tackle the issue of basing a formal test description language
on UML 1.4/1.5 sequence diagrams, as they are de�ned in the UML standard.
The inconsistencies discussed in Section 2.1 oblige us to modify the semantics

as discussed in Section 2.2. The expressiveness of the language must also be
increased as discussed in Section 2.3.

2.1 Semantic inconsistencies of UML 1.4/1.5 Sequence Diagrams

In the UML 1.4/1.5 speci�cations, the semantics of sequence diagrams is de�ned
in terms of two relations between messages, predecessor and activator, in a man-
ner similar to [13]. Predecessor relates a message sent by a method to earlier
messages sent by the same method while activator relates a message sent by a
method to the message that invoked that method. Two messages can then be
said to be on the same causal
ow if this pair of messages is in the transitive

closure of the union of these two relations. Clearly, messages can only be ordered
if they are on the same causal
ow.

UML 1.4/1.5 sequence diagrams betray their origins, which lie in procedu-
ral diagrams|diagrams involving a single causal
ow and in which all calls are
synchronous|used to describe the behaviour of centralised OO programmes.
They represent an attempt to generalise these procedural diagrams to incorpo-
rate treatment of concurrency, asynchronous calls, active objects, etc. Unfortu-
nately, the resulting generalisation is not consistent.

In their current state, then, UML 1.4/1.5 sequence diagrams are unsuitable
for use as the basis for a formal test description langauge pitched at a relatively
high-level of abstraction. In the following sections we present the main problems
with the UML 1.4/1.5 semantics.

The sequence numbering notation. This notation is inconsistent in the
following sense. Concurrency is supposed to be modelled using the thread names
and explicit predecessors part of the notation. However, this part of the notation
appears to assume that messages emitted on di�erent lifelines can be related via

the predecessor relation, e.g. see Fig. 3-71 of [16], contradicting the semantics
(in particular, the semantics of the activation part of the sequence numbering
notation that uses the dot notation!).

Moreover, the activation part of this notation is unworkable except in com-
plete causal
ows. The use of guards, guarded loops and branching would make
it even more unworkable.

Focus bars and asynchronous messages / active objects. It is not clear
from the UML standard whether the use of focus bars (or, equivalently, nested

sequence numbers) is allowed or desirable in the presence of asynchronous mes-
sages and/or active objects. However, if focus bars are not used, according to the
semantics, no ordering relations can be inferred between asynchronous messages
emitted on di�erent lifelines.

There is little in the standard to justify other interpretations such as that
used, without explanantion, in [5].

Lack of ordering on incomplete causal
ows. Message ordering cannot be
speci�ed without complete causal
ows. Sequence diagrams cannot therefore be
used for speci�cation, where abstraction is fundamental, but only for represent-
ing complete execution traces.

Lack of ordering between di�erent causal
ows. Even when representing
a complete execution trace, messages on di�erent causal
ows are not ordered
w.r.t. each other.

In particular, a signal is a causal sink that is only related to messages that
precede it on the same causal
ow. Thus, it has no temporal relation to any
message emitted or received on the receiving lifeline except causal ancestors.

Similarly, a message emitted spontaneously by an active object is a causal
source that is only related to messages that succeed it on the same causal
ow
(and even this, only if focus bars / nested sequence numbers are used, see above).

Thus, it has no temporal relation to any message emitted or received on the
emitting lifeline except causal descendants.

The notion of a message being \completed". The predecessor relation is
said to relate \completed" messages on a lifeline. In the case of asynchronous

messages, how does the sender know when a message has \completed"?

The de�nition of active / passive object. The vagueness of the de�nition

of control
ow scheme in UML, i.e. the concept of active/passive object, means
that the exact role of this concept in sequence diagrams is not clear.

2.2 Clarifying the Semantics of Sequence Diagrams

In this section we modify the semantics of sequence diagrams to solve the prob-
lems discussed in Section 2.1.

An Interworking-Style or \Message-Based" Semantics. The most ob-

vious solution to the problems discussed in the previous section is to remove
the activator relation from the semantics and simply relate messages emitted on
the same or on di�erent lifelines via the predecessor relation3. The semantics is
therefore de�ned as a partial order of messages.

There are several ways in which predecesor relations between messages could
be inferred from a sequence diagram. The most intuitive solution is to use a
semantics similar to that of interworkings [14], but which also allows the use of
synchronous calls and focus bars. Note that such a semantics cannot be related
to the UML 1.4/1.5 metamodel (i.e. the abstract syntax), since the addition of

loops and branching (see below) could lead to in�nite depth, and even in�nite
width, metamodel structures.

3 In the absence of an activator relation, the question arises as to the role of the focus

bar, apart from relating synchronous invocation messages to the corresponding reply

messages. We return to this point in Section 2.3

An MSC-style or \Event-Based" Semantics. However, an interworking-
style semantics is not well-adapted to distributed system description. Neither
is it well-adapted to test description since, in the case of messages sent (resp.
received) by the tester to (resp. from) the SUT, the tester behaviour to be
described encompasses only the emission (resp. reception) of the message by the
tester but not its reception (resp. emission) by the SUT.

A semantics which distinguishes emission and reception events is clearly more
suitable for describing tester behaviour. We are therefore led to use a partial
order of events semantics, similar to that of MSC [10] rather than a partial
order of messages semantics, simliar to that of interworkings.

A Message-Based Semantics Inside an Event-Based Semantics. In or-
der to be able to use the simplicity of the interworking-style semantics when
appropriate, we de�ne a message-based semantics as a restriction of an event-
based semantics, extending the work of [4], see [19] for details. This enables us
to specify when required that any diagram, or even part of a diagram, that sat-
is�es the RSC (Realisable with Sychronous Communication) property [2], is to
be interpreted using the message-based semantics.

Among the multiple uses of this facility, when modelling centralised imple-
mentations it can be used to avoid cluttering up diagrams with synchronization
messages. In the COTE project, this facility was used to represent the output
of the TGV test synthesis tool in sequence-diagram form, see [21].

2.3 Increasing the Expressiveness of Sequence Diagrams

As well as being ill-de�ned, UML 1.4/1.5 sequence diagrams are lacking con-
structs which are essential for a test description language of the type discussed
in the introduction. Though most of these constructs could also be seen as cru-
cial to other uses of sequence diagrams, here we do not address this wider issue
but concentrate, instead, on test description. In looking for suitable constructs,
we seek inspiration from the MSC standard. In the following sections we discuss

both the constructs we will need to add and the existing constructs which we
will need to modify. However, before doing so, we brie
y discuss the signi�cant
limitations that we do not address.

Perhaps the most important of these limitations is the absence of a gate con-

struct and of a parallel operator, unlike the situation in MSC. This is due to
the complexity of their interaction with the loop operator, which would make it
all too easy to produce unimplementable sequence diagrams. On the downside,
the lack of a parallel operator may make it diÆcult to describe certain types of
distributed testing scenarios involving concurrent choices. Two important limi-
tations which are shared with MSC, namely the absence of a multi-cast construct
and the inability to specify the creation of an arbitrary number of components,
also deserve a mention.

Sequential Composition. Representation of large numbers of message ex-
changes requires a means of composing diagrams sequentially. Sequential com-
position is also essential for representing di�erent alternative continuations, see
the section on branching, below.

Use of the event-based semantics means that weak sequential composition|
that used in the MSC standard|is essential for compositionality, that is, in order
for behaviour to be conserved if a diagram is split into a sequence of smaller dia-
grams. Though weak sequential composition is the most suitable default compo-
sition mechanism, we also require a way of explicitly specifying strong sequential

composition, that is, composition in which all events of the �rst diagram precede
all events of the second diagram, in order to describe the sequential execution of
di�erent test cases. This is needed to model test case termination which involves
a global syncronisation in order for a global verdict to be reached. This latter
type of sequential composition has no counterpart in MSC.

Internal Action. Modelling component creation/destruction in the presence
of lifeline decomposition requires a construct for specifying the creation of a
subcomponent on a lifeline. Representing data manipulation requires a construct
for specifying assertions and assignments on a lifeline. These three types of action
could be placed in an internal action located at a precise position on a lifeline
in a similar way to the MSC internal action. Semantically, lifeline termination is
also viewed as an internal action. Finally, an \escape" internal action, allowing
other language code to be inserted (subject to hypotheses on its e�ects) is highly
desireable in the UML context.

Unlike in MSCs, for more
exibility when used in conjuntion with lifeline
decomposition, we allow assignment and assertion internal actions to straddle
several lifelines, thus involving implicit synchronisations.

Branching. We require a construct to specify the situation in which several
alternatives are possible.

If the tester has several possible alternative emission actions, we would nor-
mally expect the conditions determining which action is chosen to be fully spec-
i�ed in the test description. However, in the case where the SUT has several
possible alternative emission actions, in black-box testing, the conditions deter-

mining which action is chosen may depend on details of the internal state of
the SUT that are unknown to the tester, particularly if the SUT is a concurrent
and/or distributed system. This latter phenomenon is sometimes referred to as
observable non-determinism. We require a choice construct that is suÆciently
general to be able to describe inde�nite choices, i.e choices involving observable
non-determinism.

The \presentation option" branching construct of UML 1.4/1.5 sequence di-
agrams is unsuitable for the following reasons:

{ inde�nite choices cannot be speci�ed,

{ since the di�erent alternatives appear on the same diagram, diagrams in-
volving branching can only be guaranteed to be unambiguous if causal
ows
are completely speci�ed,

{ if guards are not mutually exclusive, the same behaviour may describe choice
or concurrency depending on data values; with any non-trivial data language,
therefore, the question of whether a given construct always denotes a choice
will often be undecidable.

These properties make this construct of little use for speci�cation. A construct
similar to the alternatives of MSCs would answer our requirements.

Loops. We require a construct for specifying general iterative behaviour.
The recurrence construct of UML 1.4/1.5 sequence diagrams is unsuitable

since it was conceived for use with lifelines representing multi-objects, without
the meaning of emissions and receptions of other messages on such lifelines being
clari�ed. The \presentation option" iteration construct of UML 1.4/1.5 sequence
diagrams is unsuitable since it can only be used to specify a �nite number of
iterations. A construct similar to the MSC loop would answer our requirements.

Explicit Concurrency (Coregion). We require a construct to explicitly break
the default ordering on lifelines, e.g. to specify a multi-cast performed by an SUT
component, where the tester neither knows, nor cares, about the order in which
the messages are emitted.

The explicit predecessor part of the UML sequence numbering notation is un-
suitable due to its ambiguity in the presence of loops and its user-unfriendliness.
A construct similar to the MSC coregion would answer our requirements. How-
ever, we will be led to use a coregion construct that is richer than the MSC
coregion. In MSC, focus bars have no semantics. An important part of the se-

mantics we give to focus bars below concerns their interaction with coregions.

Synchronisation Messages / Local Orderings. We require a means of ex-
plicitly ordering two events which would not otherwise be ordered. Where the
two events are on the same lifeline, this can be used in conjunction with the

coregion to specify more complex concurrent behaviour.
In MSC, the general ordering construct is used for this purpose. However,

we would prefer to syntactically distinguish general orderings between events on
the same lifeline and those between events on di�erent lifelines. While the MSC
syntax is adequate for the former, we prefer to use a \virtual synchronisation"

message for the latter4

Semantics of Focus Bars. In UML 1.4/1.5 sequence diagrams, focus bars
are used to represent method executions. This concept is a valuable one in the
context of object- and component-based applications. We would therefore like

4 It is \virtual" since it denotes new relations but no new events.

to give focus bars a semantics consistent with this interpretation in the absence
of an activator relation. Focus bars have been introduced in MSCs but have no
formal semantics. We consider this situation rather unsatisfactory.

As stated above, focus bars relate request to reply in synchronous invocations.

Since we will not use the UML 1.4/1.5 sequence-diagram semantics, we can de�ne
the use of focus bars to be optional with asynchronous invocations without losing
ordering between events on di�erent lifelines.

We propose to formalise the semantics of the interaction of focus bars with
coregions as follows. If a focus bar falls within the scope of a coregion, the
ordering relations between the events in the scope of the focus bar are una�ected
by that coregion. Thus, a focus bar falling inside a coregion is a shorthand for a
set of local orderings, see Fig. 1 for an example.

In addition, however, we propose that passiveness of the lifeline in question
imposes a constraint on the ordering relations between the events in the focus
bar scope, on the one hand, and the other events of the coregion that are not in
the focus bar scope, on the other. For example, in Fig. 1, Tester 2 being passive
corresponds to the constraint that neither of the events !m1 and !m8 can occur
between ?m2 and !r2 or between ?m5 and !m7, where ? (resp. !) signi�es reception
(resp. emission). This dependence of the ordering properties on the control
ow
scheme models the implementation of concurrency on passive components as
being via task scheduling rather than via execution threads.

Fig. 1. Focus bars falling inside the scope of a coregion (l.h.s.); equivalent orderings

denoted using the local ordering construct (r.h.s.).

Care must be taken as regards the meaning of focus bars in the presence of

lifeline decomposition, particularly if the lifeline is speci�ed to be passive. In this
latter case, it turns out that we will need to oblige the conservation of focus bars
on lifeline composition by using auto-invocations.

Semantics of the Control Flow Scheme Notion. The concept of activeness
or passiveness would appear to be a valuable one in object- and component-based
applications, albeit a diÆcult one to pin down. In MSC, this notion does not
exist. Again, we consider this situation rather unsatisfactory.

We propose to formalise the notion of passiveness in the sequence-diagram
context as a set of constraints on the allowed traces, see [19] for details. If
a non-interleaving semantics is used, the notion of passiveness can be de�ned
as a restriction on the allowed linearisations, thus as an (optional) additional
semantic layer. These constraints will a�ect the implementation of concurrency,
as described above, and the blocking, or otherwise, of the sender in synchronous
calls. Such a de�nition also helps to ensures that the semantics of the focus bar
is consistent with its interpretation as a method execution.

Suspension Region. The suspension region of MSC was introduced to model
the blocking of the client during a synchronous invocation. However, we require
such blocking to depend on whether or not the lifeline in question represents
a passive entity. We have deliberately de�ned a notion of passiveness that is
independent of the basic semantics in order to be able to consider the behaviour
of a diagram with, or without, control
ow scheme attributes. For this reason,
we do not want it to be re
ected in the syntax and do not therefore want to use a
suspension region construct. Though we do not use such a construct, the vertical
region between a synchronous invocation emission event and the reception event

of the corresponding synchronous reply has similar behaviour to the focus bar,
e.g. concerning interaction with coregions (recall that there may be callbacks)
and is similarly a�ected by the control
ow scheme of the lifeline. Below, we
refer to this vertical region as the \potential suspension region".

Symbolic Treatment of Data. The importance of allowing parameters of

whole test cases, together with the fact that the values returned by the SUT are
unknown, makes a semantics involving symbolic treatment of data inevitable.
However, due to the complexity of the task, though the main aspects of the
non-interleaving, enumerated-data case and the interleaving, symbolic-data case
were formalised in [19], the formalisation of the non-interleaving, symbolic-data
case was left for future work.

3 Suitability of UML 2.0 Sequence Diagrams

In this section we discuss the sequence diagrams of the upcoming UML 2.0

standard w.r.t. the requirements presented in the previous section.

UML 2.0 sequence diagrams are heavily inspired by the MSC standard. Their
semantics is an MSC-style event-based semantics, thus avoiding many of the
problems discussed in Section 2.1. Moreover, most of the additional constructs
described in Section 2.3 are present, in particular, weak sequential composition,
branching, loops, coregions (a derived operator de�ned in terms of a parallel

operator) and general orderings. Strong sequential composition can be modelled,
albeit in a rather cumbersome manner, using the strict operator5.

3.1 Some Particular Points of Interest

Some of the main points of interest in attempting to use UML 2.0 sequence

diagrams as a basis for a test description language are as follows:

Execution Occurrence and Internal Actions. The execution occurrence
construct of UML 2.0 sequence diagrams, denoting a pair of \event occurrences":
the start and �nish of an \execution", aims at generalising the UML 1.4/1.5
notion of focus bars.

From the de�nition of the coregion operator of UML 2.0 sequence diagrams,
if an execution occurrence (or, in fact, any other \interaction fragment") falls in
the scope of a coregion, the ordering relations between the events in the scope of
the execution occurrence are una�ected by that coregion. Thus the situation is
similar to that which we propose for focus bars above. However, no interaction
with the control
ow scheme notion is discussed. In fact, the control
ow scheme
is not discussed at all in the context of UML 2.0 interactions6.

MSC-style internal actions are not present in UML 2.0 sequence diagrams
and, since \event occurrences" are either message emissions or receptions, an
internal action cannot be modelled by an execution occurrence whose start and

�nish events are simultaneous, even if such execution occurrences were allowed.

Suspension Region. In [17], the notion of suspension region that was present
in earlier drafts has been removed, though there is no indication in the document
that this has been done for the same reasons as in our work. Moreover, it is not
stated that the \potential suspension region" as de�ned above consitutes an
implicit execution occurrence. Thus, such a region falling inside a coregion may

give rise to ambiguities.

Sequence Expression Notation. The sequence numbering scheme remains,
in spite of its user-unfriendliness and the fact that it is unworkable both for
incomplete causal
ows and in the presence of loops, branching and guards.
However, in [17], unlike in [16], (thankfully!) it's use would seem to be to be
restricted to the so-called communication diagrams, which are therefore likely
to be of little use outside of the procedural case.

5 In the testing context, if SUT entities are represented explicitly using lifelines, the

operands of this operator must not include these SUT lifelines so as not to contradict

the black-box hypothesis.
6 UML 2.0 sequence diagrams are a concrete syntax for UML 2.0 interactions

Scope of \Interaction Fragments". The scope of the \interaction fragment"
is not constrained at all in [17]. It is therefore easy to de�ne hard-to-interpret
diagrams such as one in which a loop contains the reception of a message but
not its emission. The question of de�ning a set of syntactic restrictions to avoid
such problems is currently not tackled.

3.2 Problems With UML 2.0 Constructs Not Present in MSC

The biggest problem with UML 2.0 sequence diagrams concerns the constructs
which are new w.r.t MSC, namely the strict, critical region and state invariant

constructs and the neg, ignore, consider and assert operators.
Though not stated, one assumes that an ignore instruction for a message

type has priority over a consider instruction for the same message type in the
surrounding scope and vice versa.

If a valid trace can contain actions which are not in the alphabet of the
interaction, is there a need for an ignore operator, apart from to cancel the e�ect
of the consider or an assert operator? If a valid trace cannot contain other such
actions, is there a need for an assert operator? From Fig. 345 of [17], it would
seem that message types not appearing in the interaction can be \considered"
using the consider operator. If a trace involves the sending and receiving of such
a message in the scope of such a consider expression is it invalid? If so, why is
there a need to use an assert operator in Fig. 345? If not, in what way is such a
message type to be \considered"?

The new constructs open up a veritable pandora's box of expressions whose
meaning is obscure. For example, what is the meaning of an expression \ignor-
ing" a message type a in parallel with an expression involving an occurrence of
message type a, or with an expression that \considers" message type a, or with

an expression that asserts the exchange of a message of type a? What is the
meaning of a neg or ignore expression in the scope of an assert operator? What
about an ignore or neg expression in the scope of a strict operator or inside a
critical region? What is the meaning of a strict expression or a critical region in
parallel with an expression containing some of the same messages?

3.3 UML 2.0 Sequence Diagram Semantics

The semantics of a single UML 2.0 interaction (not that of a pair of such in-
teractions!) is stated in x14.3.7 of [17] to be a set of valid traces and a set of
invalid traces. It is also stated that the union of valid traces and invalid traces

does not necessarily constitute the \trace universe", though the exact role of this
trace universe in he semantics remains somewhat obscure. It seems reasonable
to assume that the (semantic counterparts of the) actions of the interaction are
contained in the set of atomic actions used to construct the traces of this trace
universe.

The description of the di�erent constructs seems to betray a confusion be-
tween, on the one hand, an interaction as a denotation of a set of traces con-
structed from the (semantic counterparts of the) actions of that interaction|a

construction which does not require invoking some mysterious trace universe|
and, on the other hand, an interaction as a denotation of a set of traces in some
larger trace universe, in the manner of a property.

The interaction-as-property interpretation would work in a manner similar
to that in which the test objectives of the TestComposer and Autolink tools [23]
are used to select traces from among the set of traces of an SDL speci�cation. It
is the description of the state invariant construct and the neg, ignore, consider
and assert operators which re
ect the interaction-as-property view. The ignore,
consider and assert operators a�ect how the selection of the traces from the
nebulous trace universe is performed

Perhaps both interpretations are intended, that is, an interaction is supposed
to denote a set of explicitly-constructed traces which can then be used as a
property or selection criteria on any trace universe whose atomic actions contain
those of the interaction. Notice that the property operates as both a positive
and a negative selection criterion since it selects both a set of valid traces and a
set of invalid traces, in a similar way to the accept and reject scenarios of [21].

Even without taking into account the problems with the constructs which
are new w.r.t. MSC, it is diÆcult to judge if the pair-of-trace-sets semantics is
viable, since the rules for deriving new pairs of trace sets from combined trace
sets are not given. For example, if (a,b) represents a set of valid and (c,d) a set
of invalid traces, � denotes sequential composition and : trace concatenation, is
it the case that (a; b) � (c; d) = (a:c; b [a:d)?

In summary, the semantics of UML 2.0 sequence diagrams sketched in [17]
is in need of clari�cation. Moreover, it is far from clear that it could be
eshed

out into a consistent semantics for the whole language, i.e. one that includes the
constructs that are new w.r.t. MSC. Thus, though our language, TeLa, draws
heavily on MSC, it is not completely based on UML 2.0 sequence diagrams.

3.4 The UML Test Pro�le

The aim of the UML Test Pro�le (UTP) [18] is similar to that of the language
TeLa, but this language is directly based on UML 2.0. Aside from the problems
with UML 2.0 sequence diagrams discussed above, it is also the case that the test
pro�le addresses a wider range of issues than our work and has taken a less formal

approach than ours. The desire to de�ne a mapping to TTCN-3 and JUnit was
of a higher priority than de�ning a more formal semantics. Furthermore, UTP
is less based on sequence diagrams than our approach, often requiring a mix of
sequence diagrams and state diagrams.

4 Test Description Language: TeLa

The UML sequence-diagram based language TeLa incorporates the corrections

of Section 2.2 and the extra constructs of Section 2.3.
In MSCs, the same behaviour can be modelled either using MSCs with in-

line expressions or using HMSCs. Similarly, in TeLa, tests can be described using

TeLa one-tier scenario diagrams or TeLa two-tier scenario diagrams. The former
comprise TeLa sequence diagrams linked by TeLa sequence diagram references,
while the latter comprise TeLa sequence diagrams linked using a TeLa activity
diagram. However, in constrast to the situation for MSCs, TeLa one-tier scenario
diagrams are less expressive than TeLa two-tier scenario diagrams. This is done
with the idea of making them simpler to use and closer to UML 1.4/1.5 syntax as
well as with the idea of guaranteeing properties of importance in testing such as
that of concurrent controllability, see Section 5.3. Examples of one-tier scenario
diagrams are given in Figure 2 and Figure 4. The concrete syntax for the choice
and loop operator using auto-invocations was chosen in the COTE project to
be easy to implement in the Objecteering UML tool; clearly, a better concrete
syntax could be devised. The equivalent two-tier scenario diagrams are shown
in Figure 3 and Figure 5. Since TeLa two-tier scenario diagrams were developed
in the COTE project, similar structures, \interaction overview" diagrams, have
been introduced in UML 2.0.

Fig. 2. A TeLa one-tier scenario diagram showing a TeLa sequence-diagram choice and

describing the same behaviour as the diagram of Fig. 3.

It is worth mentioning that TeLa sequence diagram loops must be restricted
to diagrams with the RSC property [2] in order to be able to de�ne their scope

via two valid cuts, see [9]. These are the two valid cuts that contain all events
occurring in in the loop scope on the lifeline on which the loop is de�ned, together
with the minimum number of events located on other lifelines. Moreover, we
do not allow TeLa sequence diagram loops to occur inside coregions, in order
for every sequence-diagram loop to be equivalent to an activity-diagram loop,

without the need for a parallel operator at the activity-diagram level.

5 TeLa semantics

In this section we tackle the main issues involved in giving a semantics to our
test description language. This includes dealing with the question of verdicts,

Fig. 3. A TeLa two-tier scenario diagram showing a TeLa activity-diagram choice and

describing the same behaviour as the diagram of Fig. 2.

Fig. 4. A TeLa one-tier scenario diagram showing a TeLa sequence-diagram loop and

describing the same behaviour as the diagram of Fig. 5.

Fig. 5. A TeLa two-tier scenario diagram showing a TeLa activity-diagram loop and

describing the same behaviour as the diagram of Fig. 4.

and that of determinism, in order to answer the question of when a test de-
scription de�nes a test case. To date these issues have only been addressed very
super�cially in the non-interleaving context, e.g. see [15] and [3].

5.1 Structural Semantics

In order to de�ne a framework for lifeline decomposition we de�ne a structural
semantics in terms of an underlying hierarchical component model, see [19] for
details. By comparison, lifeline decomposition is not addressed in TTCN-3 GFT
or UTP. A valid cut of a sequence diagram, see [9], is mapped to a snapshot of
this underlying component model (snapshots are necessary due to component
creation and destruction). This gives us a means to de�ne the internal structure
of components, from the two default components, the tester and the SUT, down
to the base-level components. The base-level components are the owners of the
dynamic variables used in the speci�cation. We also introduce the use of a dot
notation on arrow labels to identify the target port and (base-level) originating
port of a message.

This underlying component model is de�ned by the test architecture spec-
i�cation and possibly also by the speci�cation of the assumed SUT structure.

We propose to use UML 2.0 component diagrams as the concrete syntax for
our component speci�cations, augmenting these diagrams with annotations con-
cerning component properties (see below) and the implemented communication
architecture. The underlying component model can be used to give a clear mean-
ing to the use of constructs such as focus bars and internal actions under lifeline

decomposition. As already stated, in MSC, focus bars have no semantics and the
meaning of internal actions or guards in the presence of lifeline decomposition
is not addressed. One assumes they are only allowed on lifelines representing
base-level entities.

Finally, the structural semantics also provides a framework for deployment
and for de�ning component properties which a�ect the interpretation of the
diagrams. The property of being message-based or event-based and that of being
active or passive are examples of such properties. Note that if a component is

msg-based, all its subcomponents are msg-based and if a component is active,
at least one of its subcomponents must be active.

5.2 Test speci�c considerations: representation of SUT

As stated in Section 1, a test description is only required to specify the events
on the tester. However, unlike TTCN GFT, we choose to represent the SUT
explicitly using one or several lifelines. Recall that we cannot use gates since
we have exluded these from the language in order to avoid semantic complexity.
However, we, in any case, consider the use of explicit SUT lifelines the most
user-friendly representation for the following reasons:

{ it is closer to the current standard usage of UML sequence diagrams,

{ the relation between a UML model and the tests of an implementation of
(part of) that model is clearer,

{ the situation in which tester events are ordered via SUT events is better

communicated by representing the message exchanges involved explicitly,
{ it does not give the impression that a speci�c communication architecture
(e.g. FIFO queues per channel) is being denoted; we prefer this to be speci�ed
as part of a separate test architecture diagram.

The semantics is then given in two stages: �rst, derive a partial order of
events including SUT events; second, project this partial order onto the tester
events, c.f projection of MSCs in [7]. A choice that is local in the second stage
semantics, a test local choice, is not necessarily a local choice, i.e. a choice that
is local in the �rst stage semantics. See Fig. 6 for an example of a local, but
test non-local, choice. Semantics via projection can also give rise to additional

non-determinism.

Fig. 6. A TeLa one-tier scenario diagram showing a test non-local choice

Internal Structure. We are now in a position to answer the question of what

lifelines represent in TeLa. The tester lifelines represent subcomponents of the
single tester component7. As we are in a black-box testing context, the SUT life-
lines usually represent ports of the SUT component. However, we also allow them
to represent the assumed SUT internal structure in terms of subcomponents, if
an SUT model is available.

5.3 Dynamic Semantics

We base our semantics on the event-structure semantics de�ned for MSCs in [8].
According to the classi�cation of [22], this is a non-interleaving, branching-time,

7 Unlike in [17], here, the terms \component" and \port" denote instances of types

rather than types

behavioural semantics. We choose a non-interleaving semantics to clearly distin-
guish between choice and concurrency and since it is more appropriate for the
distributed system context, in particular, for discussing local and global verdicts.
We choose a branching-time semantics since this gives us a framework in which
to discuss ideas of determinism and controllability. The set of linearisations of the
event structures of [8] de�nes an interleaving, linear-time, behavioural semantics.

Non-interleaving Input / Output models. Input-output models (I/O mod-
els), in which the externally visible actions of a speci�cation are divided into
inputs and outputs, have proved to be the most applicable in the testing con-
text, see [1] for a survey. To the inputs, resp. outputs of the tester correspond
outputs, resp. inputs of the SUT. Our aim is to generalise the use of interleaving
input-output models in describing centralised test cases, see [24], to the use of
non-interleaving input-output models in describing distributed test cases. We see
this as the �rst step towards generalising the formal approach to conformance
testing as a whole.

To deal with internal tester structure and distributed testers, we add the
notion of internal action. The tester inputs (emitted by the SUT)|the observable
actions|are actions for which the test description environment, i.e. the SUT,
has the initiative, while the internal actions and tester outputs|the controllable
actions|are actions for which the tester has the initiative.

Determinism and Controllability in the Non-interleaving Context. In
this section, due to the complexity involved, we do not deal with symbolic data
and assume that all data is enumerated.

In the input-output model context the automata-theory de�nition of deter-
minism (no state has multiple identically-labelled output transitions) does not

coincide with the \intuitive" notion of determinism (any state with an outgoing
transition labelled by an output action has no other outgoing transitions). In
this context, the \intuitive" notion of determinism is often termed controllabil-

ity. Both types of determinism are of importance in testing theory. For example,
the test graphs of [11] are deterministic automata while test cases are control-

lable test graphs. In extending the established input-output testing models to
the interleaving case we further re�ne the two above types of determinism.

In [19], we de�ne the notion of minimally deterministic test description as
one in which no two concurrent events (resp. events in minimal con
ict) are la-
belled by the same action (resp. observable action). Thus, w.r.t. the usual event-
structure de�nition of determinism, minimal determinism allows minimal con-

icts involving events labelled by the same controllable action. However, we also
add the condition that any such con
icts must either be resolved on the occur-
rence of a controllable action or must result in identical verdicts. In terms of the
oÆcial MSC Semantics, minimal determinism prevents a delayed choice occur-

ring on a fail verdict and therefore ensures that fail verdicts are well-de�ned. We
put forward minimally-deterministic, test descriptions as the non-interleaving
analogues of the test graphs of [11].

In [19], we de�ne �ve notions of controllability ranging from essential control-

lability (EC) through concurrent controllable (CC) to full controllability (FC).
The other two notions are obtained by using the distinction between tester in-
ternal actions and tester output actions. A test description is said to be EC if
it is minimally deterministic and no event labelled by a controllable action is in
minimal con
ict with any other event. It is said to be CC if it is EC and no event
labelled by a controllable action is concurrent with one labelled by an observable
action. It is said to be FC if it is EC and no event labelled by a controllable
action is concurrent with any other event.

De�ning di�erent types of test case according to whether they have the ap-
propriate controllability property gives us �ve types of parallel test case. We use
the terms parallel test case, coherent parallel test case and centralisable test case

for the types corresponding to the above three properties.

Verdicts. Another crucial aspect of test description is modelling verdicts. In
TeLa, implicit local verdicts are used as follows:

{ if the behaviour completes as shown, the verdict is pass
{ if an unspeci�ed reception from the SUT is obtained, the verdict is fail
{ in the non-enumerated data case, if one of a set of concurrent guards of the
tester does not evaluate to true, or none of a set of alternative guards of the
tester evaluates to true, the (local) verdict is inconclusive.

Fail is an existential notion so a single local fail implies a global fail. Pass is a
universal notion, so a local pass on all concurrent branches implies a global pass.
The meaning of a local inconclusive verdict is that the component which derives
the verdict performs no more actions while the other components continue until

termination or deadlock to see if they can derive a fail verdict. Communication
of local verdicts to the entity responsible for emitting the global verdict is not
explicitly modelled in TeLa.

Implicit verdicts represent a higher level of abstraction than the TTCN-3
defaults. The latter have also been taken up by the UTP proposal. We contend

that implicit verdicts are also easier to use. However, in TeLa, we also allow
certain types of fail and inconclusive verdicts to be explicitly speci�ed for the
situation in which this is more convenient. Use of explicit verdicts requires certain
restrictions on the test desciption in order for them to be well de�ned, see [19].

The above notion of verdicts is formalised in [19] for the non-interleaving

case but without symbolic treatment of data8. Here, we brie
y sketch the basis
of this formalisation.

We �rst de�ne a verdict as an annotation on terminal events, that is, events
with no successors. We say that a con�guration is complete w.r.t. a set of ob-
servable actions if for each action of the set, there is an enabled event of the

con�guration labelled by that action. We say that an event structure is test

complete if all con�gurations having an enabled action are complete and all ter-
minal events are annotated with a verdict.

8 And also for the non-interleaving, symbolic data case

We de�ne a fail con�guration as a con�guration that includes a fail event,
a pass con�guration as a maximal con�guration whose terminal events are all
pass events and an inconclusive con�guration as a con�guration that includes
an inconclusive event but does not include a fail event. A maximal test con�g-

uration is a con�guration with an associated verdict. An execution is a set of
con�gurations that is totally ordered by inclusion, where each element extends
its predecessor by a single event. A maximal test execution is an execution whose
largest element is a maximal test con�guration. The test verdict of a maximal
test execution is the verdict associated to the last element of the execution.

In order for verdicts to be consistently de�ned, we must impose the condition
that isomorphic con�gurations of a test-complete event structure have identical
verdict annotations. This ensures that any two maximal test runs having the
same trace have the same associated verdict. If there are no inconclusive verdicts,
this can be guaranteed by demanding minimal determinism, and if there are, by
demanding determinism.

Concerning the symbolic data case, we brie
y mention a point of interest
concerning guards and assertions. Normally, if a guard is not satis�ed, the exe-
cution path is not feasible whereas if an assertion is not satis�ed, an exception
is raised. In the presence of implicit verdicts however, this distinction is blurred
since if a guard is not satis�ed, a fail verdict, which can be viewed as a kind of

exception, may result.

6 Conclusion

We have clari�ed the problems in using UML sequence diagrams as the basis
for a formal test description language and have sketched the solution to these
problems and the other main semantic issues, as implemented in TeLa, see [19]
for more details. The use of this language in test synthesis is described in [21].

References

[1] Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliography.

In: Cassez, F., Jard, C., Rozoy, B., and Ryan, M. (Eds.): Modelling and Veri�cation

of Parallel Processes. Proc. of Summer School MOVEP'00. (2000).

[2] Charron-Bost B., Mattern, F., Tel, G.: Synchronous, Asynchronous and Ordered

Communication. Distributed Computing 9(4). Springer-Verlag (1996).

[3] Deussen, P.H., Tobies, S.: Formal Test Purposes and the Validity of Test Cases. In:

Peled, D. Vardi, M. (Eds.): Formal Techniques for Networked and Distributed Sys-

tems (Proc. FORTE 2002). Lecture Notes in Computer Science Vol. 2529. Springer-

Verlag (2002).

[4] Engels, A., Mauw, S. Reniers, M.A.: A Hierarchy of Communication Models for

Message Sequence Charts. Science of Computer Programming 44(3). Elsevier North-

Holland (2002).

[5] European Telecommunications Standards Institute (ETSI): Method for Testing and

Speci�cation (MTS); Methdological Approach to the Use of Object-Orientation in

the Standards Making Process. ETSI Guide EG 201 872, V1.2.1. ETSI (2001).

[6] European Telecommunications Standards Institute (ETSI): Method for Testing and

Speci�cation (MTS); The Testing and Test Control Notation version 3. ETSI Stan-

dard ES 201 873 Parts 1 to 6, V2.2.1. ETSI (2003).
[7] Genest, B., H�elou�et, L., Muscholl, A,: High-Level Message Sequence Charts and

Projections. In: Goos, G., Hartmanis, J., van Leeuwen J. (Eds.): CONCUR 2003 -

Concurrency Theory (Proc. CONCUR 2003). Lecture Notes in Computer Science

Vol. 2761. Springer Verlag (2003).
[8] H�elou�et, L., Jard, C., Caillaud, B.,: An Event Structure Based Semantics for Mes-

sage Sequence Charts. Mathematical Structures in Computer Science Vol. 12. Cam-

bridge University Press (2002).
[9] H�elou�et, L., Le Maigat, P.: Decomposition of Message Sequence Charts. Proc. 2nd

Workshop of the SDL Forum Society on SDL and MSC (SAM 2000). Grenoble, France

(2000). See: http://www.irisa.fr/manifestations/2000/sam2000/papers.html.
[10] International Telecommunications Union|Telecommunication Standardization

Sector (ITU-T): Message Sequence Chart. Recommendation Z.120. ITU-T (1999).
[11] Jard, C., J�eron, T.: TGV: Theory, Principles and Algorithms. In: Proc. 6th world

conference on Integrated Design and Process Technology (IDPT02). (2002)
[12] Jard, C., Pickin, S.: COTE|Component Testing Using the Uni�ed Modelling

Language. ERCIM News Issue 48. ERCIM EEIG (2001).
[13] Lamport, L.: On Interprocess Communication. Distributed Computing 1(2).

Springer Verlag (1986).
[14] Mauw, S., Wijk van M., Winter, T.: A Formal Semantics of Sychronous Interwork-

ings. In: Faergemand, Sarma, A. (Eds.): SDL'93|Using Objects (Proc. SDL Forum

93). Elsevier North-Holland (1993).
[15] Mitchell, B.: Characterising Concurrent Tests Based on Message Sequence Chart

Requirements. In: Proc. Applied Telecommunication Symposium. (2001)
[16] Object Management Group (OMG): Uni�ed Modelling Language Speci�cation

version 1.5. OMG, Needham, MA, USA (Mar. 2003).
[17] Object Management Group (OMG): UML 2.0 Superstructure Speci�cation. OMG,

Needham, MA, USA (Aug. 2003).
[18] Object Management Group (OMG): UML Testing Pro�le, version 2.0. OMG,

Needham, MA, USA (Aug. 2003).
[19] Pickin, S.: Test des Composants Logiciels pour les T�el�ecommunications. Ph.D.

Thesis. Universit�e de Rennes, France (2003).
[20] Pickin, S., Jard, C., Heuillard, T., J�ez�equel, J.M., Defray, P.: A UML-integrated

Test Desciption Language for Component Testing. In: Evans, A., France, R., Mor-

eira, A., Rumpe, B. (Eds.): Practical UML-Based Rigorous Development Methods.

Lecture Notes in Informatics (GI Series), Vol. P7. Kollen-Druck + Verlag (2001).
[21] Pickin, S., Jard, C., Le Traon, Y., J�ez�equel, J.M., Le Guennec, A.: System Test

Synthesis from UML Models of Distributed Software. In: Peled, D. Vardi, M. (Eds.):

Formal Techniques for Networked and Distributed Systems (Proc. FORTE 2002).

Lecture Notes in Computer Science Vol. 2529. Springer-Verlag (2002).
[22] Sassone, A., Nielsen, M., Winskel, G.: Models for Concurrency: Towards a Clas-

si�cation. Theoretical Computer Science 170(1{2) Elsevier (1996).
[23] Schmitt, M., Ebner, M., Grabowski, J.: Test Generation with Au-

tolink and Test Composer. In: Proc. 2nd Workshop of the SDL Forum

Society on SDL and MSC (SAM 2000). Grenoble, France (2000). See:

http://www.irisa.fr/manifestations/2000/sam2000/papers.html.
[24] Tretmans, J.: Speci�cation Based Testing with Formal Methods: From Theory

via Tools to Applications. In: A. Fantechi, A. (Ed.): FORTE / PSTV 2000 Tutorial

Notes. (2000).

