Model-driven generative approach for concrete syntax
composition

Pierre-Alain Muller
pa.muller@uha.fr
UHA/INRIA — France

Philippe Studer
ph.studer@uha.fr
ESSAIM/MIPS — Université de Haute-Alsace - France

Jean-Marc Jézéquel
jean-marc.jezequel@irisa.fr
Irisa/Université de Rennes — France

Abstract. This position paper presents a model-driven generative approach for composing
concrete syntax. Concrete syntax is generated from information contained in a business model
(represented with UML class diagrams) and from textual templates (represented in a composition
model). The approach was originally implemented in the context of Web engineering (generation
of HTML text) and was latter applied to paper catalogue generation (generation of QuarkXpress
textual serialization format).

Our contribution to the workshop would be to discuss how our approach could be applied to
model generative programming, to gather feedback and to foster the discussion.

1 Introduction

In the context of the Netsilon' project, a model-driven tool for automatic generation of Web information
systems, we have designed and implemented a hypertext model and associated model transformations to
generate programs (in Java or PHP) so as to generate HTML text on the fly, at execution time of the Web
application.

Latter on, we have applied the same technique to generate multi-channel (electronic and paper) catalogues for a
tour operator. This multi-channel generation used exactly the same modelling elements (defined in a hypertext
meta-model), the details of the channels were captured by specific models conforming to the hypertext meta-
model.

More recently, we realized that a subset of the hypertext meta-model (the composition meta-model) could
probably be used as well as a meta-model for generative programming.

In this paper, we show how we generate Java programs (Servlet and JSP) or PHP programs, which in turn
generate concrete syntax (such as programs or documentation).

The following picture shows the production tool chain that we use. The models of the business (expressed in a
simplified UML along with an action language named Xion) and of composition (expressed with our
composition meta-model) are fed in a model transformation built in Netsilon, which generates scripts (either in
PHP, or in Java). In turn, when executed, these scripts extract information from the instances of the business
model, read the templates, and generate the concrete syntax.

Xion
LML Action
Metamodel
Language
B Classes
>
Relations
Model) Concrete
/ Script -
/| Transformation > g Syntax
TemEIates ’
1 Decision Centers
" Xion Java Servlet)
Composition . PHP XMI file| |Java code
Action JSP
Metamodel

Language

Figure 1 : Overview of the generation of concrete syntax, via our model-driven generative tool-chain.

Based on this industrial experience and on several years of research into model transformations®, we now present
our position on Model-Driven generative approach.

2 Lessons learned

2.1 Multi meta-models approach

We have experienced that several meta-models/DSL are required to cater for the various needs of generative
programming (meta-model for business models and general-purpose action language providing business level
operations; specific meta-models for navigation and template-composition, simplicity and power of mark-up
languages to specify the layout of templates). Each time it was possible we used standard meta-models or
languages (UML for business models, HTML for page layout), but it is now clear that we should be able to
develop and use new metamodels each time we need it (e.g.; Xion instead of the UML Action Language for
describing business level actions). Most notably, we have defined novel modelling elements (the decision
centers) to represent the composition of text from business information and templates.

These several meta-models can be considered as ways of specifying various aspects® of the system under
development. The consistency of the aspects is ensured by the compilation of the Xion statements which are
either used to implement the business methods, or to specify the constraints and expressions in the composition
models. Final aspect weaving is performed at execution time, when the generated code is executed.

2.2 The action language can be used to write model-transformations

We have defined a multi-purpose action language named Xion. The concrete syntax of the control-structures of
Xion is very close to Java, and developers felt very comfortable with that. The style of writing remains
imperative, with the additional power of traversal and query of OCL upon which Xion is based.

At the model level, Xion can be used to specify the methods and to express the actions in the composition model.
During code generation, the Xion statements are translated into executable code.

Interestingly, at the meta-model level (which simply means to load a meta-model into Netsilon, and then to
define the models via the automatically-generated object administrator), Xion can be used to express model
transformations. As Xion can both read and write instances (of the meta-model elements) it can be used to
transform constructs from one model into another one.

2.3 Template-based generation

Xion alone could be used to generate text from the models, using its text input-output capabilities, but this would
be cumbersome, and therefore we have added a template-based generation mechanism to serialize a model into a
concrete syntax.

We have associated templates and models via the composition meta-model. Templates specify the layout while
composition models express how templates are decorated with business information and composed. Templates

are read dynamically at execution time of the generated programs, so that the final layout (and content) of the
templates can be modified without re-compiling the model.

This way, end-users keep a high level of control over the final generated text, without having to master the
models and model-driven tool-chain. This was of paramount importance, because it allowed deploying
customizable model-driven applications, which could be fine-tuned by the graphic-designers, using their usual
tools (e.g. QuarkXpress in the pre-press domain, or DreamWeaver in the Web domain).

3 Discussion

We would like to examine and discuss the applicability of our approach to generative programming. When
should/could this approach be used, what kind of features are missing, does it apply only to some restricted use-
cases or can it be generalized to any kind of generative programming scheme?

We have made tradeoffs between visual and textual representations, while maintaining a strong separation
between the various kinds of representations. For instance, in the templates we use special placeholders to refer
to the decision centers declared via the graphical notation. In some cases, like the insertion of a simple value, this
approach may seem a quite heavyweight (some users have asked for a way to directly embed Xion Statements in
the HTML text). Is such a strong separation desirable or is it better to mix various textual languages in the same
file?

When is such model-driven approach justified, can we identify a breakeven point, both in terms of kind of
applications, or in terms of development approaches? Developing new meta-models and associated tools has a
cost that probably needs to be shared among multiple products in a same family. Hence we see its interest in
clear connection with the product line engineering domain®.

4 Conclusion

In this paper we have presented a meta-model for template composition, which is a subset of the hypertext meta-
model originally designed for Web information system modelling with the model-driven tool Netsilon.

We have shown how this meta-model can be used to represent a template expansion process realized at runtime
by programs generated from models, and how this process can be used to generate concrete syntax from models.

We believe that this meta-model could be used in the context of model-driven development combined with
generative programming.

Appendixes

The composition meta-model

The composition meta-model is an abstract description of a document generated as the result
of the composition of textual templates, decorated with information coming from a business
model and/or execution context (current date and time for instance).

Xion (see below) is used as a query language to extract information from the business model
and as a constraint language to express the various rules, which govern template’s
composition.

Composition includes the specification of the parameters that will be transferred from
template to template, and which are used at runtime either to decide which template to select
or to drive the business information extraction.

The composition meta-model makes it possible for a tool to check the coherence and the
correctness of the composition of templates at model compilation time. This removes all the
troubles related to parameter passing and implementation language boundary crossing (mix of
interpreted languages, un-interpreted strings, parameter passing conventions...) encountered
when programming generative applications by hand.

The meta-model defines the concept of decision centers, which model a decision to be taken
at runtime by the program which is generating the final document. We use the following three
decision centers for document (concrete syntax) generation.

Icon | Name Description

—1 |Composer |Composers compose templates into other templates.
A composer selects a target template to be inserted
in place of the placeholder

—| |Value Value Displayers display single values. A value
displayer |displayer evaluates a Xion expression, converts the
result in a character string and inserts this string in
place of the placeholder in the generated text.
Collection | Collection displayers display collections of values.
displayer | A collection displayer acts as a composer applied
iteratively to all the items in the collection denoted
by a Xion expression. For each element a specific
target template may be chosen.

Il

Figure 2 : Definition of the Decision Centers and graphic representations.

Modeling the composition of a document includes visual and textual representations.

The visual notation shows the overall composition of a document from templates, under the
shape of an oriented graph which grows from the left to the right, and from the top to the
bottom. The left-top-most item is the root and will be translated into an executable program
which will compose the templates as indicated in the model. Parameters flow in the graph
from the left to the right, and at execution-time values are passed to the template expansion
process and the placeholders are filled with the actual data.

The figure below shows an example of the visual notation. Note that the .html extension for
the templates means that HTML tags may be used to specify the layout of the templates.

’ N
“AULT =
HTHL SIS ’/ ‘?‘EFAULT HTAL
s = =) — I E 3
' \
' \
i i 1
Ada_code.html sallizalzn Ada_class_te Eallzinil v Ada_record_part.htr e

AllClasses All Attributes Attribute Name

H

Root

template Fragment
Template

Decision
Centers

\\\ Value ,l’
Dat&~And-Time

Figure 3 : Example of the visual notation for the composition of documents from templates.

In addition to this visual notation, two kinds of textual representations are used to make the
models amenable to automatic translation to executable code; the Xion language and the
HTML markup language.

The Xion Language

The Xion action language is used to specify the various actions to perform over the business
model. Xion is based on OCL and can be considered as a concrete syntax for a subset of the
Action Semantics. Xion can be considered as a precursor to recent industrial approaches
such as Xactium (http://albini.xactium.com/content/) and other. It helped us build experience
on what should be available in a meta-modeling tool, including the importance of an easy way
to represent a composition model.

Xion can be used to:
¢ C(Create and delete an object,
¢ Change an attribute value,

e (Create and delete links,

¢ Change a variable value,
e (Call non-query operations.

Since most developers are already familiar with the Java language, we re-used part of its
concrete syntax. Constructs we took from Java are:

¢ Instruction blocks, i.e. sequences of expressions,
e Control flow (if, while, do, for),
e Return statement for exiting an operation possibly sending a value,

e “super” initializer for constructors.

Moreover, for Xion to look like Java as much as possible we decided to keep Java variable
declaration, and operators (==, !=, +=, >>, ? ternary operator, etc.) rather than those defined
by OCL. The standard OCL library was also slightly extended, by adding the Double, Float,
Long, Int, Short and Byte primitive types, whose size is clearly defined unlike the OCL
Integer or Real. We have also added the Date and Time predefined types.

Xion is a multi-purpose action language. At the model level, Xion can be used to specify the
methods and to express the actions in the Hypertext model. Duting code generation, the Xion
statements are translated into executable code.

At the meta-model level, Xion can be used to express model transformations. As Xion can
both read and write instances (of the meta-model elements) it can be used to transform
constructs from one model into another one.

Xion alone could be used to generate text from the models as well, using its text-input -output
capabilities, but this would be cumbersome, and therefore we have added a template-based
generation mechanism, described below, to serialize a model into a concrete syntax.

Using HTML markup language to specify templates

A document is composed of templates, whose layout can be specified with HTML tags,
supplemented with some special placeholders to denote the location of application of a
decision center. The following picture shows how a placeholder is replaced by the content of
a template at runtime.

Composite Zone ,‘Component Zone
This is some text. pe This is the composed text.
<<placeholder>>

This is some other text.
Resulting Text

This is some text.
This is the composed text.
This is some other text.

Figure 4 : At runtime, the placeholder is replaced by the component text.

The following picture shows the actual text of a template file used to generate an Ada package
specification.

-— Generated the <hr>
——<hr

Package iz<hr>
<hlockgquote

type Ohiject is priwvakbe;

<fblockquote

private<hr>

<hlockigquote:

type Chject Implementation;<hr=

type Chject is access Chject Implementationhr>
<fblockquote>

end 1<hr=

<hr=

<hr=

Figure 5 : Example of template file.

The static text of the template is delimited and formatted by HTML tags. Dynamic text can be
generated by decision centers, at locations materialized in the template by placeholders which
refer to them. The syntax of a placeholder is as follows:

“lI-1/objexion/”Decision Center Number“ ”“Decision Center Name“/”

Note: the name objexion is an arbitrary chosen name, it relates to the context in which we
developed the Netsilon tool.

The next section is a case study, which shows two examples of text generation from a model;
XMI serialization and Java Code generation.

Case study

As a case study we will show how to generate Java code and XMI serialization from a small
UML model.

The following class diagram shows the very simplified UML meta-model that we will use for
the business model.

Class Attribute

public String Mame public String Mame
public String Type
public Wisibilitylind Wisibility

Z<enumeration=»

Visibilitykind

public String Public
public String Frotected
public String FPrivate

Figure 6 : Simplified UML meta-model used in the case study.

We shall create two instances of the Class class (Person and Car) as shown in the
following class diagram.

Ferson

Car

public String Mame blic String hak
public String Firstname o !c r!ng it
public String Colar

public Integer Age

Figure 7 : Simple model, featuring persons and cars.

XMI generation

In this first part, we will show how to generate XMI serialization for a model which conforms
to the simplified UML meta-model given beyond.

The following picture presents the XMI file which is generated for the simple model
introduced earlier. We have used the capabilities of Internet Explorer to visualize XML files
to browse through the generated XMI file. The — signs in front of the lines indicate that the
lines can be elided.

=?uml version="1.0" encoding="UTF-8" 7>
— <HMI wmiversion="1.2" xmilns: UML="org.omg.xmi.namespace.UML" timestamp="2004-07-31 at 22:06:59"=
- =xMI. header>
- «xMI documentations
<®MI exporter=Model-Driven XMI Writer</<MI exporters
<xMI exporteryversion=>1.0</«MI. exparteryersions
</ wMI documentations
/Ml headers
- «xMl.contents
- «UML:Model xmi.id="10jbd885657efb240434223c02b4d34e" name="GPCE workshop exemple">
- <UML:Namespace.ownedElement:>
<UML: Class xmi.id="1014966db953bb9998b87c1f2c61becl" name="Person">
- «UML: Classifier.features
<UML: Attribute xmi.id="10jaf885711f7b240434223c02b4d34e" name="Name" visibility="Public" />
<UML: Attribute =miid="10j7866cdfb3a7433a6e03c06f8ccecdd’ name="Firstname" visibility="Public" /=
<UML: attribute xmi.id="10jf801891921ae630425446eb40f59f" name="Age" visibility="Private" />
< /UL Classifier. features
</UML: Class=
- =UML:Class #mi.id="10175936378cbbbb72ae00eB8a6872ff0" name="Car">
- «UML: Classifier.features
=UML: attribute xmi.id="10j6dfagdbcf52d6b32383ca964613a3f" name="Make" visibility="Private" />
<UML: attribute xmi.id="10j555f34baff3c79850e8c9d962998f" name="Color" visibility="Private" />
</UML: Classifier. feature=
</UML: Classs
</UML: Namespace, ownedElement =
<ML Models
</ %M1 contents
< M

Figure 8 : Screen copy showing the visualization of the generated XMI file in Internet Explorer.

This XMI file was generated by the execution of a program which was itself generated by a
model. The following picture first shows a satellite view of this model, while the next
paragraphs will focus on each part in detail.

o D PEFAULT Gy e il PEFAULT Gy —
XMI_texhntmi ConEosion XMI_owned_elemer Colecton XMI_class\ktml COTROAION XMI_feature.htrml Colidgtion XMI_attributes\gtrm Mele
(Center 196) All Classes All Features Al Attributes Altribute Name

Valus
Visibility

Figure 9 : Satellite view of the composition model which decribes the XMI serialization for the simplified

UML meta-model of our case study.

The XMI file starts with version information and time stamp. Next, a header specifies the
XMI writer which was used to generate the file. Finally, a content part contains the model
elements defined in the model. Notice the representation of the two classes, and more
specifically the visibility of the attributes.

Now let’s have a look at the model which was used to generate the programs which in turn
generated the XMI file.

The envelope part of the file was generated by the following composition model.

HTHLE DEFAULT
€3 | L =
XMI_text. il Compesition XMI_owned_elem

(Canter 196)

Value
te And Time

Value
oD

Figure 10 : Excerpt of the composition model for the envelope of the XMI file.

In this model we see that the envelope of the XMI file is made of a template named
XMI_text and that this template references three decision centers, to embed a template
named XMI_owned_element, and to insert two values, the date and time, and an object
identifier.

The following picture shows the text of the template XMI_text, as well as the placeholders
(denoted by their identifier and name) which refer to the three previously described decision
centers.

<?xml version="1.0" encoding="UTF-8" 7>
S¥MI xmi.version="1.2" xmwlns:UML="org.omy.xmi. nawespace, TMLT
kimestamp=") "
<¥MI.headexr:>
<XMT . documentation>
<¥MI.exporter>Model-Driven ¥MI Writer</¥MI.exporter=
<¥MI.exporterVersion=1.0</¥MI. exporterVersion>
< f¥MI . documentations
=f3MI.header=
=2MI.content>
<UML :Model xmi.id=")" name="GPCE workshop exemple>

</ UML :Model >
<fEMT.content>
< fEMI

Figure 11 : Template for the generation of the envelope of the XMI file.

The content part is in turn described by the following model. The XMI_owned_element
template contains a collection displayer decision center (A11 Classes) which will
repeatedly embed the XMI_c1ass template for all the classes defined in the model.

HTHL iy HTHL
MI_owned_elemer Bl XMI_class. html
All Classes

Figure 12 : The XMI_class template is expanded for all the classes contained by the model.

The XMI_owned_element and XMI_class templates are connected by a decision center
of type collection displayer. This decision center models the fact that at runtime the
XMI_class template will be inline-expanded in the XMI_owned_element template, for
all the elements of the collection denoted by the collection displayer (in our cases for all the
classes defined in the model). The collection is specified by the following Xion expression:

BM::Class.allInstances()
BM stands for Business Model, and is the name of the enclosing package. The
allInstances () operation applies to the Class class, and retrieves all its instances, and

returns them as a set.

The following picture shows the text of the XMI_owned_element template.

<1ML : Hamespace . ownedElement -

<{UML : Hame space . ownedElement >
Figure 13 : Template for the generation of the owned element section of the XMI file.

The XMI text for the classes is modelled by the following model.

| | |
o DEFAULT m DEFAULT =,
—& [] [:?iJ = = 1 ==
XMI_class\gtmi B XM _feature. htmi el XMI_attributes\gtm s
All Features All Attributes Attribute Name

Value
[o]ln]

Value
Visibility

Value
olD

Figure 14 : Model of the class template, with inclusion of the feature template, class name and unique

identifier.

The XMI_class template contains the text of the class level of the XMI file, inserts the
name of the class and its unique identifier, and uses a composition decision center (A1l
Features) to embed the feature level of the XMI file.

The following picture shows the template for the class. Notice the three placeholders, to insert
the unique identifier, the name of the class, and the various features.

<IML:Class xmi.id=" " narme=" i

</UML:Class>

Figure 15 : Text of the template for the classes.

In our simplified meta-model, attributes are the only features contained by the classes. We
generate the feature part of the XMI, by inlining the XMI_attribute template for all the
attributes retrieved by the collection displayer

The Xion expression resolved by the collection displayer is:
c.attribute

where c is a parameter of type class, which was transmitted to the XMI_template. Asin
OCL, attribute with a lower case denotes the collection of attributes which are linked to
the class specified by c.

The XMI text of the feature level template is given in the figure below.

<ML :Classifier.featurex

<fUML:Classifier.feature=

Figure 16 : Text of the template for the feature level of the XMI file.

The template expansion proceeds further with the expansion of the template for the attributes,
for all the attributes contained in the collection. The XMI text of the attribute level template is
given in the figure below.

<ML :Attribute xmi.id=" frr
name="" 1 1]
visibility=" . 3
<JUML: Attribute:

Figure 17 : Text of the template for the attributes.

At this point the generation process of the XMI file is fully specified, and executable code can
be generated from the model.

The business and composition models are platform independent models. The Netsilon tool can
translate them into several executable platform specific models, including PHP, Java Servlet
and JSP application servers.

As an illustration, we give below an excerpt of the PHP code generated for the decision center
AllAttributes presented earlier which iterates over all the attributes of a class. This code
is not intended to be read by humans, and we will only give an overview of it structure.

function all_attributes_1 (&Sctxt, &S$S_1c) {
S_t2=new OclAnySetSqgl (Sctxt, ("SELECT gpattribute.attribute_id FROM

gpattribute WHERE ((gpattribute.attribute_id) IS NOT NULL) AND
((gpattribute.class) = (".codeOclObject ($_1c)).")) ",0,103,FALSE);

checkNull (Sctxt,$_t2,"expression in decision center: All Attributes
(199)");

S_tl=$_t2->elements();

$_lindex=0;

while ($_tl->hasMoreElements ())

{
S_lelement=$_tl->nextElement () ;

{

}
S_lindex=S$_lindex+1;

xmi_attributes_ (Sctxt, $_lelement) ;

Figure 18 : PHP function generated for the collection displayer AllAttributes.

In this function we can see how the attributes are fetched from the relational database (with
the SELECT instruction) and then we see the iteration over all these attributes and the call to
the function which handles the attributes: xmi_attributes_ (Sctxt, $S_lelement) ;

Below, we give the generated PHP code for this inline expansion of the attribute template.

function xmi_attributes_ (&$Sctxt,&$_1la) {
Sctxt->writeToOutputStream ("<UML:Attribute xmi.id=\"");

S_tl=S$_1a;

oid_1(Sctxt,$_tl);
Sctxt->writeToOutputStream ("\" name=\"");

S_t2=$_1la;

attribute_name_3 (Sctxt, $_t2);
Sctxt—>writeToOutputStream ("\" visibility=\"");

S_t3=S$_1a;

visibility_ ($ctxt,$_t3);
Sctxt->writeToOutputStream ("\">\n</UML:Attribute>\n");

Figure 19 : PHP function which performs the inline-expansion of the attribute

template.

In the next section we briefly describe an example of Java code generation for the same
model.

Java code generation

We give below the satellite view of the composition model for Java code generation.

Figure 20 : Satellite view of the composition model for Java code generation

This time we will focus on the generation of alternate constructs, based on the visibility of an
attribute. In the business model presented earlier, the Person class has got three attributes
(Name, Firstname and Age).

The following picture shows the Java code generated when all attributes are public.

//

// generated the 2004-10-05 at 09:53:27
//
Class Person
{
public Person () {}
public String name;
public String firstName;

public int age;

} // end Person

Figure 21 : Generated Java code, with public attribute members.

Now we switch the visibility of the Age attribute to private, and re-execute the generation
program. We obtain the following code, with getters and setters operations.

//
// generated the 2004-10-05 at 09:45:49
//
Class Person

{

public Person () {}
public String name;
public String firstName;

public void setAge (int theAge) {
age = theAge;
}

public int getAge () {
return age;

}

private int age;
} // end Person

Figure 22 : Generated Java code, with one private attribute member.

In the next paragraphs we will present the composition model which takes care of this
generation variation based on the visibility of the attributes.

The following picture presents the composition model of the public part of a Java class. The
public part embeds a collection of Getters and Setters (when the class defined non-public
attributes) and a collection of public attributes.

Figure 23 : Composition model for the public part of a Java Class.

The Xion expression contained by the two collection displayers is:

c.attribute->select (Visibility != #Public)

for the Getters and Setters Decision Center, and conversely
c.attribute->select (Visibility == #Public)

for the Public Attributes Decision Center.

The following picture shows the text of the template for the public part of a Java class.

“<hr>

<hlockgquote:
public 1-1fohjexionf193 ClassWame/ () {}<hr>
<hr=

1-1/objexionf130 PublicAttributes/f<hr>
I-1/objexionf190 GetterdndSettersf
<{blockquote=

Figure 24 : Text of the template for the public part of a Java class.

Notice the HTML tags used to specify the final layout of the text. The
 tags force a line
break while the <blockquote> tags indents the text. The Value Displayer is used
twice, to generate the names of the default constructors and destructors. Then, the two
collection displayers handle the templates for public attributes and getters and setters. Notice
that if a collection is empty, as it is the case when there are only public attributes, then the
collection displayer inlines nothing.

The next picture shows the text of the template used for the generation of the getters and
setters operations. This template will be inline-expanded in the public part of the Java class
for all the attributes which have not public visibility.

publie void set!-!fobjexionf191 CapAttributeNamef
(1-1fobjexionf192 AttributeTypef the!-!fobjexion/191 CapAttributeHame/)
{<hxr=
<bhlockgquotes
I-1fobjexionf14 AttributeWame/ = the!-!fobjexionf191 CapAttributeHame/;<hr>
</blockgquote>
P 1
<hr
public I-1/fobjexion/192 AttributeType/ get!-1fobjexion/191 CapAttributeWHame/f |)
{<hr=
<hlockigquotes
return !-1/objexion/14 Attributelamef;<hr:=
</blockgquote>
t<hx=
<hr>

Figure 25 : Text of the template for getters and setters.

Again, HTML tags format the template text, and value displayers insert the details (Name and
Type) of the current attribute (which is accessible as an input parameter of the template).

References

! P.-A. Muller, Ph. Studer, J. Bezivin, Platform Independent Web Applicaation Modeling, UML’03, October
2003.

2 6. Sunyé, A.LeGuennec, and J.-M. Jézéquel, Using UML action semantics for model execution and

transformation, Information Systems, Elsevier, 27(6):445--457, July 2002.

3 T. Elrad (moderator), Mehmet Aksit, Gregor Kiczales, Karl Lieberherr and Harold Ossher (panelists), 4
Discussion on Aspect-Oriented Programming: Frequently-Asked Questions, Communications of the ACM, Vol.

44, No. 10, pp. 33-38, October 2001.

4 C. Atkinson and Al. , Component-Based Product Line Engineering with UML, Addison-Wesley

Professional; 1st edition (November 15, 2001)

