
Merging scenarios

Jacques Klein 1 Benoit Caillaud 2 Löıc Hélouët 3
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Abstract

This paper proposes a merge operator for behavioral requirements expressed by Message Sequence
Charts and shows how this product can be systematically used to integrate new behaviors in an
existing one. First the merge operator is defined as a fibered product of scenario descriptions. This
product is then used to integrate a consensus mechanism to solve the non-local choice problem.
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1 Introduction

Scenario languages define typical executions of systems. They are used to represent output
traces, but also to capture requirements of distributed systems. Even if several dialects exist,
all scenario languages are based on a similar idea: they depict systems runs as compositions of
partially ordered sets of events. A drawback of scenarios is that the number of participants
in a given interaction cannot be parameterized. With a fixed number of objects in an
interaction, it is hard to describe behaviors of systems with dynamic architecture. Message
Sequence Charts propose instance creation, but this mechanism needs to know a priori the
name of instances that will be created.

Another drawback of scenarios is that a description of a system is usually defined by a set
of scenarios, which represent typical uses of the system under design in a given situation, but
comport some redundancies. The intended behavior of a system can be seen as a combination
of all these views. So far, no satisfactory merge operator exists. Scenario languages are all
equipped with alternative, sequential, or parallel composition, but these operators do not
capture the notion of redundancy that may exist between the composed views.

A solution proposed is to gather coherently redundant views given as Live Sequence
charts [8]. The main idea is to combine scenarios at runtime. LSCs are executed in parallel,
and events that can be executed in several views are synchronized when possible. From an
initial set of live scenarios, an event is executed, and new scenarios are “triggered” by this
event execution. Two scenarios are declared inconsistent if they contradict each other on the
order of common events. The main drawback of this approach is that inconsistency between
scenarios may not be discovered if the simulations performed do not pass through a faulty
configuration.

This paper addresses a second approach that consists in the construction of a new model,
preferably using the same scenario language, which is the smallest model to contain all the
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views composed. Such a model does not always exist, and in some cases it is not unique.
However, when common parts in scenarios are clearly identified, this model can be comput-
ed. The language chosen is Message Sequence Charts, a scenario language standardized by
ITU [11], but our approach can be adapted to any partial order based language. The merge
framework proposed uses a fibered product of scenarios. This product first identifies pairs of
scenarios that must be “synchronized” in two HMSCs, and realizes their union with an amal-
gamated sum. We then show the usefulness of this construction on a concrete application,
ie, the introduction of a consensus algorithm to localize choices in a HMSC.

The benefits of scenario merging do not only concern view composition. In fact, an
endogenous merge operator can be used to propose formal and well founded model trans-
formations and design patterns for scenarios. The paper is organized as follows: Section 2
recalls some basic notions on Message Sequence Charts. Section 3 proposes a definition
of amalgamated sum. Section 4 defines the complete fibered product. Section 5 shows an
application of fibered product to eliminate non-local choices from HMSCs, and section 6
concludes this work.

2 Message Sequence Charts

Message Sequence Charts (or MSC for short) is a scenario language standardized by ITU [11].
MSCs are composition of very simple chronograms by means of sequence, alternative, and it-
eration operators. MSCs propose two specification levels. At the lowest level, basic Message
Sequence Charts (or bMSCs for short) describe simple communication patterns between en-
tities of the system called instances. These chronograms are then composed by several levels
of High-level Message Sequence Charts (or HMSC for short), a kind of bMSC automaton.

In a bMSC, instances are represented by a vertical axis. Message exchanges are repre-
sented by arrows labeled by message names from the emitting to the receiving instance, and
communications are supposed to be asynchronous. A bMSC defines a set of events, which are
occurrences of actions in the system (message emissions, receptions, atomic actions or opera-
tions on timers), and a precedence relation on these events: a message emission must precede
the corresponding reception, and events are totally ordered along instance axis (excepted in
specific parts of the axis called coregions). Process algebra semantics for bMSCs have been
proposed [16], but it seems rather natural to give bMSCs a non interleaving semantics as
in [10] and [12]. In the sequel, our formal definition of bMSC will be based on the notions
of preorders and partial orders. A preorder on a set of elements E is a relation R ⊆ E2 that
is reflexive (ie. ∀e ∈ E, eRe) and transitive (ie. ∀e, f, g ∈ E, eRf ∧ fRg =⇒ eRg). A partial
order is an antisymmetric preorder (ie. ∀a, b ∈ E, aRb ∧ bRa =⇒ a = b).

As already mentioned, bMSCs define a causal order between message emissions and
receptions, and a partial ordering on events situated on the same instance. They can then
be formally defined as follows:

Definition 2.1 (Basic Message Sequence Charts) Let I be a finite set of instances. A
bMSC over I is a tuple M = (E,≤, A, α, φ,≺), where E is a set of events, ≤ is a preorder
on E, A is a set of actions, α : E → A maps events to actions, φ : E → I maps events to
instances, ≺⊆ E × E is a partial bijection pairing message emissions and receptions, such
that ≺⊆≤. When no instance set is specified, a bMSC is a tuple M = (I, E,≤, A, α, φ,≺),
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where I is a finite instance set and M = (E,≤, A, α, φ,≺) is a bMSC over I.

A bMSC M will be called well-formed whenever ≤ is a partial order relation. For a bMSC
M = (E,≤, A, α, φ,≺), we will denote by Min(M) = {e ∈ E|∀e′ ∈ E, e′ ≤ e ⇒ e′ = e}
the set of minimal events for the preorder relation, i.e the set of events that have no causal
predecessor. Figure 1 shows an example of bMSC, with 3 instances (sender, medium and
receiver), that exchange several messages (data, info and ack). The events of this bMSC
are the emission and receptions of messages , and an atomic action action executed by the
sender. Note that events e5 and e6, that symbolize emissions of messages info and ack are
situated in a coregion, ie no order is imposed between these two events.

bMSCs alone do not have a sufficient expressive power: they can only define finite behav-
iors, without real alternatives (the only alternatives in the behaviors depicted by a bMSC are
due to possible interleavings). For this reason, MSCs have been extended with higher-level
constructs, namely HMSCs [18]. Roughly speaking, HMSCs are a kind of transition systems
labeled by bMSCs.

Definition 2.2 (Labeled Transition Systems) A labeled transition system (or LTS for
short) is a tuple S = (S, ŝ, Σ, T ), where S is a set of states, ŝ ∈ S is the initial state of S, Σ
is a finite alphabet, and T ⊆ S × Σ × S is a set of transitions. In the sequel, we will denote
by α(t) = a the label of a transition t = (p, a, q) ∈ T . We will write p

a−→ q whenever
(p, a, q) ∈ T . State p will be called the origin of t, denoted α−(t), and q the goal of t, denoted
α+(t).

Definition 2.3 (High level Message Sequence Charts) Let I be a finite set of instances.
A HMSC over I is a tuple H = (S,M, λ) where: S = (S, ŝ, Σ, T ) is a labeled transition sys-
tem called the support automaton of H, M is a finite set of bMSCs over I, λ : T → M maps
transitions to bMSCs. When no instance set is specified, HMSCs are defined as quadruples
H = (I,S,M, λ), where I is a finite instance set and (S,M, λ) is a HMSC over I.

An example of HMSC is given Figure 2. The notion of sequential composition (noted •)
is central to understand HMSCs. Roughly speaking, sequential composition of two bMSCs
consists in gluing both diagrams along their common instance axes. Note that this sequence
does only impose precedence on events situated on the same instance, but that events situated
on different instance in two bMSCs M1 and M2 can be concurrent in M1 •M2. Sequential
composition can be formally defined as follows:

Definition 2.4 (Sequential Composition) The sequential composition of two bMSCs
M1 and M2 is the bMSC M1 • M2 = (E1 ] E2,≤1•2, α1 ∪ α2, φ1 ∪ φ2, A1 ∪ A2,≺1 ] ≺2),
where:≤1•2=

(≤1 ] ≤2 ]{(e, e′) ∈ E1 × E2|φ1(e1) = φ2(e2)}
)∗

As already mentioned, HMSCs are a kind of automaton labeled by partial orders. How-
ever, the automaton contained in a HMSC is only a support for sequential composition, and
should not be considered as a synchronization defining a mandatory global state for all the
instances. For this reason, the states of the support automaton in a HMSC H will often be
called the nodes of H .

A path in a HMSC is a sequence of transitions T = t1.t2. . . . tk, such that the origin of
ti+1 is equal to the goal of ti: For every i = 1 . . . k − 1, α+(ti) = α−(ti+1). Using sequential
composition, each finite path T = t1.t2. . . . tk of a HMSC defines a bMSC OT = λ(t1)•λ(t2)•
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· · · • λ(tk). A path T = t1.t2. . . . tk is a circuit if the origin of t1 is equal to the goal of tk.
An acyclic path in a HMSC is a path T = t1. . . . tk which contains no cycle, that is: ∀i ≤ j,
α−(ti) 6= α+(tj). A maximal acyclic path of H is an acyclic path T = t1 . . . tk such that any
extension of path T by one transition contains a cycle.

A choice node in a HMSC is a node that is the origin of two or more distinct transitions.
As transitions in HMSCs are labeled by partial orders, choices can depict situations where
several instances can decide to perform a scenario or another. This situation is called non-
local choice. It was first identified in [14,2], and then refined in [9]. Consider, for instance
the choice node in HMSC Figure 2. Following the description given by scenarios M1 and
M2, from this node instance A can decide to send message m1 and then B must conform
to this choice and receive m1, or instance B can decide to send the message m2, in which
case instance A should receive m2. However, an implementation of such description without
additional communications between A and B would probably lead to a situation where A
sends message m1 while B sends message m2, and both instances are then deadlocked.

bMSC example

ack

data

info
action

receiversender medium

e5
e7

e1
e4

e2

e3
e6

Fig. 1. An example of bMSC

M1 M2

M0

B

B B
bMSC M2

A

m2

A

A
bMSC M0

m1

m0

bMSC M1

HMSC H1

Fig. 2. non-local choice HMSC

The common understanding of choices in HMSCs is that the first instance able to perform
a choice selects a behavior. The following instances reaching the same occurrence of this
choice have to conform to the chosen scenario. So, the MSC semantics assumes an implicit
agreement between instances (e.g., one instance decides and communicates its decision to all
other instances, while the others wait until they are notified of the decision). When HMSCs
are used to define a set of behaviors at a high abstraction level, this type of specification is
not shocking: the only behaviors allowed are the scenarios depicted by each branch. How-
ever, when HMSCs are supposed to be precise enough to be implemented, non-local choices
can have several conflicting interpretations. Indeed, the description of figure 2 can have
several meanings. The first interpretation is that scenarios M1 and M2 are the only possible
behaviors of the system. Communications must be added to the model to avoid message
crossings. Another possible interpretation is that a third scenario where m1 intersects m2 is
possible. This scenario should appear in the original HMSC.

The first definition of non-local choices in [2] assumes that any instance should commu-
nicate with other instances on each branch of a choice. This assumption limits the search
for non-local choice to the set of edges leaving choice nodes. However, when considering
weak sequential composition of bMSCs with disjoint set of instances, non-local choice is not
a local property of choice nodes, but must be verified on the complete support automata [9].
In the sequel, we will adopt the following definition of non-local choice:
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Definition 2.5 (Local Choice) Let c be a choice node. c is local if and only if ∃i ∈ I
such that ∀p, path of H starting from c, φ(Min(Op)) = {i}. i will be called the deciding
instance of choice c.

Notice that the local choice property can be checked by considering maximal acyclic
paths only. It is therefore decidable on finite HMSCs. Section 5, shows how a consensus
algorithm can be inserted automatically to transform a non-local HMSC into a local one.

3 Amalgamated Sum of bMSCs

So far, bMSC composition is limited to parallel or sequential composition, iteration or choice.
Other operations on bMSCs have been proposed, such as instance refinement [15], message
refinement [5], virtuality [17], or more recently projections [6]. However, when two bMSCs
depict different viewpoints of the same behavior, one feel the need for a merge operation that
would glue the two scenarios to produce a result that contains both operands without creating
copies of similar elements. This operator cannot be expressed by means of sequential nor
parallel composition. We propose a merge operator for bMSCs called amalgamated sum. This
amalgamated sum uses concepts of category theory. However, for the sake of conciseness,
only what is strictly necessary has been included in the paper. More details on this topic
can be found in [4,3]. First, we need to define the notion of bMSC morphisms, that will be
essential to define common parts in scenarios.

Definition 3.1 (bMSC Morphism) An instance set morphism is an injective mapping
µ : I −→ I ′ from an instance set I to another instance set I ′. Let I and I ′ be two finite sets
of instances and µ0 : I → I ′ an instance set morphism. A bMSC morphism along µ0, from
M = (E,≤, A, α, φ,≺), a bMSC over I, to M ′ = (E ′,≤′, A′, α′, φ′,≺′), bMSC over I ′, is a
pair of mappings µ =< µ1, µ2 > where µ1 : E → E ′ is injective, µ2 : A → A′ is a renaming
mapping, and:

(i) ∀(e, f) ∈ E2, e ≤ f ⇒ µ1(e) ≤′ µ1(f) (ii) ∀(e, f) ∈ E2, e ≺ f ⇒ µ1(e) ≺′ µ1(f)

(iii) µ0 ◦ φ = φ′ ◦ µ1 (iv) µ2 ◦ α = α′ ◦ µ1

When no instance set morphism is specified, bMSC morphisms are defined by triples
µ = (µ0, µ1, µ2) such that (µ1, µ2) is a bMSC morphism along µ0.

Note that property (iii) also means that all events located on a single instance of M are
sent by µ1 on a single instance of M ′.

Definition 3.2 (Amalgamated Sum of Two Sets) Let I, J and K be three finite sets.
Let f : I → J and g : I → K be two injective maps. The amalgamated sum J f +g K is
defined as J f +g K =

(
J\f(I)

)⊎(
K\g(I)

)⊎
I. The amalgamated sum yields two injections

f̃ : J → J f +g K and g̃ : K → J f +g K defined as follows:
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


∀i ∈ f(I), f̃(i) = f−1(i)

∀i ∈ J \ f(I), f̃(i) = i




∀i ∈ g(I), g̃(i) = g−1(i)

∀i ∈ K \ g(I), g̃(i) = i

Note that as we use ] (disjoint union) in our definition, the result of an amalgamated
sum can contain several copies of similar elements.

Amalgamated sums of sets will be used to amalgamate sets of instances, events or actions
of two bMSCs to be composed.

Definition 3.3 (Amalgamated Sum of two bMSCs) Let M0 = (I0, E0,≤0, A0, α0, φ0,≺0

), M1 = (I1, E1,≤1, A1, α1, φ1,≺1), M2 = (I2, E2,≤2, A2, α2, φ2,≺2) be three bMSCs and
f =< f0, f1, f2 >: M0 → M1, g =< g0, g1, g2 >: M0 → M2 be two bMSCs morphisms.
The amalgamated sum of M1 and M2 wrt. f and g is the bMSC M = M1 f +g M2 where
M = (I, E,≤, A, α, φ,≺) is defined by:

• I = I1 f0 +g0 I2; E = E1 f1 +g1 E2 ; A = A1 f2 +g2 A2 ;

• Preorder relation ≤ is the transitive closure of f̃1(≤1) ∪ g̃1(≤2) ;

• ∀e ∈ E, α(e) =




α1(e) if e ∈ E1\f1(E0)

α2(e) if e ∈ E2\f2(E0)

α0(e) otherwise

, φ(e) =




φ1(e) if e ∈ E1\f1(E0)

φ2(e) if e ∈ E2\f2(E0)

φ0(e) otherwise

• ≺= f̃1(≺1) ∪ g̃1(≺2).

The bMSC M0 is called the interface of the amalgamated sum M1 f +g M2.

Let us illustrate the use of amalgamated sum on the example of Figure 3. Considering
bMSCs M1 = (I1, E1,≤1, A1, α1, φ1,≺1) and M2 = (I2, E2,≤2, A2, α2, φ2,≺2) as two partial
observations of the same system, we want to produce a behavior that contains M1 and M2.
Let us also suppose that even if M1 and M2 have different instance sets, instance X in M2

and instance sender in M1 (resp. Y and medium) represent the same object in the system.
Intuitively, merging M1 and M2 then amounts to inserting an atomic action between data
emission and ack reception in M1, and renaming the instances. Formally, the merge consists
in the definition of an interface that identifies the common elements (events, action name,
and instances) in M1 and M2 and renames them. For our example, this is done using a
new bMSC M0 = (I0, E0,≤0, A0, α0, φ0,≺0), and two bMSC morphisms f : M0 → M1 and
g : M0 → M2 defined below.

• Morphism f : M0 → M1 is a triple f =< f0, f1, f2 >, where:
· f0 : I0 → I1 is the identity,
· f1 : E0 → E1 sends respectively eI1, eI2, eI3, eI4 onto ev1, ev2, ev3, ev4,
· f2 : A0 → A1 is the identity.

• Morphism g : M0 → M2 is a triple g =< g0, g1, g2 >, where:
· g0 : I0 → I2 sends sender onto X and medium onto Y ,
· g1 : E0 → E2 sends respectively eI1, eI2, eI3, eI4 onto evt1, evt3, evt4, evt5,
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· g2 : A0 → A2 sends respectively !data, ?data, !ack, ?ack onto !m1, ?m1, !m2, ?m2.

medium
M2

X

evt1

evt2action

evt3
m2

m1

evt5

evt4

Y

M1

sender

ev3

ev5

ev4 info

data

ack
ev2

ev1

ev6

receiver

M0

sender

eI1

eI2

data

ack eI4

eI3

medium
gf

Fig. 3. An example of amalgamated sum

a

b a

b

ba

A B

m1m2

m1

eb

BA

e′b
m2

A B

e′a

A B

ea

M1 f +g M2

M1 M2

M0

a b

Fig. 4. An amalgamated sum that is not well-formed

The result of the amalgamated sum M1 f +g M2 is the bMSC of Figure 1. Note that
the names of the resulting instances on common parts are defined by the instance names of
the interface (we could have proposed an instance name “X + Sender” instead of keeping
Sender in the amalgamated sum.)

Note also that an amalgamated sum of two well-formed bMSCs is not always a well-formed
bMSC, as the least preorder containing ≤1 and ≤2 may not be antisymmetric. Consider the
example of Figure 4. MSC M1 imposes that ea ≤ eb while MSC M2 states that e′b ≤ e′a.
Clearly, if ea and eb are respectively identified with e′a and e′b by the interface, the amalga-
mated sum of M1 and M2 will create a symmetry, which can be easily detected. In such
case, the two scenarios are incompatible, at least if one considers a matching between events
symbolizing actions a and b in both operands. For more considerations about amalgamated
sum properties, consult [4].

4 Fibered product of HMSCs

In many cases, merging bMSCs is not sufficient, and a question that immediately arises is
how to extend the amalgamated sum approach to HMSCs. The first idea is to work on
the set of bMSCs generated by a HMSC. The composition of two sets of bMSCs would be
the set of coherent amalgamated sums obtained by merging pairs of bMSCs from each set.
However, the result obtained is not always a set of partial orders that can be generated by
a single HMSC. Consider, for example, the two HMSCs of Figure 5. Trying to merge the
atomic actions labeled by a and b in both HMSCs would result in the set of bMSCs described
by Figure 6, where one can say nothing about the ordering relationship between the receipt
and sending of the message m, and the events corresponding to the messages labelled by
n. Clearly, this set is not generated by a HMSC, as the messages of type m can cross an
unbounded number of messages of type n. This kind of specification can be expressed by
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means of Compositional Message Sequence Charts [7], or Extended compositional Message
Sequence charts [13], but not with HMSCs.

B
bMSC M2

n

A

A B
bMSC M

m
M1

M2 M3

M

A

B

bMSC M1

bMSC M3

b

a

b

a

Fig. 5. Event by event matching
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a
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A B
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n

A B

b

b

A

m

bMSC M1oM2oM2oM3 + M
B

a

b

n

n m

a

Fig. 6. Result

We propose a solution based on a partially synchronized product of HMSCs inspired by
the fibered product of asynchronous transition systems proposed in [3]. The fibered prod-
uct of HMSCs is twofold: First, transitions of the two support automata are synchronized
partially. Then, the amalgamated sums of the bMSCs attached to the transitions being
synchronized are computed to create new bMSCs. As for the amalgamated sum of section 3,
the formal definition of the fibered product of HMSCs relies on a notion of morphism.

Definition 4.1 (LTS Morphism) Let S1 = (S1, ŝ1, Σ1, T1) and S2 = (S2, ŝ2, Σ2, T2) be
two labeled transition systems (LTS for short). A LTS morphism f : S1 → S2 is a pair
f =< f1, f2 > where f1 : S1 → S2 is a total function while f2 : T1 ⇀ T2 is a partial function
which satisfy:

i) f1(ŝ1) = ŝ2;

ii) t1 = (p, a, q) in T1 and f2(t1) defined imply ∃b ∈ Σ2, f2(t1) = (f1(p), b, f1(q)) in T2;

iii) t1 = (p, a, q) in T1 and f2(t1) undefined imply f1(p) = f1(q) in S2.

Condition i) ensures that morphisms preserve initial states. According to conditions ii)
and iii), any transition t ∈ T1 of S1 is mapped to a transition of S2 via f2 if f2 is defined
in t. In other words, f2 defines which transitions of S1 have observable effects in S2. For
convenience, we can add an artificial empty transition p

ε−→ p to each state p ∈ S. With this
convention, transitions of S1 that are unobservable in S2 are mapped to empty transition.
Hence, we can succinctly rewrite the second and third conditions of definition 4.1 as follows:
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t = (p, a, q) transition of S1 =⇒ ∃a′ ∈ Σ2 ∪ ε, f2(t) = (f1(p), a′, f1(q)) transition of S2

This convention is used throughout the paper. Therefore, it is now assumed that transi-
tion system are completed in every state with an empty transition of the form p

ε−→ p.

The partially synchronized product of labeled transition systems was first introduced by
Arnold [1]. It is parameterized by a set of synchronization vectors, which is used to define
which pairs of labels must be synchronized. Here, a set of pairs of transitions (instead of
labels) is used for this purpose.

Definition 4.2 (Synchronous product) Let S1 = (S1, ŝ1, Σ1, T1) and S2 = (S2, ŝ2, Σ2, T2)
be two LTSs. A synchronization constraint C is a subset of T1 × T2. Elements of C are
called synchronization vectors, and indicate which transitions of S1 and S2 are synchro-
nized. The synchronous product of S1 and S2 under a synchronization constraint C is the
LTS S = (S, ŝ, Σ, T ) where:

• S = S1 × S2; ŝ = (ŝ1, ŝ2);

• Σ =
{
(α(t1), α(t2)) | (t1, t2) ∈ C

}
;

• T =
{
(s, σ, s′) ∈ S × Σ × S | ∃(t1, t2) ∈ C, σ = (α(t1), α(t2)) ∧ s = (α−(t1), α−(t2)) ∧ s′ =

(α+(t1), α+(t2))
}
.

In the previous section, we have defined a notion of morphism for bMSC. HMSC mor-
phisms can be defined, in a similar way, as triples of morphisms or mappings: i) a morphism
of instance sets, ii) a morphism of labeled transition systems and iii) a mapping that asso-
ciates bMSC morphisms to transitions.

Definition 4.3 (HMSC morphism) Let H1 = (I1,S1,M1, λ1), H2 = (I2,S2,M2, λ2) be
two HMSCs. A HMSC morphism f : H1 → H2 from H1 to H2 is a triple f =< f0, f1, f2 >,
where f0 : I2 → I1 is an instance set morphism, f1 =< f1,1, f1,2 >: S1 → S2 is a transition
system morphism, and f2 maps transitions of T1 to bMSC morphisms from λ2 ◦ f1,2(T ) to
λ1(T ).

Definition 4.4 (Fibered product of HMSCs) Let H0, H1 and H2 be three HMSCs, and
let f =< f0, f1 =< f1,1, f1,2 >, f2 >: H1 → H0 and g =< g0, g1 =< g1,1, g1,2 >, g2 >: H2 →
H0 be two HMSC morphisms. The fibered product of H1 and H2 over f and g is noted
H1 f ×g H2, and is the HMSC H1 f ×g H2 = (I,S,M, λ), where:

• I = I1 f0 +g0 I2;

• S = (S, ŝ, Σ, T ) is the synchronous product of S1 and S2 under C =
{
(t1, t2) ∈ T1 × T2 |

f1,2(t1) = g1,2(t2)
}
;

• λ(t1, t2) = λ1(t1) f2(t1) +g2(t2) λ2(t2);

• M = λ(T ).

Let us illustrate this notion of fibered product of HMSCs on an example. Figure 7 shows
a product of two HMSCs H1 and H2 with two HMSC morphisms f =< f0, f1, f2 > that
maps H1 to an interface HMSC HI and g =< g0, g1, g2 > that maps H2 to HI . The result of
this product is given by HMSC Result. The real difficulty of HMSC product is the definition
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of an interface HMSC (HI in our example) and of the corresponding HMSC morphisms (f
and g). As we just want to illustrate HMSC product, we will not detail the instance sets on
which these HMSCs are defined nor the corresponding morphisms (f0 and g0). We will not
either detail f2 and g2 that provide the bMSC morphisms used to build amalgamated sums
loop + Nominal and loop + deadlock, and will only focus on the support automata product.

interact

HMSC I

loop terminate

HMSC H1 HMSC H2

deadlocknominal

terminate
loop

+
nominal

gf

+
deadlock

loop

HMSC Result

Fig. 7. product of HMSCs H1 f×g H2

s′0

d

n

SH2

s′1 ε1

ε0s0

sI ε1

(l,n)

s0s
′
1

(l,d)

s1s
′
0

(t,ε)

SResult

s0s
′
0

SI

i

t

s1

SH1

ε0

ε1

l

ε0

Fig. 8. Support automata for HMSCs Fig 7

Let us detail the two LTS morphisms f1 and g1 that are used to build the product of
H1 and H2’s support automata. The support automaton SH1 of H1 comports transitions
with labels l and t, that are respectively mapped to bMSCs Loop and terminate by λ1 and
the support automaton SH2 of H2 comports two transitions n and d that are respectively
mapped to bMSCs nominal and deadlock by λ2. Following the convention on LTS, addi-
tional ε-transitions are added to the support automata. Morphism f1 sends respectively the
transition labeled l, t, ε0, ε1 to those labeled i, ε0, ε1, ε1. In Figure 8, morphisms f1 and g1

are symbolized by dashed arrows from transitions of SH1 (respectively SH2) to transitions
of SI . For this example, the synchronization constraint C built from f1 and g1 is defined by

C =




(
(s0, l, s0), (s

′
0, n, s′0)

)
;
(
(s0, l, s0), (s

′
0, d, s′1)

)
;(

(s0, t, s1), (s
′
0, ε0, s

′
0)

)
;
(
(s0, ε0, s0), (s

′
1, ε1, s

′
1)

)
;
(
(s1, ε1, s1), (s

′
1, ε1, s

′
1)

)

,

The synchronous product of support automata SH1 ×SH2 with C is given by the support
automaton SResult of Figure 8. For the sake of clarity, empty transitions (pair of ε-transitions)
are not represented on the product automaton. To obtain HMSC Result, the bMSCs associ-
ated to transitions of SResult can then be amalgamated. For a given transition (t1, t2) of the
support automaton of the fibered product, the bMSC λ((t1, t2)) is the amalgamated sum of
the bMSC associated to transition t1 and the bMSC associated to transition t2. The two
bMSCs morphisms needed for amalgamated sum are given by f2(t1) and g2(t2).

10
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5 Non-local choices suppression

Let us illustrate our HMSC product on a concrete application. As mentioned in Section 2,
some HMSCs can contain non-local choices. During implementation, this abstraction is error
prone. To implement a system described by such a HMSC, an experimented programmer
would certainly add some communication messages to the HMSC, so that any non-local
choice would be turned into a local one. More generally, this kind of control can be imple-
mented via well known distributed consensus protocols.

The approach proposed in this section is to integrate automatically a consensus protocol
described with HMSC in a non-local description of a system. This integration is done using
the fibered product between the non-local choice HMSC and another HMSC describing the
consensus protocol. An interesting property of this HMSC transformation is that it can be
used for an arbitrary number of instances participating to a non-local choice.

Let us consider the non-local HMSC H1 of figure 2. This description can be transformed
into a local one by insertion of a control protocol that will tell instances A and B which
branch they should follow. This protocol should have a single minimal event for each branch
of the choice, and this minimal event must be performed by the same instance to ensure
locality of the choice. A first solution is that an instance among all participating instances
is designated as a master, and initiates a token ring protocol involving all participating
instances in a certain order. This token ring is used to elect the branch to be performed. A
drawback of this solution is that the symmetry of the HMSC is lost.

Another solution is to add a supervisor instance to our HMSC. The role of the supervisor
instance is to ask all instances which branch they want to perform, to select an answer among
the responses received, and to transmit this value to all instances. Several decision policies
can be used. However, a first arrived, first served policy is assumed in this paper. Let us try
to use this second solution to transform HMSC H1. So, the local HMSC we should obtain
after transformation will look like the HMSC of Figure 9.

M0

M1 M2

C1 C2

HMSC H

newchoice
newchoice

choice(2)
choice(2)

answer(x)
answer(2)

A B Supervisor
bMSC C2

m1

BA
bMSC M1

m2

BA
bMSC M2

m0

A B
bMSC M0

newchoice
newchoice

answer(x)

choice(1)
choice(1)

answer(1)

A B Supervisor
bMSC C1

Fig. 9. Local HMSC

This transformation raises two important issues. The first one is the creation of an
election protocol for an arbitrary number of instances. Indeed, to make such an approach

11
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usable, one cannot ask a user to design n scenarios when n instances participate in a non-
local choice. Fortunately, building such scenarios can be accomplished as an application of
the amalgamated sum of bMSCs, and can be completely automated. The second issue is
the insertion of the protocols right after choice nodes. This can be accomplished using the
fibered product of HMSCs described in section 4. For this application, the interface HMSC
is simple and can be computed automatically.

5.1 Consensus Protocol construction

As mentioned before, we have chosen to add a supervisor with a first arrived, first served
policy to ensure locality of choices. The main idea is to insert a preamble Ci on each branch
Bi of a non-local choice. Each preamble is a protocol in which the supervisor sends messages
to all instances that are participating to the non-local choice. The first instance i that
answers receives an acknowledgment of its choice, and all others receive a notification of the
choice of instance i. The preamble protocol is depicted in Figure 10.

newchoice

newchoice

answer(p1)

newchoice

First I1 in−1 Supervisor

choice(n)

answer(n)

choice(n)

choice(n)

bMSC Preamble

answer(pn−1)

Fig. 10. Description of a preamble

However, for a non-local choice involving up to n branches, a designer would have to
define up to n quasi-identical preambles, which is a tedious work, and can be error-prone.
Fortunately, these preambles can be constructed automatically using the amalgamated sum.
First, let us show how a preamble can be constructed for two instances. The only bMSCs
needed are: a generic bMSC C Generic with 3 instances (a supervisor, the first instance
to answer, and the last instance) and an empty bMSC M over the participating instances.
Figure 11 shows two sums with such kind of empty bMSCs. As the generic bMSC already
contain 3 instances, the only task to perform to build our preamble is a renaming of First
and Z. This can be done with the sum M f +g C Generic, where f : M Interface 7→ M
is the identity morphism, and g = (g0, g1, g2) : M Interface → C Generic is a morphism
where g1 and g2 are empty functions and g0 is an instance set morphism that associates
respectively A to First and B to Z on one side and B to First and A to Z on the other
side. With no surprise, our sums produce bMSCs C1 and C2 of Figure 9, which are only
renamings of the generic bMSC. As all our preambles will be isomorphic bMSCs, it is however
important to note that renaming can be expressed using an amalgamated sum.
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BA

bMSC M bMSC MbMSC C_Generic
Z

choice(X)
choice(X)

Supervisorfirst

bMSC M_InterfacebMSC M_Interface

BA B A

B A

newchoice
newchoice

answer

answer

Fig. 11. Preambles for a pair of instances

5.2 Generalization

So far, it has been shown how to rename a generic preamble in the specification of a consensus
protocol involving two instances and two different branches. This protocol can be generalized
to an arbitrary number of instances. Let us note C Generic(n) a preamble involving n
instances as depicted in Figure 10.

First, let us show that there exists an interface MSC C Interface and two morphisms
f : C Interface −→ C Generic(2) and g : C Interface −→ C Generic(2) such that
C Generic(3) = C Generic(2) f +g C Generic(2). The two bMSCs C Interface = (EI ,≤I

, AI , αI , φI ,≺I) over II and C Generic(2) = (E2,≤2, A2, α2, φ2,≺2) over I2 are depicted in
Figure 12. f : C Interface → C Generic(2) is defined by the triple f =< f0, f1, f2 >,
where:

• f0 : II → I2 is the identity morphism;

• f1 : EI → E2 respectively maps eI1, eI2, eI3, eI4, eI5, eI6 to e21, e22, e25, e26, e29, e210

• f2 : AI → A2 is the identity morphism.

f and g are isomorphic morphisms, and g is defined similarly from C Interface to
another copy of C Generic(2). Figure 12 illustrates the construction of C Generic(3) with
bMSCs C Generic(2), C Interface, and bMSC morphisms f and g. This construction can be
generalized to build a bMSC C Generic(n), that supervises the choices of n instances, using
the bMSCs C Interface and C Generic of Figure 12, and two bMSC morphisms fn−1 and
gn−1. It is defined by induction: C Generic(n) = C Generic(n−1) fn−1 +gn−1 C Generic(2),
where ∀n ∈ N, gn is the bMSC morphism g : C Interface → C Generic defined for two
instances, and fn−1 = (id, f2, id) : Interface −→ C Generic(n− 1) is a morphism such that
f2 maps: events eI1 and eI2 to two events x and y associated to the emission and reception
of message newchoice from Supervisor to First; events eI3 and eI4 to two events x′ and y′

associated to the emission and reception of message answer(p) from First to Supervisor;
and events eI5 and eI6 to two events x′′ and y′′ associated to the emission and reception of
message Choice(X) from Supervisor to First.

For a branch Bi such that φ(min(Bi)) = j, the preamble Ci will be a renaming of
C Generic(n) through an instance renaming morphism that maps j to first and all other
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bMSC C Generic(2)

Z1

choice(X)

Supervisorfirst

e211

e29

e27 e28

e21
e23e24

e26

eI1

e1

e5

e3

e6

e8
e9

e11

eI5eI6

eI3

eI2

eI4

e212

e2

e10

Z2

choice(X)

Supervisorfirst

choice(X)choice(X)

newchoice

Z SupervisorZ1first

newchoice
newchoice

answer

bMSC C Generic(3)

choice(X)
choice(X)

choice(X)

newchoice

e210

Supervisorfirst

answer

choice(X)

bMSC C Interface

newchoice
newchoice

answer

newchoice

answer

answer

newchoice

answer

answer

bMSC C Generic(2)

e22

e25

answer
e4

e7

e12

Fig. 12. the amalgamated sum C Generic(2) + C Generic = C Generic(3)

instances to any instance Iq, q ∈ 1..n − 1, and through a message renaming morphisms that
modifies the message names.

5.3 Insertion of preambles

Once the desired preambles have been constructed and renamed, they have to be inserted
in the original HMSC. This task is performed using the fibered product operation defined
in section 4. For example, building HMSC H of Figure 9 from HMSC H1 amounts to the
insertion of bMSCs C1 and C2 created in Figure9 after the non-local choice node of H1.
This insertion can be defined as a product H1 f ×g H2 between H1 and the HMSC H2 of
Figure 14.

The difficult part of insertion is the creation of an interface HMSC. Let us illustrate
a simple insertion on an example. Consider the simple support automata S1 and S2 of
Figure 13, and suppose we want to obtain a support automaton accepting sequence b.a. A
way to “insert” transition b before transition a is to synchronize transition b with transition ε0

and transition a with transition ε′1. This synchronization is implemented via the morphisms
proposed in Figure 13.

The solution proposed for simple insertions can be generalized as shown in Figure 15. Let
f be the HMSC morphism from H1 = (IH1,SH1,MH1, λH1) to H0 = (IH0,SH0,MH0, λH0)
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0

1

b

ε′0

ε′1

S2

ε0 + ε′0

ε0 + ε′1

ε1 + ε′0

ε0 + b

a + ε0

00

01

11

S1+2

ε0

ε1

0

1

a

x 0
y

S1

SI

Fig. 13. A simple insertion

M1 M2

M0

HMSC H1

M0

M1 M2

C1 C2

HMSC H

C1 C2

HMSC H2

g
f

X2 X3X0 X1

HMSC H0

Fig. 14. Product H1 f×g H2

and g be the HMSC morphism from H2 = (IH2,SH2,MH2, λH2) to H0. More precisely:

• f : H1 → H0 is a triple f =
〈
f0, f1 =< f1,1, f1,2 >, f2

〉
, where:

· f0 : IH0 → IH1 is the identity; f1,1 maps all states of SH1 to SI ;
· f1,2 : TH1 −→ TH0 respectively maps (s0, m0, s1), (s1, ε0, s1), (s1, m1, s2) and (s1, m2, s3)

to (sI , x0, sI), (sI , x1, sI), (sI , x2, sI) and (sI , x3, sI);
· f2 : T1 → M0 → M1 associates a null bMSC morphism from λ0 ◦ f1(t) to λ1(t) to each

transition t ∈ T1.

• g : H2 → H0 is a triple g =< g0, g1, g2 >, where:
· g0 : IH0 → IH1 is the identity; g1,1 maps all states of SH2 to SI ;
· g1,2 : TH2 −→ TH0 respectively maps (s′0, ε

′
0, s

′
0), (s

′
0, c1, s

′
1), (s

′
0, c2, s

′
2), (s

′
1, ε

′
1, s

′
1) and

(s′2, ε
′
2, s

′
2) to (sI , x0, sI), (sI , x1, sI), (sI , x1, sI), (sI , x2, sI) and (sI , x3, sI);

· g2 : T2 → M0 → M2 which associates a null bMSCs morphism from λ0 ◦ g1(t) to λ2(t),
to each transition t ∈ T2.

Note that a transition (s, εs, s) is artificially added to each state. These transitions
allow independent moves of transition systems. Of course, λ will associate an empty bMSC
Mε(bMSC with no instance or event) to each ε-transition. With this convention, we can define
two bMSC morphisms f : Mε −→ λ(t) and g : Mε −→ Mε, such that λ(t) f +g λ(ε) = λ(t).

With morphisms f1 and g1 defined above, we can build the following synchronization
constraint C =

(
((s0, m0, s1), (sI , x0, sI)); ((s1, ε0, s1), (s

′
0, c1, s

′
1)); ((s1, ε0, s1), (s

′
0, c2, s

′
2));

((s1, m1, s2), (s
′
1, ε

′
1, s

′
1)); ((s1, m2, s3), (s

′
2, ε

′
2, s

′
2))

)
. The partially synchronized product SH1×

SH2 under C is the support automaton SH . Hence, with HMSC H0, H1 and H2, and with
the definition of trivial HMSC morphisms f and g, we obtain the local HMSC H of Figure 9.
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′
2)

- �
f1 g1

Fig. 15. labeled transition systems of HMSCs

To summarize, from a non-local HMSC H , one can produce a HMSC Protocol which
bMSCs are built as a succession of amalgamated sums of a generic bMSC, followed by
a renaming. Then, the insertion of Protocol into H is performed with a product. All
interfaces and morphisms used for this “localization” are simple and independent of the
number of instances, hence this procedure can be completely automated for an arbitrary
number of instances.

6 Conclusion

This paper has proposed a formal notion of merge for bMSCs and HMSCs. This definition is
based on the notions of synchronous product for transition systems and amalgamated sum.
The use of this formalism on a concrete example shows the applicability of the method.

The definition of an HMSC product mainly relies on the definition of appropriate mor-
phisms, which can be considered rather complicated at first sight. Furthermore, morphisms
force some synchronization between bMSCs, which can be considered as an arbitrary solu-
tion (remember that due to the meaning of sequential composition, there are several ways
to obtain similar orderings between events, and hence that decomposition of scenarios into
bMSCs is not always meaningful). A clue to refine merging is to define HMSC morphisms
not only as transition morphisms but rather as path morphisms, as is done in [3]. Note also
that amalgamated sums define explicitely events that coincide in both views. This can be
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considered as a drawback, but relying on events labeling to detect similarities in views is
not possible, as in the general case this approach exhibits several matching possibilities (and
even an infinity when HMSCs are considered). However, we believe that for most cases where
our product can be applied, the morphisms are rather simple, and can even be computed
automatically. For the non local choice case, all morphisms are trivial, and do not use the
full expressive power of synchronized HMSC product. Furthermore, the construction of local
HMSCs from non local ones can be completely automatized.

An advantage of this composition method is that it allows the inductive definition of
merging, and hence provides composition schemes for arbitrary number of instances. This
product also defines a rough notion of coherence : if the HMSC obtained after composition
is well formed, then the two operands are coherent on the set of events identified through
the morphisms. If not, the fusion of both views are inconsistent.

Clues for future works are of practical and theoretical nature. On the practical side, we
want to test our product through the definition of product-based transformation patterns
for HMSCs. Of course, we do not plan to ask users to define their own fibered product of
HMSCs, but rather to provide libraries of formally defined patterns, than can be reused after
instantiation of a limited number of parameters. Composition can also be used to create
automatically concrete scenarios involving numerous instances that cannot be designed by
hand from generic scenarios. These concrete scenarios could then be used for deployment,
test and simulation purposes.

On the theoretical side, an interesting work consists in studying in detail the properties
of algebraic operations defined as peculiar instances of product. This can be the base for a
categorically well founded algebraic framework for scenario composition. Another interesting
research direction is to study merging in a category of extended MSC (compositional MSCs
[7] for example).

The relation between HMSC morphisms and projections is also an interesting research
topic. A question that seems quite natural is whether HMSC morphisms are inverse projec-
tions of HMSC, as defined in [6]. The answer is no, as morphisms do not preserve events
labeling. When considering only label preserving morphisms, the answer is still no : in-
terfaces are always HMSCs but HMSC projections are not HMSCs anymore as they can
generate infinite connected patterns that can not be represented as compositions of a finite
set of bMSCs. However, the relationship between projections and morphisms is something
that is worth being studied, as finding a correct morphism is sometimes equivalent to finding
an appropriate projection. The ideal case is when two HMSCs project on the same interface
HMSC.
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