
FMCO’03 

 

An MDA approach to tame component based software 
development 

Jean-Marc Jézéquel, Olivier Defour and Noël Plouzeau 

IRISA - Université de Rennes 1 

Campus universitaire de Beaulieu, Avenue du général Leclerc 
35042 Rennes Cedex, France 

{jean-marc.jezequel, olivier.defour, noel.plouzeau}@irisa.fr  
http://www.irisa.fr/triskell 

Abstract. The aim of this paper is to show how the Model Driven Architec-
ture (MDA) can be used in relation with component based software engineer-
ing. A software component only exhibits its provided or required interfaces, 
hence defining basic contracts between components allowing one to properly 
wire them. These contractually specified interfaces should go well beyond 
mere syntactic aspects: they should also involve functional, synchronization 
and Quality of Service (QoS) aspects. In large, mission-critical component 
based systems, it is also particularly important to be able to explicitly relate 
the QoS contracts attached to provided interfaces with the QoS contracts ob-
tained from required interfaces. We thus introduce a QoS contract model 
(called QoSCL for QoS Constraint Language), allowing QoS contracts and 
their dependencies to be modeled in a UML2.0 modeling environment. Build-
ing on Model Driven Engineering techniques, we then show how the very 
same QoSCL contracts can be exploited for (1) validation of individual com-
ponents, by automatically weaving contract monitoring code into the compo-
nents; and (2) validation of a component assembly, including getting end-to-
end QoS information inferred from individual component contracts, by auto-
matic translation to a Constraint Logic Programming language. We illustrate 
our approach with the example of a GPS (Global Positioning System) software 
component, from its functional and contractual specifications to its implemen-
tation in a .Net framework. 

1   Introduction 

Szyperski [22] remarked that while objects were good units for modular composition 
at development time, they were not so good for deployment time composition, and he 
formulated the now widely accepted definition of a software component: “a software 
component is a unit of composition with contractually specified interfaces and ex-
plicit context dependencies only. A software component can be deployed independ-
ently and is subject to composition by third-party”. In this vision, any composite 
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application is viewed as a particular configuration of components, selected at build-
time and configured or re-configured at run-time, as in CORBA [15], or .NET [20]. 

A software component only exhibits its provided or required interfaces, hence de-
fining basic contracts between components allowing one to properly wire them. 
These contractually specified interfaces should go well beyond mere syntactic as-
pects: they should also involve functional, synchronization and Quality of Service 
(QoS) aspects. In large, mission-critical component based systems, it is also particu-
larly important to be able to explicitly relate the QoS contracts attached to provided 
interfaces with the QoS contracts obtained from required interfaces.  

It is then natural that people resorted to modelling to try to master this complex-
ity. According to Jeff Rothenberg, “Modeling, in the broadest sense, is the cost-
effective use of something in place of something else for some cognitive purpose. It 
allows us to use something that is simpler, safer or cheaper than reality instead of 
reality for some purpose. A model represents reality for the given purpose; the 
model is an abstraction of reality in the sense that it cannot represent all aspects of 
reality. This allows us to deal with the world in a simplified manner, avoiding the 
complexity, danger and irreversibility of reality.” Usually in science, a model has a 
different nature that the thing it models. Only in software and in linguistics a model 
has the same nature as the thing it models. In software at least, this opens the possi-
bility to automatically derive software from its model. This property is well known 
from any compiler writer (and others), but it was recently be made quite popular with 
an OMG initiative called the Model Driven Architecture (MDA). 

The aim of this paper is to show how MDA can be used in relation with compo-
nent based software engineering. We introduce a QoS contract model (called QoSCL 
for QoS Constraint Language), allowing QoS contracts and their dependencies to be 
modeled in a UML2.0 [13] modeling environment. Building on Model Driven Engi-
neering techniques, we then show how the very same QoSCL contracts can be ex-
ploited for (1) validation of individual components, by automatically weaving con-
tract monitoring code into the components; and (2) validation of a component as-
sembly, including getting end-to-end QoS information inferred from individual com-
ponent contracts, by automatic translation to a Constraint Logic Programming.  

The rest of the paper is organized as follows. Using the example of a GPS (Global 
Positioning System) software component, Section 2 introduces the interest of model-
ling components, their contracts and their dependencies, and describes the QoS Con-
straint Language (QoSCL). Section 3 discusses the problem of validating individual 
components against their contracts, and proposes a solution based on automatically 
weaving reusable contract monitoring code into the components. Section 4 discusses 
the problem of validating a component assembly, including getting end-to-end QoS 
information inferred from individual component contracts by automatic translation 
to a Constraint Logic Programming. This is applied to the GPS system example, and 
experimental results are presented. Finally, Section 5 presents related works. 
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2   The QoS Contracts Language 

2.1 Modeling component-based systems 

In modelling techniques such as UML2.0 for example, a component is a behavioural 
abstraction of a concrete physical piece of code, called artifacts. A component has 
required and provided ports, which are typed by interfaces. These interfaces repre-
sent the required and provided services implemented by the modelled artifact. The 
relationship between the required and provided services within one component must 
be explicitly stated. The knowledge of this relationship is of utmost importance to the 
component-based application designer. In the rest of this section, we address this 
relationship using the example of a GPS device. 

A GPS device computes its current location from satellite signals. Each signal 
contains data which specifies the identity of the emiting satellite, the time of its 
emission, the orbital position of the satellite and so on. In the illustrating example, 
each satellite emits a new data stream every fifteen seconds. 

In order to compute its current location, the GPS device needs at least three sig-
nals from three different satellites. The number of received signals is unknown a 
priori, because obstacles might block the signal propagation. 

Our GPS device is modeled as a component which provides a getLocation() ser-
vice, and requires a getSignal() service from Satellites components. The GPS com-
ponent is made up of four components: 

- the decoder which contains twelve satellite receivers (only three are shown 
on Fig. 1). This element receives the satellite streams and demutiplexes it 
in order to extract the data for each satellite. The number of effective data 
obtained via the getData() service depends not only on the number of pow-
ered receivers, but also on the number of received signals. Indeed, this 
number may change at any time. 

- The computer which computes the current location (getLocation()) from 
the data (getData()) and the current time (getTime()). 

- The battery which provides the power (getPower()) to the computer and 
the decoder. 

- The clock component which provides the current time (getTime()). 
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Fig. 1. The GPS component-based model 

2.2 Contract aware components 

In component-based models, the services are usually specified at a syntactic level. 
This level of specification is not precise enough. Indeed, a service can be unavailable 
according to the state of the environment and, reciprocally, the environment can be 
modified by the execution of a service. 

Following [2] component contracts can be classified into four levels. The first 
level is the type compatibility. The second level adds pre/post-conditions: the opera-
tion’s behavior is specified by using Boolean assertions for each service offered, 
called pre and post-conditions, as well as class invariants [14]. The third level adds 
synchronization constraints and the fourth level provides extra-functional con-
straints. To be more precise, we can build on the well-known idea of design-by-
contract [12] negotiable contracts for components. These contracts ensure that a 
service will perform correctly. 

 In the previous section 2.1, we have said that a dependency relationship always 
exists inside one component between its provided and required services. A compo-
nent provides its services inasmuch as its environment provides the services that it 
requires. All components always support this implicit contract. The extra-functional 
properties, which are intrinsic features of services, inherit this dependency relation-
ship. The quality of a provided service depends on the quality of required services 
that it depends on. This fact is illustrated in our example.  

The GPS application contains several time out constraints. For instance, the pro-
vided getLocation() service must ensure that it is completed in a delay less than 30s, 
whereas the getData() service must be completed in less than 25 s for example. 

However, it is obvious that the time spent to acquire data from the decoder, de-
noted TethaD, has a direct impact on the global cost in time of the getLocation() 
service, denoted ThetaC. Not only ThetaC depends on ThetaD, but also on the num-
ber of active receivers, denoted Nbr, because of the interpolation algorithm imple-
mented by the Computer component. ThetaD and Nbr are two extra-functional prop-
erties associated to the getData() service provided by the Decoder component. The 
relation that binds these three quantities is: 

ThetaC = ThetaD + Nbr * log ( Nbr ) . (1) 
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Each receiver demultiplexes a signal, in order to extract the data. This operation 
has a fixed time cost: nearly 2 seconds. In addition, the demultiplexed signals must 
be transformed into a single data vector. This operation takes 3 s. If ThetaR (resp. 
ThetaS) denotes the time spent by the receiver to complete the getDatal() service 
(resp. the satellite to complete its getSignal() service), then we have  the two follow-
ing formulae: 

ThetaR = ThetaS  + 2 , 

ThetaD = max ( ThetaR ) + 3 . 
 

(2) 

(3) 
 

There exist many QoS contracts languages which allow the designer to specify the 
extra-functional properties and their constraints on the provided interfaces only (see 
section 5). However, none of them allow specifying dependency relationships be-
tween the provided and required services of a component. To overcome this limita-
tion we introduce the QoS Constraint Language (QoSCL). This language includes 
the fundamental QoS concepts defined in the well-known precursor QML [5]. It is 
the cornerstone to implement in a second time a QoS prediction tool. 

2.3   Extra-functional dependencies with QoSCL 

Our own contract model for extra-functional contracts extends the UML2.0 compo-
nents metamodel. We designed the QoSCL notation with the following objectives in 
mind. 

1. Since the extra-functional contracts are constraints on continuous values 
within multidimensional spaces, we wanted to keep the QML definitions of 
dimensions and contract spaces. 

2. Since our extra-functional contracts would be used on software components 
with explicit dependency specification, we needed means to express a pro-
vided contract in terms of required contracts. 

3. Since we targeted platform independent designs, we wanted to use the UML 
notation and its extension facilities. 

We thus designed our extra-functional contract notation as an extension of the 
component part of the UML2.0 metamodel: 

- Dimension: is a QoS property. This metaclass inherits the operation 
metaclass. According to our point of view, a QoS property is a valuable 
quantity and has to be concretely measured. Therefore we have chosen to 
specify a means of measurement rather than an abstract concept. Its pa-
rameters are used to specified the (optional) others dimensions on which 
it depends. The type of a Dimension is a totally ordered set, and it de-
notes its unit. The pre and post-conditions are used to specify constraints 
on the dimension itself, or its parameters. 

- ContractType: specializes Interface. It is a set of dimensions defining the 
contract supported by an operation.  Like an interface, a ContractType is 
just a specification without implementation of its dimensions. 
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- Contract: is a concrete implementation of a ContractType. The dimen-
sions specified in the ContractType are implemented inside the compo-
nent using the aspect weaving techniques (see section 3). An isValid() 
operation checks if the contract is realized or not. 

- QoSComponent extends Component, and it has the same meaning. How-
ever, its ports provides not only required and provided interfaces which 
exhibit its functional behaviour, but also ContractTypes dedicated to its 
contractual behaviour. 

 

Component

Interface

Operation

Constraint

QoSComponent

TypeParameter

provided required

ownedOperation

typeformalParameter

body, pre, post

ContractType

Dimension

provided required

UML2.0 QoSCL

contract

service ownedOperation

Contract
«implements»

1

*

 

Fig. 2. The QoSCL metamodel 

With the QoSCL metamodel, it is possible to specify contracts, such as the Time-
Out contract useful for our GPS, as an Interface in any UML case tool: 

 

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« operation »
delay

+return:double

+dimension

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« operation »
delay

+return:double

+dimension

 

Fig. 3. The TimeOut contract with QoSCL 

The QoSCL metamodel handles three specific aspects of contracts: dependency, 
composition, and adaptative behaviour. The dependency is the core of this work, and 
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our main contribution to enhance existing extra-functional contracts specification 
languages, such as QML. QoSCL makes it also possible to model a composite con-
tract via generalization association. At last, like any abstract functional model, it is 
possible to implement different behaviors for the same Operation, such as a Dimen-
sion. Thus, the renegotiation of a contract can be implemented according to its envi-
ronment. This behavior can be specified thanks the UML2.0 sequence diagrams, 
activity diagrams or state machine for instance. 

3    Implementing contract-aware components 

QoSCL allows the expression of functional and extra-functional properties in a soft-
ware component. The declared properties are useful to the software designer because 
this gives predictability to a component's behaviour. However, this predictability is 
valid only if the component implementation really has the behaviour declared by the 
component. This implementation validity is classical software validation problem, 
whatever the kind of contracts used [11]. 

These problems are usually addressed by two families of techniques. A first family 
is based on testing: the system under test is run in an environment that behaves as 
described in a test case. An oracle observes the behaviour of the system under test 
and then decides whether the behaviour is allowed by the specification.  A second 
family of techniques relies on formal proof and reasoning on the composition of 
elementary operations. 

Standard software validation techniques deal with pre/post-condition contract 
types [12]. Protocol validation extends this to the synchronization contract types [8]. 
The rest of this section discusses issues of testing extra-functional property confor-
mance. 

3.1 Testing extra functional behaviour 

Level 3 contracts (i.e. contracts that include protocols) are more difficult to test be-
cause of non-deterministic behaviours of parallel and distributed implementations. 
One of the most difficult problems is the consistent capture of data on the behaviour 
of the system's elements. Level 4 contracts (i.e. extra-functional properties) are also 
difficult to test for quite similar reasons. Our approach for testing level 4 contracts 
relies on the following features: 

- existence of probes and extra-functional data collection mechanisms 
(monitors); 

- test cases; 
- oracles on extra-functional properties. 

In order to be testable, a component must provide probe points where basic extra-
functional data must be available. There are several techniques to implement such 
probe points and make performance data available to the test environment.  
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1. The component runtime may include facilities to record performance data 
on various kinds of resources or events (e.g. disk operations, RPC calls, 
etc). Modern operating systems and component frameworks now provide 
performance counters that can be "tuned" to monitor runtime activity and 
therefore deduce performance data on the component's service. 

2. The implementation of the component may perform extra computation to 
monitor its own performance. This kind of “self monitoring” is often 
found in components that are designed as level 4 component from scratch 
(e.g. components providing multimedia services). 

3. A component can be augmented with monitoring facilities by weaving a 
specific monitor piece of model or of code. Aspect-oriented design (AOD) 
or aspect-oriented programming can help in automating this extension. 

We have chosen this latter approach as our main technique for designing moni-
tors. This choice was motivated mainly by the existence of “legacy” components 
from industrial partners [17]. From a software design process point of view, we con-
sider that designing monitors is a specialist's task. Monitors rely on low level 
mechanisms and/or on mechanisms that are highly platform dependant. By using 
aspect-oriented design (AOD), we separate the component implementation model 
into two main models: the service part that provides the component's functional 
services under extra-functional contracts, and the monitor part that supervises per-
formance issues. A designer in charge of the “service design model” does not need to 
master monitor design. A specific tool1 (a model transformer) [24] is used to merge 
the monitor part of the component with its service part.  
More precisely, a contract monitor designer provides component designers with a 
reusable implementation of a monitor. This implementation contains two items: a 
monitor design model and a script for the model transformer tool (a weaver). The 
goal of this aspect weaver is to modify a platform specific component model by inte-
grating new QoSCL classes and modifying existing class and their relationships. 

3.2 A practical example of weaving 

As we have said in the last paragraph of section 2, QoSCL allows us to model the 
structural, behavioral and contractual components features. These three aspects can 
be specified using the dedicated UML2.0 diagrams. The QoS aspect weaver is a 
mechanism integrated into Kase, which: 

- modifies the UML diagram (add new classes and associations) 
- modifies the behavior of the targeted service  

Thanks to QoSCL, it is possible to specify into Kase the contract types and their 
implementation such as TimeOut and TimeOutC (Fig. 4). According to our vision, 
detailed in the QoSCL section (§2.3), the TimeOut contract is an interface, which 
has a special operation denoting the “delay” dimension. The TimeOutC is a .Net 
class that implements the TimeOut interface. The value of the “delay” dimension is 

                                                        
1 The Kase tool is developed by TU-Berlin with the support of the European Project “Quality 

Control of Component-based Software” (QCCS) [17]. 
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implemented like a private attribute (-delay:double) and its related access/evaluation 
method (delay():double). 

A QoS aspect not only specifies how the structural diagram will be modified, but 
also how the monitored part and the monitor cooperate: when does the timer start, 
when does it stop, who handles timeout, etc… This part of the aspect is specified 
using the Hierarchical Message Sequence Charts (HMSC) notation in the UML 2.0. 
Fig. 5 shows the behavior of a contractual service, called op(), as a HMSC diagram. 
The op() operation is the service which must verify a TimeOut contract. The op_c() 
operation is a new operation, which realizes the op() service and evaluates the 
TimeOut contract below (Fig. 5). This service has two possible behaviors, depending 
on whether  the op() service finishes before or after the timer. 

 

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
ContractType

+isValid():bool

« interface »
ContractType

+isValid():bool

TimeOut
System

Timer

ComponentModel

TimerTimer

ElapsedEventArgsElapsedEventArgs

ComponentComponent

Contract

« delegate »
MyDelegate

+myDelegate():bool

« delegate »
MyDelegate

+myDelegate():bool

« operation »
delay

+return:double

ContractType

ContractQoSCL

Dimension

 

Fig. 4. TheTimeOut contract model for .Net 

In addition of its structural (Fig. 4) and behavioral (Fig. 5) parts, a contractual 
QoS aspect has pre-conditions that must be met at weaving time. For example, a :Cl 
class abides a TimeOut contract under the condition that it implements the op() ser-
vice of course. In our tool, the aspect is concretely weaved in the UML diagram by a 
Python script, which: 

- checks the aspect pre-conditions; 
- weaves the aspect if these preconditions are satisfied, and this weaving 

adds new classes, modifies constructors and operations, etc). 
The QoS aspect weaver implemented in the Käse tool allows us to: 

- specify a QoS aspect; 
- implement an evaluation of this aspect for a targeted service. 

According to the QoSCL point of view, contracts can be specified at design time 
as specialized interfaces. Therefore, connecting two components at binding time is 
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easy, using their respectively compliant required and provided interfaces. The QoS 
aspect weaver implemented in Käse allows to implement in C# any contract type. 

In case of failure, an extra-functional contract can be renegotiated. For instance, a 
time out contract that fails too often obviously needs to be adjusted (alternatively the 
service bound to that contract has to be shut down). 

 
:Cl :TimeOutC

op_c()
start()

onTimeEvent ()

op()

isValid()

stop()

delay()
true

stop()

delay()

isValid()
false

Alt

 

Fig. 5. Behavior of the op() service with evaluation of a TimeOut contract 

3.3   Limitations of extra-functional property testing  

The QoSCL notation and the monitor integration technique help the component 
designer to define and check extra-functional properties. However, application de-
signers rely on component assemblies to build applications. These designers need to 
estimate at design time the overall extra-functional properties of a given assembly. 
Using the techniques presented above, they can perform a kind of integration testing. 
The tests aim at validating the extra-functional behavior of the assembly with respect 
to the global specification of the application. However, the application designers 
often have trouble to select and configure the components, make the assembly and 
match the global application behavior. Conversely, some applications are built with 
preconfigured components and the application designer needs to build a reasonable 
specification of the overall extra-functional behavior of the application.  
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4     Predicting extra-functional properties of an assembly 

4.1   Modeling a QoS-aware component with QoSCL 

QoSCL is a metamodel extension dedicated to specify contracts whose extra-
functional properties have explicit dependencies. Models can be used by aspect weav-
ers in order to integrate the contractual evaluation and renegotiation into the compo-
nents. However, at design time, it is possible to predict the global quality of the 
composite software. 

Predicting a behaviour is difficult. In the best cases, the behaviour can be proved 
but this. Otherwise, the behaviour is predicted with uncertainty. Since we want to 
predict the quality of a composite, i.e. la value of a set of extra-functional properties, 
this uncertainty will be translated into a numerical interval or an enumerated set of 
values, called validity domains. 

The dependencies defined in QoSCL, which bind the properties, are generally ex-
pressed either as formulae or as rules. The quality of a service is defined as the extra-
functional property’s membership of a specific validity domain. Predicting the global 
quality of a composite is equivalent to the propagation of the extra-functional validity 
domains through the dependencies. 

For instance, we have defined in section §2.2 a set of extra-functional properties 
that qualifies different services in our GPS component-based model. In addition, we 
have specified the dependencies between the extra-functional properties as formulae. 
This knowledge can be specified in QoSCL. The Fig. 6 below represents the com-
puter component (Fig. 1) refined with contractual properties and their dependencies: 

 
« QoSComponent »

Computer
getLocation()

thetaC( thetaD, nbr, P)
eps( thetaD, nbr, P)

getPower() P()

getData()

thetaD()
nbr()

required

required

qualities

service

required required

provided

provided

service qualities

qualities

service

: Interface : ContractType : Port  

Fig. 6. Quality attributes and dependencies specification of a component 

The rules that govern the connection between two (functional) ports are also valid 
for ports with required or provided ContractTypes. Thus, a port that requires a ser-
vice with its specific QoS properties can only be connected to another Port that pro-
vides this service with the same quality attributes. 
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Specifying the QoS properties of required and provided services of a component is 
not enough to predict the quality of an assembly at design time. Additional informa-
tion must be supplied: 

- constraints on the value of the QoS properties are needed to get the parties 
to negotiate and to agree; they explain the level of quality required or provided 
for a service by a component; 

- the dependency between these values is an important kind of relation-
ship; it can be described either as with a function (for instance: ThetaC = 
ThetaD + Nbr * log( Nbr ) (1)) or with a rule (if Nbr = 3 and Eps = me-
dium then ThetaC ≤ 25). 

In other words, these constraints can be stated as OCL [14] pre and post-
conditions on the Dimensions. For instance: 

 
context Computer::thetaC( thetaD : real, nbr : int, 
P : real) : real 

pre: thetaD >= 0 and P >= 0 
post: result = thetaD + nbr * log( nbr ) and P = 
3*nbr 

 
At design time, the global set of pre and post-conditions of all specified Dimen-

sions of a component builds a system of non-linear constraints that must be satisfied. 
The Constraint Logic Programming is the general framework to solve such systems. 
Dedicated solvers will determine if a system is satisfied, and in this case the admissi-
ble interval of values for each dimension stressed. 

4.2  Prediction of the GPS quality of service 

 
In this section we present the set of constraints for the GPS component-based 

model (Fig. 1). A first subset of constraints defines possible or impossible values for 
a QoS property. These admissible value sets come on the one hand from implementa-
tion or technological constraints and on the other hand from designers’ and users’ 
requirements about a service. The fact that the Nbr value is 3, 5 or 12 (2), or ThetaC 
and ThetaD values must be real positive values (3-4) belongs to the first category of 
constraints. Conversely, the facts that Eps is at least medium (5) and P is less or 
equal than 15mW (6) are designers or users requirements. 

 
Nbr  ∈ {3, 5, 12}, 

ThetaC ≥ 0, 
ThetaD ≥ 0, 

Eps ∈ {medium, high}, 
P ≤ 15. 

(2) 
(3) 
(4) 
(5) 
(6) 
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Secondly, constraints can also explain the dependency relationships that bind the 
QoS properties of a component. For instance, the active power level P is linearly 
dependent on the Nbr number of receivers according to the formula: 

 
P = 3 * Nbr. (7) 

 
Moreover, the time spent by the getLocation() service (ThetaC) depends on the 

time spend by the getData() service (ThetaD) and the number of data received (Nbr), 
according the equation (1). Lastly, a rule binds the precision Eps, the time spent to 
compute the current position ThetaC and the number of received data (Nbr). The 
following diagram (Fig. 7) presents this rule: 

 
nbr

θC
20 5025 30 35 40 45

3

5

12

lowmedium

lowmedium

medium lowhigh

high

3224

 

Fig. 7. The rule that binds the Eps, Nbr and ThetaC dimensions 

 
All these constraints, expressed in OCL syntax, can be translated into a specific 

CLP-compliant language, using a Model Transfomation [24]. For instance, we pre-
sent below the result of a such transformation applied to the computer QoSCompo-
nent (Fig. 6) and its OCL conditions (using the Eclipse™ syntax): 

 
01- computer( [ ThetaC, Eps, P, ThetaD, Nbr ] ) :- 
02- ThetaC $>= 0, Eps = high, P $>= 0, 
03- ThetaD $>= 0, member( Nbr, [3,5,12]), 
04-  ThetaC $>= 0, ThetaD $>= 0, 
05-  ThetaC $= ThetaD + Nbr * log(Nbr), 
06-  P $= Nbr * 3, 
07-  rule( Eps, ThetaC, Nbr). 
08- 
09- rule( medium, ThetaC, 3) :- ThetaC  $=< 25. 
10-  rule( low, ThetaC, 3) :- ThetaC  $> 25. 
11- rule( high, ThetaC, 5) :- ThetaC  $=< 24. 
12- rule( medium, ThetaC, 5) :- ThetaC $>24, 
13-  ThetaC $=< 30. 
14- rule( low, ThetaC, 5) :- ThetaC  $> 30. 
15- rule( high, ThetaC, 12) :- ThetaC  $=< 32. 
16- rule( medium, ThetaC, 12) :- ThetaC  $> 32, 
17-   ThetaC $=<45. 
18- rule( low, ThetaC, 12) :- ThetaC  $> 45. 
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The first line (01) indicates the QoS properties bound by the component. The two 

following lines (02, 03) are the constraints on the admissible values for these QoS 
properties, and lines 05 to 07 are the dependency relationships (1-7 and Fig. 7) that 
bind them. 

For each component, it is necessary to check its system of constraints, in order to 
compute its availability. The result of such request is the whole of admissible values 
for the QoS properties of the component. Thus, for the computer component, the 
solutions for the admissible QoS properties values are enumerated below: 

 
ThetaC ThetaD Eps P Nbr 

[3.49 .. 24.0] [0.0 .. 20.51] high 15 5 
[12.95 .. 32.0] [0.0 .. 19.05] high 36 12 

 
The requirement about the estimated position (Eps = high) implies that: 

- the number of data channels must be either 5 or 12, 
- consequently, the active power is either 15 or 36mW, 
- and the response times of the getLocation() ands getData() services are 

respectively in the [3.49; 32.0] and [0.0; 20.51] real intervals. 
At this time, the designer knows the qualitative behavior of all of its components. 

It is also possible to know the qualitative behavior of an assembly, by conjunction of 
the constraints systems and unification of their QoS properties.  

The following constraint program shows the example of the GPS component: 
 
19- satellite( [ ThetaS ] ) :-  
20-   ThetaS $>= 15, ThetaS $=< 30. 
21-  
22- battery( [ P ] ) :- 
23-   P $>= 0, 
24-   P $=< 15. 
25-  
26- receiver( [ ThetaR, ThetaS ] ) :- 
27-   ThetaR $>= 0, ThetaS $>= 0, 
28-   ThetaR $= ThetaS + 2. 
29-  
30- decoder( [ ThetaD, ThetaS, Nbr ] ) :- 
31-   ThetaD $>= 0, ThetaS $>= 0, 
32-   member( Nbr, [3,5,12]), 
33-   receiver( [ ThetaR, ThetaS ] ), 
34-   ThetaD $= ThetaR + 3. 
35-   
36- gps( [ ThetaC, Eps, ThetaS ] ) :- 
37-   ThetaC $>= 0, Eps = high, ThetaS $>= 0, 
38-   computer( [ ThetaC, Eps, P, ThetaD, Nbr ] ), 
39-   decoder( [ ThetaD, ThetaS, Nbr ] ), 
40-   battery( [ P ] ). 
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Similarly, the propagation of numerical constraints over the admissible sets of 
values implies the following qualitative prediction behavior of the GPS assembly: 

 
ThetaC ThetaS Eps 

[23.49 .. 24.0] [15.0 .. 15.50] high 

 
The strong requirement on the precision of the computed location implies that the 

satellite signals have to be received by the GPS component with a delay less than 
15.5 s. In this case, the location will be computed in less than 24 s. 

5   Related work 

In the Component-Based Software Engineering community, the concept of predict-
ability is getting more and more attention, and is now underlined as a real need [4]. 
Thus, the Software Engineering Institute (SEI) promotes its Predictable Assembly 
from Certifiable Components (PACC) initiative: how component technology can be 
extended to achieve predictable assembly, enabling runtime behavior to be predicted 
from the properties of components. The ongoing work concentrates in a Prediction-
Enabled Component Technology (PECT) as a method to integrate state-of-the-art 
techniques for reasoning about software quality attributes [23]. 

In the introduction of the SEI’s second workshop on predictable assembly [21], 
the authors note that component interfaces are not sufficiently descriptive. A syntax 
for defining and specifying quality of service attributes, called QML, is defined by 
Frolund and Koistinen in [5], directly followed by Aagedal [1]. The Object Manage-
ment Group (OMG) has developed its own UML profile for schedulability, perform-
ance and time specification [16]. These works emphasize the contractual use of QoS 
properties, and constitute the fundamental core of QoS specifications. 

In the previous approaches, a QoS property is specified as a constant: they do not 
allow the specification of QoS properties dependency relationships. In contrast, 
Reussner proposes its parameterized contracts [18]: the set of available services pro-
vided by a component depends on its required services that the context can provide. 
This concept is a generalization of the design-by-contract [11]. The same author has 
published in 2003 a recent extension of its work dedicated to the QoS [19]. He mod-
els the QoS dependency with Markov chains where: 

- the states are services, with their QoS values; 
- the transitions represent the connections (calls) between components, i.e. 

the architecture of an assembly; 
- the usage profile of the assembly is modeled by probabilities for calls to a 

provided service. Usage profiles are commonly modeled by Markov 
chains since Cheung [3] or Whittaker and Thomason [25]. 

From an assembly model and its usage profile, it seems possible to generate the 
associated Markov chain and to predict the QoS level of provided services. Con-
versely, it is not possible to invert the prediction process, in order to propagate a 
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particular QoS requirement applied on a provided service on the QoS properties of 
required services that it depends. Moreover, via the Chapman-Kolmogorov equation, 
the Markov processes handle only probabilities, and they are not able to reason about 
formal un-valued variables. For instance, it is impossible to compare the n2 and 
n*log(n) complexity of two sort algorithms. 

Constraints solvers over real intervals and finite domains have already been used 
in the context of the software engineering. For instance, logic programming tech-
niques can generate test cases for functional properties. More precisely, this tech-
nique allows a more realistic treatment of bound values [10]. About the software 
functional aspect, many authors have successfully used the constraints logic pro-
gramming, based on translations from the source code to test or its formal specifica-
tion into constraints: the GATEL system [9] translates LUSTRE [7] expressions, and 
A. Gotlieb defines directly its transformation from C [6]. The works mentioned 
above focus on the functional aspects of software only, while our approach encom-
passes extra-functional properties. 

6   Conclusion and future work 

In mission-critical component based systems, it is particularly important  to be able 
to explicitly relate the QoS contracts attached to provided interfaces of components 
with the QoS contracts obtained from their required interfaces. In this paper we have 
introduced a notation called QoSCL (defined as an add-on to the UML2.0 compo-
nent model) to let the designer explicitly describe and manipulate these higher level 
contracts and their dependencies. We have shown how the very same QoSCL con-
tracts can then be exploited for: 

1 validation of individual components, by automatically weaving contract 
monitoring code into the components; 

2 validation of a component assembly, including getting end-to-end QoS 
information inferred from individual component contracts, by automatic 
translation to a Constraint Logic Programming language.  

Both validation activities build on the model transformation framework developed 
at INRIA (cf. http://modelware.inria.fr). Preliminary implementations of these ideas 
have been prototyped in the context of the QCCS project (cf. http://www.qccs.org) 
for the weaving of contract monitoring code into components part, and on the Artist 
project (http://www.systemes-critiques.org/ARTIST) for the validation of a compo-
nent assembly part. Both parts still need to be better integrated with UML2.0 model-
ling environments, which is work in progress. 
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