
FMCO’03

An MDA approach to tame component based software
development

Jean-Marc Jézéquel, Olivier Defour and Noël Plouzeau

IRISA - Université de Rennes 1

Campus universitaire de Beaulieu, Avenue du général Leclerc
35042 Rennes Cedex, France

{jean-marc.jezequel, olivier.defour, noel.plouzeau}@irisa.fr
http://www.irisa.fr/triskell

Abstract. The aim of this paper is to show how the Model Driven Architec-
ture (MDA) can be used in relation with component based software engineer-
ing. A software component only exhibits its provided or required interfaces,
hence defining basic contracts between components allowing one to properly
wire them. These contractually specified interfaces should go well beyond
mere syntactic aspects: they should also involve functional, synchronization
and Quality of Service (QoS) aspects. In large, mission-critical component
based systems, it is also particularly important to be able to explicitly relate
the QoS contracts attached to provided interfaces with the QoS contracts ob-
tained from required interfaces. We thus introduce a QoS contract model
(called QoSCL for QoS Constraint Language), allowing QoS contracts and
their dependencies to be modeled in a UML2.0 modeling environment. Build-
ing on Model Driven Engineering techniques, we then show how the very
same QoSCL contracts can be exploited for (1) validation of individual com-
ponents, by automatically weaving contract monitoring code into the compo-
nents; and (2) validation of a component assembly, including getting end-to-
end QoS information inferred from individual component contracts, by auto-
matic translation to a Constraint Logic Programming language. We illustrate
our approach with the example of a GPS (Global Positioning System) software
component, from its functional and contractual specifications to its implemen-
tation in a .Net framework.

1 Introduction

Szyperski [22] remarked that while objects were good units for modular composition
at development time, they were not so good for deployment time composition, and he
formulated the now widely accepted definition of a software component: “a software
component is a unit of composition with contractually specified interfaces and ex-
plicit context dependencies only. A software component can be deployed independ-
ently and is subject to composition by third-party”. In this vision, any composite

FMCO’03

application is viewed as a particular configuration of components, selected at build-
time and configured or re-configured at run-time, as in CORBA [15], or .NET [20].

A software component only exhibits its provided or required interfaces, hence de-
fining basic contracts between components allowing one to properly wire them.
These contractually specified interfaces should go well beyond mere syntactic as-
pects: they should also involve functional, synchronization and Quality of Service
(QoS) aspects. In large, mission-critical component based systems, it is also particu-
larly important to be able to explicitly relate the QoS contracts attached to provided
interfaces with the QoS contracts obtained from required interfaces.

It is then natural that people resorted to modelling to try to master this complex-
ity. According to Jeff Rothenberg, “Modeling, in the broadest sense, is the cost-
effective use of something in place of something else for some cognitive purpose. It
allows us to use something that is simpler, safer or cheaper than reality instead of
reality for some purpose. A model represents reality for the given purpose; the
model is an abstraction of reality in the sense that it cannot represent all aspects of
reality. This allows us to deal with the world in a simplified manner, avoiding the
complexity, danger and irreversibility of reality.” Usually in science, a model has a
different nature that the thing it models. Only in software and in linguistics a model
has the same nature as the thing it models. In software at least, this opens the possi-
bility to automatically derive software from its model. This property is well known
from any compiler writer (and others), but it was recently be made quite popular with
an OMG initiative called the Model Driven Architecture (MDA).

The aim of this paper is to show how MDA can be used in relation with compo-
nent based software engineering. We introduce a QoS contract model (called QoSCL
for QoS Constraint Language), allowing QoS contracts and their dependencies to be
modeled in a UML2.0 [13] modeling environment. Building on Model Driven Engi-
neering techniques, we then show how the very same QoSCL contracts can be ex-
ploited for (1) validation of individual components, by automatically weaving con-
tract monitoring code into the components; and (2) validation of a component as-
sembly, including getting end-to-end QoS information inferred from individual com-
ponent contracts, by automatic translation to a Constraint Logic Programming.

The rest of the paper is organized as follows. Using the example of a GPS (Global
Positioning System) software component, Section 2 introduces the interest of model-
ling components, their contracts and their dependencies, and describes the QoS Con-
straint Language (QoSCL). Section 3 discusses the problem of validating individual
components against their contracts, and proposes a solution based on automatically
weaving reusable contract monitoring code into the components. Section 4 discusses
the problem of validating a component assembly, including getting end-to-end QoS
information inferred from individual component contracts by automatic translation
to a Constraint Logic Programming. This is applied to the GPS system example, and
experimental results are presented. Finally, Section 5 presents related works.

FMCO’03

2 The QoS Contracts Language

2.1 Modeling component-based systems

In modelling techniques such as UML2.0 for example, a component is a behavioural
abstraction of a concrete physical piece of code, called artifacts. A component has
required and provided ports, which are typed by interfaces. These interfaces repre-
sent the required and provided services implemented by the modelled artifact. The
relationship between the required and provided services within one component must
be explicitly stated. The knowledge of this relationship is of utmost importance to the
component-based application designer. In the rest of this section, we address this
relationship using the example of a GPS device.

A GPS device computes its current location from satellite signals. Each signal
contains data which specifies the identity of the emiting satellite, the time of its
emission, the orbital position of the satellite and so on. In the illustrating example,
each satellite emits a new data stream every fifteen seconds.

In order to compute its current location, the GPS device needs at least three sig-
nals from three different satellites. The number of received signals is unknown a
priori, because obstacles might block the signal propagation.

Our GPS device is modeled as a component which provides a getLocation() ser-
vice, and requires a getSignal() service from Satellites components. The GPS com-
ponent is made up of four components:

- the decoder which contains twelve satellite receivers (only three are shown
on Fig. 1). This element receives the satellite streams and demutiplexes it
in order to extract the data for each satellite. The number of effective data
obtained via the getData() service depends not only on the number of pow-
ered receivers, but also on the number of received signals. Indeed, this
number may change at any time.

- The computer which computes the current location (getLocation()) from
the data (getData()) and the current time (getTime()).

- The battery which provides the power (getPower()) to the computer and
the decoder.

- The clock component which provides the current time (getTime()).

FMCO’03

computer
decoder

receiver satellite

GPS

receiver satellite

receiver satellite

getSignal()

getData()getLocation()

battery

getPower()

clock

getTime()

Fig. 1. The GPS component-based model

2.2 Contract aware components

In component-based models, the services are usually specified at a syntactic level.
This level of specification is not precise enough. Indeed, a service can be unavailable
according to the state of the environment and, reciprocally, the environment can be
modified by the execution of a service.

Following [2] component contracts can be classified into four levels. The first
level is the type compatibility. The second level adds pre/post-conditions: the opera-
tion’s behavior is specified by using Boolean assertions for each service offered,
called pre and post-conditions, as well as class invariants [14]. The third level adds
synchronization constraints and the fourth level provides extra-functional con-
straints. To be more precise, we can build on the well-known idea of design-by-
contract [12] negotiable contracts for components. These contracts ensure that a
service will perform correctly.

 In the previous section 2.1, we have said that a dependency relationship always
exists inside one component between its provided and required services. A compo-
nent provides its services inasmuch as its environment provides the services that it
requires. All components always support this implicit contract. The extra-functional
properties, which are intrinsic features of services, inherit this dependency relation-
ship. The quality of a provided service depends on the quality of required services
that it depends on. This fact is illustrated in our example.

The GPS application contains several time out constraints. For instance, the pro-
vided getLocation() service must ensure that it is completed in a delay less than 30s,
whereas the getData() service must be completed in less than 25 s for example.

However, it is obvious that the time spent to acquire data from the decoder, de-
noted TethaD, has a direct impact on the global cost in time of the getLocation()
service, denoted ThetaC. Not only ThetaC depends on ThetaD, but also on the num-
ber of active receivers, denoted Nbr, because of the interpolation algorithm imple-
mented by the Computer component. ThetaD and Nbr are two extra-functional prop-
erties associated to the getData() service provided by the Decoder component. The
relation that binds these three quantities is:

ThetaC = ThetaD + Nbr * log (Nbr) . (1)

FMCO’03

Each receiver demultiplexes a signal, in order to extract the data. This operation
has a fixed time cost: nearly 2 seconds. In addition, the demultiplexed signals must
be transformed into a single data vector. This operation takes 3 s. If ThetaR (resp.
ThetaS) denotes the time spent by the receiver to complete the getDatal() service
(resp. the satellite to complete its getSignal() service), then we have the two follow-
ing formulae:

ThetaR = ThetaS + 2 ,

ThetaD = max (ThetaR) + 3 .

(2)

(3)

There exist many QoS contracts languages which allow the designer to specify the
extra-functional properties and their constraints on the provided interfaces only (see
section 5). However, none of them allow specifying dependency relationships be-
tween the provided and required services of a component. To overcome this limita-
tion we introduce the QoS Constraint Language (QoSCL). This language includes
the fundamental QoS concepts defined in the well-known precursor QML [5]. It is
the cornerstone to implement in a second time a QoS prediction tool.

2.3 Extra-functional dependencies with QoSCL

Our own contract model for extra-functional contracts extends the UML2.0 compo-
nents metamodel. We designed the QoSCL notation with the following objectives in
mind.

1. Since the extra-functional contracts are constraints on continuous values
within multidimensional spaces, we wanted to keep the QML definitions of
dimensions and contract spaces.

2. Since our extra-functional contracts would be used on software components
with explicit dependency specification, we needed means to express a pro-
vided contract in terms of required contracts.

3. Since we targeted platform independent designs, we wanted to use the UML
notation and its extension facilities.

We thus designed our extra-functional contract notation as an extension of the
component part of the UML2.0 metamodel:

- Dimension: is a QoS property. This metaclass inherits the operation
metaclass. According to our point of view, a QoS property is a valuable
quantity and has to be concretely measured. Therefore we have chosen to
specify a means of measurement rather than an abstract concept. Its pa-
rameters are used to specified the (optional) others dimensions on which
it depends. The type of a Dimension is a totally ordered set, and it de-
notes its unit. The pre and post-conditions are used to specify constraints
on the dimension itself, or its parameters.

- ContractType: specializes Interface. It is a set of dimensions defining the
contract supported by an operation. Like an interface, a ContractType is
just a specification without implementation of its dimensions.

FMCO’03

- Contract: is a concrete implementation of a ContractType. The dimen-
sions specified in the ContractType are implemented inside the compo-
nent using the aspect weaving techniques (see section 3). An isValid()
operation checks if the contract is realized or not.

- QoSComponent extends Component, and it has the same meaning. How-
ever, its ports provides not only required and provided interfaces which
exhibit its functional behaviour, but also ContractTypes dedicated to its
contractual behaviour.

Component

Interface

Operation

Constraint

QoSComponent

TypeParameter

provided required

ownedOperation

typeformalParameter

body, pre, post

ContractType

Dimension

provided required

UML2.0 QoSCL

contract

service ownedOperation

Contract
«implements»

1

*

Fig. 2. The QoSCL metamodel

With the QoSCL metamodel, it is possible to specify contracts, such as the Time-
Out contract useful for our GPS, as an Interface in any UML case tool:

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« operation »
delay

+return:double

+dimension

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« operation »
delay

+return:double

+dimension

Fig. 3. The TimeOut contract with QoSCL

The QoSCL metamodel handles three specific aspects of contracts: dependency,
composition, and adaptative behaviour. The dependency is the core of this work, and

FMCO’03

our main contribution to enhance existing extra-functional contracts specification
languages, such as QML. QoSCL makes it also possible to model a composite con-
tract via generalization association. At last, like any abstract functional model, it is
possible to implement different behaviors for the same Operation, such as a Dimen-
sion. Thus, the renegotiation of a contract can be implemented according to its envi-
ronment. This behavior can be specified thanks the UML2.0 sequence diagrams,
activity diagrams or state machine for instance.

3 Implementing contract-aware components

QoSCL allows the expression of functional and extra-functional properties in a soft-
ware component. The declared properties are useful to the software designer because
this gives predictability to a component's behaviour. However, this predictability is
valid only if the component implementation really has the behaviour declared by the
component. This implementation validity is classical software validation problem,
whatever the kind of contracts used [11].

These problems are usually addressed by two families of techniques. A first family
is based on testing: the system under test is run in an environment that behaves as
described in a test case. An oracle observes the behaviour of the system under test
and then decides whether the behaviour is allowed by the specification. A second
family of techniques relies on formal proof and reasoning on the composition of
elementary operations.

Standard software validation techniques deal with pre/post-condition contract
types [12]. Protocol validation extends this to the synchronization contract types [8].
The rest of this section discusses issues of testing extra-functional property confor-
mance.

3.1 Testing extra functional behaviour

Level 3 contracts (i.e. contracts that include protocols) are more difficult to test be-
cause of non-deterministic behaviours of parallel and distributed implementations.
One of the most difficult problems is the consistent capture of data on the behaviour
of the system's elements. Level 4 contracts (i.e. extra-functional properties) are also
difficult to test for quite similar reasons. Our approach for testing level 4 contracts
relies on the following features:

- existence of probes and extra-functional data collection mechanisms
(monitors);

- test cases;
- oracles on extra-functional properties.

In order to be testable, a component must provide probe points where basic extra-
functional data must be available. There are several techniques to implement such
probe points and make performance data available to the test environment.

FMCO’03

1. The component runtime may include facilities to record performance data
on various kinds of resources or events (e.g. disk operations, RPC calls,
etc). Modern operating systems and component frameworks now provide
performance counters that can be "tuned" to monitor runtime activity and
therefore deduce performance data on the component's service.

2. The implementation of the component may perform extra computation to
monitor its own performance. This kind of “self monitoring” is often
found in components that are designed as level 4 component from scratch
(e.g. components providing multimedia services).

3. A component can be augmented with monitoring facilities by weaving a
specific monitor piece of model or of code. Aspect-oriented design (AOD)
or aspect-oriented programming can help in automating this extension.

We have chosen this latter approach as our main technique for designing moni-
tors. This choice was motivated mainly by the existence of “legacy” components
from industrial partners [17]. From a software design process point of view, we con-
sider that designing monitors is a specialist's task. Monitors rely on low level
mechanisms and/or on mechanisms that are highly platform dependant. By using
aspect-oriented design (AOD), we separate the component implementation model
into two main models: the service part that provides the component's functional
services under extra-functional contracts, and the monitor part that supervises per-
formance issues. A designer in charge of the “service design model” does not need to
master monitor design. A specific tool1 (a model transformer) [24] is used to merge
the monitor part of the component with its service part.
More precisely, a contract monitor designer provides component designers with a
reusable implementation of a monitor. This implementation contains two items: a
monitor design model and a script for the model transformer tool (a weaver). The
goal of this aspect weaver is to modify a platform specific component model by inte-
grating new QoSCL classes and modifying existing class and their relationships.

3.2 A practical example of weaving

As we have said in the last paragraph of section 2, QoSCL allows us to model the
structural, behavioral and contractual components features. These three aspects can
be specified using the dedicated UML2.0 diagrams. The QoS aspect weaver is a
mechanism integrated into Kase, which:

- modifies the UML diagram (add new classes and associations)
- modifies the behavior of the targeted service

Thanks to QoSCL, it is possible to specify into Kase the contract types and their
implementation such as TimeOut and TimeOutC (Fig. 4). According to our vision,
detailed in the QoSCL section (§2.3), the TimeOut contract is an interface, which
has a special operation denoting the “delay” dimension. The TimeOutC is a .Net
class that implements the TimeOut interface. The value of the “delay” dimension is

1 The Kase tool is developed by TU-Berlin with the support of the European Project “Quality

Control of Component-based Software” (QCCS) [17].

FMCO’03

implemented like a private attribute (-delay:double) and its related access/evaluation
method (delay():double).

A QoS aspect not only specifies how the structural diagram will be modified, but
also how the monitored part and the monitor cooperate: when does the timer start,
when does it stop, who handles timeout, etc… This part of the aspect is specified
using the Hierarchical Message Sequence Charts (HMSC) notation in the UML 2.0.
Fig. 5 shows the behavior of a contractual service, called op(), as a HMSC diagram.
The op() operation is the service which must verify a TimeOut contract. The op_c()
operation is a new operation, which realizes the op() service and evaluates the
TimeOut contract below (Fig. 5). This service has two possible behaviors, depending
on whether the op() service finishes before or after the timer.

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

TimeOutC
-delay:double
+delay():double
+timeOut():bool
+start():bool
+isValid():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
TimeOutContract

+timeOut():bool
+start():bool
+onTimeEvent(source:object, e:ElapsedEventArgs)

« interface »
ContractType

+isValid():bool

« interface »
ContractType

+isValid():bool

TimeOut
System

Timer

ComponentModel

TimerTimer

ElapsedEventArgsElapsedEventArgs

ComponentComponent

Contract

« delegate »
MyDelegate

+myDelegate():bool

« delegate »
MyDelegate

+myDelegate():bool

« operation »
delay

+return:double

ContractType

ContractQoSCL

Dimension

Fig. 4. TheTimeOut contract model for .Net

In addition of its structural (Fig. 4) and behavioral (Fig. 5) parts, a contractual
QoS aspect has pre-conditions that must be met at weaving time. For example, a :Cl
class abides a TimeOut contract under the condition that it implements the op() ser-
vice of course. In our tool, the aspect is concretely weaved in the UML diagram by a
Python script, which:

- checks the aspect pre-conditions;
- weaves the aspect if these preconditions are satisfied, and this weaving

adds new classes, modifies constructors and operations, etc).
The QoS aspect weaver implemented in the Käse tool allows us to:

- specify a QoS aspect;
- implement an evaluation of this aspect for a targeted service.

According to the QoSCL point of view, contracts can be specified at design time
as specialized interfaces. Therefore, connecting two components at binding time is

FMCO’03

easy, using their respectively compliant required and provided interfaces. The QoS
aspect weaver implemented in Käse allows to implement in C# any contract type.

In case of failure, an extra-functional contract can be renegotiated. For instance, a
time out contract that fails too often obviously needs to be adjusted (alternatively the
service bound to that contract has to be shut down).

:Cl :TimeOutC

op_c()
start()

onTimeEvent ()

op()

isValid()

stop()

delay()
true

stop()

delay()

isValid()
false

Alt

Fig. 5. Behavior of the op() service with evaluation of a TimeOut contract

3.3 Limitations of extra-functional property testing

The QoSCL notation and the monitor integration technique help the component
designer to define and check extra-functional properties. However, application de-
signers rely on component assemblies to build applications. These designers need to
estimate at design time the overall extra-functional properties of a given assembly.
Using the techniques presented above, they can perform a kind of integration testing.
The tests aim at validating the extra-functional behavior of the assembly with respect
to the global specification of the application. However, the application designers
often have trouble to select and configure the components, make the assembly and
match the global application behavior. Conversely, some applications are built with
preconfigured components and the application designer needs to build a reasonable
specification of the overall extra-functional behavior of the application.

FMCO’03

4 Predicting extra-functional properties of an assembly

4.1 Modeling a QoS-aware component with QoSCL

QoSCL is a metamodel extension dedicated to specify contracts whose extra-
functional properties have explicit dependencies. Models can be used by aspect weav-
ers in order to integrate the contractual evaluation and renegotiation into the compo-
nents. However, at design time, it is possible to predict the global quality of the
composite software.

Predicting a behaviour is difficult. In the best cases, the behaviour can be proved
but this. Otherwise, the behaviour is predicted with uncertainty. Since we want to
predict the quality of a composite, i.e. la value of a set of extra-functional properties,
this uncertainty will be translated into a numerical interval or an enumerated set of
values, called validity domains.

The dependencies defined in QoSCL, which bind the properties, are generally ex-
pressed either as formulae or as rules. The quality of a service is defined as the extra-
functional property’s membership of a specific validity domain. Predicting the global
quality of a composite is equivalent to the propagation of the extra-functional validity
domains through the dependencies.

For instance, we have defined in section §2.2 a set of extra-functional properties
that qualifies different services in our GPS component-based model. In addition, we
have specified the dependencies between the extra-functional properties as formulae.
This knowledge can be specified in QoSCL. The Fig. 6 below represents the com-
puter component (Fig. 1) refined with contractual properties and their dependencies:

« QoSComponent »

Computer
getLocation()

thetaC(thetaD, nbr, P)
eps(thetaD, nbr, P)

getPower() P()

getData()

thetaD()
nbr()

required

required

qualities

service

required required

provided

provided

service qualities

qualities

service

: Interface : ContractType : Port

Fig. 6. Quality attributes and dependencies specification of a component

The rules that govern the connection between two (functional) ports are also valid
for ports with required or provided ContractTypes. Thus, a port that requires a ser-
vice with its specific QoS properties can only be connected to another Port that pro-
vides this service with the same quality attributes.

FMCO’03

Specifying the QoS properties of required and provided services of a component is
not enough to predict the quality of an assembly at design time. Additional informa-
tion must be supplied:

- constraints on the value of the QoS properties are needed to get the parties
to negotiate and to agree; they explain the level of quality required or provided
for a service by a component;

- the dependency between these values is an important kind of relation-
ship; it can be described either as with a function (for instance: ThetaC =
ThetaD + Nbr * log(Nbr) (1)) or with a rule (if Nbr = 3 and Eps = me-
dium then ThetaC ≤ 25).

In other words, these constraints can be stated as OCL [14] pre and post-
conditions on the Dimensions. For instance:

context Computer::thetaC(thetaD : real, nbr : int,
P : real) : real

pre: thetaD >= 0 and P >= 0
post: result = thetaD + nbr * log(nbr) and P =
3*nbr

At design time, the global set of pre and post-conditions of all specified Dimen-

sions of a component builds a system of non-linear constraints that must be satisfied.
The Constraint Logic Programming is the general framework to solve such systems.
Dedicated solvers will determine if a system is satisfied, and in this case the admissi-
ble interval of values for each dimension stressed.

4.2 Prediction of the GPS quality of service

In this section we present the set of constraints for the GPS component-based

model (Fig. 1). A first subset of constraints defines possible or impossible values for
a QoS property. These admissible value sets come on the one hand from implementa-
tion or technological constraints and on the other hand from designers’ and users’
requirements about a service. The fact that the Nbr value is 3, 5 or 12 (2), or ThetaC
and ThetaD values must be real positive values (3-4) belongs to the first category of
constraints. Conversely, the facts that Eps is at least medium (5) and P is less or
equal than 15mW (6) are designers or users requirements.

Nbr ∈ {3, 5, 12},

ThetaC ≥ 0,
ThetaD ≥ 0,

Eps ∈ {medium, high},
P ≤ 15.

(2)
(3)
(4)
(5)
(6)

FMCO’03

Secondly, constraints can also explain the dependency relationships that bind the
QoS properties of a component. For instance, the active power level P is linearly
dependent on the Nbr number of receivers according to the formula:

P = 3 * Nbr. (7)

Moreover, the time spent by the getLocation() service (ThetaC) depends on the

time spend by the getData() service (ThetaD) and the number of data received (Nbr),
according the equation (1). Lastly, a rule binds the precision Eps, the time spent to
compute the current position ThetaC and the number of received data (Nbr). The
following diagram (Fig. 7) presents this rule:

nbr

θC
20 5025 30 35 40 45

3

5

12

lowmedium

lowmedium

medium lowhigh

high

3224

Fig. 7. The rule that binds the Eps, Nbr and ThetaC dimensions

All these constraints, expressed in OCL syntax, can be translated into a specific

CLP-compliant language, using a Model Transfomation [24]. For instance, we pre-
sent below the result of a such transformation applied to the computer QoSCompo-
nent (Fig. 6) and its OCL conditions (using the Eclipse™ syntax):

01- computer([ThetaC, Eps, P, ThetaD, Nbr]) :-
02- ThetaC $>= 0, Eps = high, P $>= 0,
03- ThetaD $>= 0, member(Nbr, [3,5,12]),
04- ThetaC $>= 0, ThetaD $>= 0,
05- ThetaC $= ThetaD + Nbr * log(Nbr),
06- P $= Nbr * 3,
07- rule(Eps, ThetaC, Nbr).
08-
09- rule(medium, ThetaC, 3) :- ThetaC $=< 25.
10- rule(low, ThetaC, 3) :- ThetaC $> 25.
11- rule(high, ThetaC, 5) :- ThetaC $=< 24.
12- rule(medium, ThetaC, 5) :- ThetaC $>24,
13- ThetaC $=< 30.
14- rule(low, ThetaC, 5) :- ThetaC $> 30.
15- rule(high, ThetaC, 12) :- ThetaC $=< 32.
16- rule(medium, ThetaC, 12) :- ThetaC $> 32,
17- ThetaC $=<45.
18- rule(low, ThetaC, 12) :- ThetaC $> 45.

FMCO’03

The first line (01) indicates the QoS properties bound by the component. The two

following lines (02, 03) are the constraints on the admissible values for these QoS
properties, and lines 05 to 07 are the dependency relationships (1-7 and Fig. 7) that
bind them.

For each component, it is necessary to check its system of constraints, in order to
compute its availability. The result of such request is the whole of admissible values
for the QoS properties of the component. Thus, for the computer component, the
solutions for the admissible QoS properties values are enumerated below:

ThetaC ThetaD Eps P Nbr

[3.49 .. 24.0] [0.0 .. 20.51] high 15 5
[12.95 .. 32.0] [0.0 .. 19.05] high 36 12

The requirement about the estimated position (Eps = high) implies that:

- the number of data channels must be either 5 or 12,
- consequently, the active power is either 15 or 36mW,
- and the response times of the getLocation() ands getData() services are

respectively in the [3.49; 32.0] and [0.0; 20.51] real intervals.
At this time, the designer knows the qualitative behavior of all of its components.

It is also possible to know the qualitative behavior of an assembly, by conjunction of
the constraints systems and unification of their QoS properties.

The following constraint program shows the example of the GPS component:

19- satellite([ThetaS]) :-
20- ThetaS $>= 15, ThetaS $=< 30.
21-
22- battery([P]) :-
23- P $>= 0,
24- P $=< 15.
25-
26- receiver([ThetaR, ThetaS]) :-
27- ThetaR $>= 0, ThetaS $>= 0,
28- ThetaR $= ThetaS + 2.
29-
30- decoder([ThetaD, ThetaS, Nbr]) :-
31- ThetaD $>= 0, ThetaS $>= 0,
32- member(Nbr, [3,5,12]),
33- receiver([ThetaR, ThetaS]),
34- ThetaD $= ThetaR + 3.
35-
36- gps([ThetaC, Eps, ThetaS]) :-
37- ThetaC $>= 0, Eps = high, ThetaS $>= 0,
38- computer([ThetaC, Eps, P, ThetaD, Nbr]),
39- decoder([ThetaD, ThetaS, Nbr]),
40- battery([P]).

FMCO’03

Similarly, the propagation of numerical constraints over the admissible sets of
values implies the following qualitative prediction behavior of the GPS assembly:

ThetaC ThetaS Eps

[23.49 .. 24.0] [15.0 .. 15.50] high

The strong requirement on the precision of the computed location implies that the

satellite signals have to be received by the GPS component with a delay less than
15.5 s. In this case, the location will be computed in less than 24 s.

5 Related work

In the Component-Based Software Engineering community, the concept of predict-
ability is getting more and more attention, and is now underlined as a real need [4].
Thus, the Software Engineering Institute (SEI) promotes its Predictable Assembly
from Certifiable Components (PACC) initiative: how component technology can be
extended to achieve predictable assembly, enabling runtime behavior to be predicted
from the properties of components. The ongoing work concentrates in a Prediction-
Enabled Component Technology (PECT) as a method to integrate state-of-the-art
techniques for reasoning about software quality attributes [23].

In the introduction of the SEI’s second workshop on predictable assembly [21],
the authors note that component interfaces are not sufficiently descriptive. A syntax
for defining and specifying quality of service attributes, called QML, is defined by
Frolund and Koistinen in [5], directly followed by Aagedal [1]. The Object Manage-
ment Group (OMG) has developed its own UML profile for schedulability, perform-
ance and time specification [16]. These works emphasize the contractual use of QoS
properties, and constitute the fundamental core of QoS specifications.

In the previous approaches, a QoS property is specified as a constant: they do not
allow the specification of QoS properties dependency relationships. In contrast,
Reussner proposes its parameterized contracts [18]: the set of available services pro-
vided by a component depends on its required services that the context can provide.
This concept is a generalization of the design-by-contract [11]. The same author has
published in 2003 a recent extension of its work dedicated to the QoS [19]. He mod-
els the QoS dependency with Markov chains where:

- the states are services, with their QoS values;
- the transitions represent the connections (calls) between components, i.e.

the architecture of an assembly;
- the usage profile of the assembly is modeled by probabilities for calls to a

provided service. Usage profiles are commonly modeled by Markov
chains since Cheung [3] or Whittaker and Thomason [25].

From an assembly model and its usage profile, it seems possible to generate the
associated Markov chain and to predict the QoS level of provided services. Con-
versely, it is not possible to invert the prediction process, in order to propagate a

FMCO’03

particular QoS requirement applied on a provided service on the QoS properties of
required services that it depends. Moreover, via the Chapman-Kolmogorov equation,
the Markov processes handle only probabilities, and they are not able to reason about
formal un-valued variables. For instance, it is impossible to compare the n2 and
n*log(n) complexity of two sort algorithms.

Constraints solvers over real intervals and finite domains have already been used
in the context of the software engineering. For instance, logic programming tech-
niques can generate test cases for functional properties. More precisely, this tech-
nique allows a more realistic treatment of bound values [10]. About the software
functional aspect, many authors have successfully used the constraints logic pro-
gramming, based on translations from the source code to test or its formal specifica-
tion into constraints: the GATEL system [9] translates LUSTRE [7] expressions, and
A. Gotlieb defines directly its transformation from C [6]. The works mentioned
above focus on the functional aspects of software only, while our approach encom-
passes extra-functional properties.

6 Conclusion and future work

In mission-critical component based systems, it is particularly important to be able
to explicitly relate the QoS contracts attached to provided interfaces of components
with the QoS contracts obtained from their required interfaces. In this paper we have
introduced a notation called QoSCL (defined as an add-on to the UML2.0 compo-
nent model) to let the designer explicitly describe and manipulate these higher level
contracts and their dependencies. We have shown how the very same QoSCL con-
tracts can then be exploited for:

1 validation of individual components, by automatically weaving contract
monitoring code into the components;

2 validation of a component assembly, including getting end-to-end QoS
information inferred from individual component contracts, by automatic
translation to a Constraint Logic Programming language.

Both validation activities build on the model transformation framework developed
at INRIA (cf. http://modelware.inria.fr). Preliminary implementations of these ideas
have been prototyped in the context of the QCCS project (cf. http://www.qccs.org)
for the weaving of contract monitoring code into components part, and on the Artist
project (http://www.systemes-critiques.org/ARTIST) for the validation of a compo-
nent assembly part. Both parts still need to be better integrated with UML2.0 model-
ling environments, which is work in progress.

References

1. Aagedal J.O.: “Quality of service support in development of distributed systems”. Ph.D
thesis report, University of Oslo, Dept. Informatics, March 2001.

FMCO’03

2. Beugnard A., Jézéquel J.M., Plouzeau N. and Watkins D.: “Making components contract
aware” in Computer, pp. 38-45, IEEE Computer Society, July 1999.

3. Cheung R.C.: “A user-oriented software reliability model” in IEEE Transactions on Soft-
ware Engineering vol. 6 (2), pp. 118-125, 1980.

4. de Roever W.P.: “The need for compositional proof systems: a survey” in Proceedings of
the Int. Symp. COMPOS’97, Bad Malente, Germany, Sept. 8-12, 1997.

5. Frolund S. and Koistinen J.: “QoS specification in distributed object systems” in Distrib-
uted Systems Engineering, vol. 5, July 1998, The British Computer Society.

6. Gotlieb A., Botella B. and Rueher M.: “Automatic test data generation using constraint
solving techniques” in ACM Int. Symp. on Software Testing and Analysis (ISSTA'98), also
in Software Engineering Notes, 23(2):53-62, 1998.

7. Halbwachs N., Caspi P., Raymond P. and Pillaud D.: “The synchronous data flow pro-
gramming language LUSTRE” in Proc. of IEEE, vol. 79, pp.1305-1320, Sept. 1991.

8. McHale C.: “Synchronization in concurrent object-oriented languages: expressive power,
genericity and inheritance”. Doctoral dissertation, Trinity College, Dept. of computer sci-
ence, Dublin, 1994.

9. Marre B. and Arnould A.: “Test sequences generation from luster descriptions: Gatel” in
15th IEEE Int. Conf. On Automated Software Engineering (ASE), pp. 229-237, Sept. 2000,
Grenoble, France.

10. Meudec C.: “Automatic generation of software test cases from formal specifications”.
PhD thesis, Queen’s University of Belfast, 1998.

11. Meyer B.: “Object oriented software construction”, 2nd ed., Prentice Hall, 1997.
12. Meyer B.: “Applying design by contract” in IEEE Computer vol. 25 (10), pp. 40-51, 1992.
13. Object Management Group: “UML Superstructure 2.0”, OMG, August 2003.
14. Object Management Group: “UML2.0 Object Constraint Language RfP”, OMG, July

2003.
15. Object Management Group: “CORBA Components, v3.0”, adopted specification of the

OMG, June 2002.
16. Object Management Group: “UML profile for schedulability, performance and time speci-

fication”. OMG adopted specification n° ptc/02-03-02, March 2002.
17. http://www.qccs.org, Quality Control of Component-based Software (QCCS) European

project home page.
18. Reussner R.H.: “The use of parameterized contracts for architecting systems with soft-

ware components” in Proc. of the 6th Int. Workshop on Component-Oriented Programming
(WCOP’01), June 2001.

19. Reusnerr R.H., Schmidt H.W. and Poernomo I.H.: “Reliability prediction for component-
based software architecture” in the Journal of Systems and Software, vol. 66, pp. 241-252,
2003.

20. Richter, J.: “Applied Microsoft .Net framework programming”. Microsoft Press, January
23, 2002.

21. Stafford J. and Scott H.: “The Software Engineering Institute’s Second Workshop on Pre-
dictable Assembly: Landscape of compositional predictability”. SEI report n° CMU/SEI-
2003-TN-029, 2003

22. Szyperski, C.: “Component software, beyond object-oriented programming”, 2nd ed.,
Addison-Wesley, 2002

23. Wallnau K.: “Volume III: A technology for predictable assembly from certifiable compo-
nents”. SEI report n° CMU/SEI-2003-TR-009.

24. Weis T. and al.: “Model metamorphosis” in IEEE Software, September 2003, p. 46-51.

FMCO’03

25. Whittaker J.A. and Thomason M.G.: “A Markov chain model for statistical software
testing” in IEEE Transactions on Software Engineering vol.20 (10), pp.812-824, 1994.

