
Development of Generic Probes for Functional and
Extra-Functional Diagnosis

Marouane Himdi

KEREVAL Laboratory Test Engineering
Triskell Project – Irisa (University of Rennes I)

Rennes 35700 FRANCE
marouane.himdi@kereval.com

Abstract
In addition to detection of errors related to design,

coding or deployment of an application, the diagnosis is
a well-known technique for understanding the behavior
of a software system and an absolute requirement for its
improvement. Unfortunately, applications become more
difficult to diagnosis as functionalities provided become
complex.

This paper explores the use of dynamic probes that
will be injected into running system to collect various
information. The innovative aspect of this approach is the
use of generic probes to develop diagnosis framework .

1. System Architecture for Diagnosing
Applications
The architecture of the diagnosis system will be a

distributed one, with a central element (console) which
will administrate the different probes [figure 1].

Many categories of probes can be implemented for
diagnosing various aspects: network (protocols, etc.),
QOS (trafic, etc.), security (intrusion detection, etc.) and

system (Cpu, memory, etc.). All these categories of probes
will be implemented into each node of the application and
the idea is to instantiate the category we need for a given
diagnosis.

We will also define a profile which will specify filter
criteria used by a probe while collecting data. This will
reduce information processed by the storage element. The
collector should serve as the first point of registration.
Probe will write intercepted messages in a lightweight
format to avoid overloading process in which it belongs.

The collector will write messages in a standard format
before being processed by the storage element. This one
can be a global database viewable in real time to permit
the analysis of system/application performance.

2. Component Based System
Component-based system construction has emerged as

a fundamentally important technology for software
engineering. The difficulty in diagnosing that systems
depends on the component model used to implement
them. The introspection capability is one of some features
required to diagnose components.

Figure 1: System diagnosis architecture

Storage element

Application

Probe N
profile N

Probe 2
profile 2
Probe 3
profile 3 Node K

Console

Probe 1
profile 1

Collector 2

Specify a profile

Collector 1

Store

Pr obing

Node 1

Node 2

Collector K

Send Data

Analyze and
display statistics

Adress TypeName RegistredProcess ID

@ Ip Probe 1Node 1 xxxx-xx-xx Id1
@ Ip Probe 3Node 2 xxxx-xx-xx Id2

Instantiatee

3. Injection of Probes
Three levels of diagnosis are offered: a component

diagnosis, a middleware diagnosis and finally a system
diagnosis [figure 2]

 1. Component diagnosis:
The component must provide an observable interface

(introspection capability), to allow requesting information
about execution context and the probe can be directly
connected to this interface. In the Fractal component
model [1], introspection capability is provided by
Component and ContentController interfaces.

 2. Middleware diagnosis:
At this level, we will use the opportunities provided

by the middleware (JVM, CLR, ORB...etc) to perform
diagnosis. For example, in a Corba environment, probe
can be built by using interceptors provided by most ORB
[2].

 3. System diagnosis
The goal here is to access the memory of the process

application and to intercept all calls transmitted by this
application. On Windows platform, this can be done by
using one of these three techniques [3]: the first called
“System-wide hook” is based on the use of windows
hooks, but unfortunately it works only with processes
linked to USER32.DLL. The second and third techniques
are based on the CreateRemoteThread method [4] which
creates a thread in a target process and then code can be
injected by using loadlibrary or WriteMemoryProcess
functions [4]. On the Unix platform, an interesting way is
based on the use of some APIs [5] which allow dynamic
instrumentation to trace end-to-end call chains.

At this level we will also be interested by the process
execution context like Cpu and memory used. This kind of
information can be recovered by reading files from the
“proc” repository on a Unix plateform .

4. Diagnosis procedure
Relevant information depend on the kind of diagnosis

we process.
For a diagnosis system, we have to deal with data as,

Cpu, memory in use, etc. . LEWYS [6] is one of those
works which aims to built probes to pump information
from the system.

For a network security diagnosis, we can look forward
to use non-intrusive probes. We are interested about the
project SNORT [7] and we are thinking about the use
Snort sensor as a probe.

Our approach is to benefit from the wide spectrum of
diagnosis tools, and try to adapt techniques used in them
to built our probes.

5. Conclusion and future work

In this paper, we try to describe some guidelines to
built a diagnosis system based on generic probes
injection. We have been inspired by intrusion detection
and network monitoring tools.

Future work will focus on thinking about an automated
system for correlating and analyzing all of the data
gathered to locate and identify possible failures origin.

This topic is the subject of my thesis which aims to
develop a diagnosis tool using components based system.

6. Acknowledgments
I would like to thank Alain Ribault and Yves LeTraon

for their guidance and advices.
I'm also grateful to Jim Steel from Triskell Project and

Thierry Boullet from Kereval laboratory for reading this
paper.

7. References
[1] E.Bruneton, T.Coupaye & J.B.Stefani. “The Fractal

Component Model”. Section 4 “Introspection and
intercession”. http://fractal.objectweb.org

[2] Todo Scallan “Monitoring and Diagnotics of Corba
Systems”. Java Developers Journal.com .
P 138 -144 juin 2000.

[3] R.Kuster. “Three ways to inject your code into another
process.http://www.codeguru.com/Cpp/W-
P/system/processesmodules/article.php/c5767/

[4] Msdn library for Windows.
h ttp://msdn.microsoft.com/library

[5] L.DeRose, T.Hoover and J.K.Hollingsworth. “The Dynamic
Probe Class Library – An Infrastructure for Developing
Instrumentation for Performance Tools”.

[6] LEWYS “Lewys is Watching Your System”
 http://lewys.objectweb.org.

[7] SNORT, http://www.snort.org

Figure 2: diagnosis levels

System
Middelware

 Component

Intercepter (Probe)

ClientIntrospection interface Server

